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Abstract: This paper formulates and solves a new problem of the double model following adaptive
control (MFAC) of nodes and links in a complex dynamical network (CDN). This is different from
most existing studies on CDN and MFAC. Inspired by the concept of composite systems, the CDN
with dynamic links is regarded as an interconnected system composed of an interconnected node
group (NG) and link group (LG). Guided by the above-mentioned new idea of viewing a CDN
from the perspective of composite systems, by means of Lyapunov theory and proposed related
mathematical preliminaries, a new adaptive control scheme is proposed for NG. In addition, to
remove the restriction that the states of links in a CDN are unavailable due to physical constraints,
technical restraints, and expensive measurement costs, we synthesize the coupling term in LG with
the proposed adaptive control scheme for NG, such that the problem of double MFAC of nodes and
links in CDN is solved. Finally, a simulation example is presented to verify the theoretical results.

Keywords: double model following adaptive control; complex dynamical network; nodes group;
links group

1. Introduction

A complex dynamical network (CDN) can be thought of as the graph-theoretic model
consisting of many time-varying nodes and their connection relationships, which can be
used to describe many real networks in the real world—for example, social networks [1],
biological neural networks [2], transportation networks [3], and cellular and metabolic
networks [4]. The CDN has received a continuously growing interest and has often been
a hot subject of research, since it can help us reveal and better understand the structures
and functions of real networks, and so far, many valuable theoretical results have also been
obtained [5–12].

Inspired by the concept of composite systems, the CDN can be regarded as an inter-
connected system composed of two subsystems (NG and LG) coupled with each other.
Therefore, the dynamic behavior of CDN should originate not only from the NG but also
from the LG, and the dynamic behavior of nodes (links) is influenced by the dynamics
of links (nodes). Guided by the above viewpoint, the existing research on the synchro-
nization [5,6], tracking [7,8], and consensus [9,10] of CDNs can be regarded as dynamic
characteristics of nodes with the assistance of dynamic links. The research on the structural
balancing of CDNs can be regarded as dynamic characteristics of links with the assistance of
dynamic nodes [11,12]. However, it is worth noting that double model following adaptive
control (MFAC) problems of nodes and links in CDNs are ignored in the above-mentioned
research.

Obviously, MFAC as an important class of control theory. Many important results
on MFAC have been obtained for various linear and nonlinear systems, which have been
applied to many fields [13–17]. By observing the literature [13–17], it is easy to see that
most existing works on MFAC are mainly aimed at a single system and are limited by the
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model matching conditions. In contrast, discussion on the MFAC of networks is rarely
seen. Therefore, in order to overcome the above limitations in the current research works
on MFAC, combined with the above understanding and discussion of CDN, the new
problem of double MFAC of nodes and links in CDN has emerged. In fact, the research
on double MFAC of nodes and links in CDN also has practical applications. For example,
for the study of discretized structural systems [18–21], the finite element analysis method
can be used to discretize it into N elements. Then, to understand the above discretized
structural systems from the perspective of a CDN, each discretized element is considered
as a node in the CDN, and the stiffness variation between discretized elements is regarded
as the dynamic link in the CDN. Then, we can utilize the reference model to specify the
expected displacement velocity and stiffness variation of discretized elements that can
ensure the stability of this system under the interference of external forces. At this time,
the stability control problem of continuous structural systems can be transformed into
double-MFAC problems of nodes and links in a CDN. Multiple robots present a certain
physical dynamic posture according to their respective reference robots (reference target),
and the communication protocol (dynamic links) between controlled robots also tracks the
communication protocol between its reference robots [22]. Therefore, inspired by the above
description, this paper investigates double-MFAC problems of nodes and links in CDN,
which can be used to fill the above-mentioned insufficiencies of the existing research.

Motivated by above discussions, this paper mainly focuses on double-MFAC problems
of nodes and links in CDN. In this work, the CDN is considered to be an interconnected
system composed of NG and LG coupled with each other, where the dynamic equations
of NG and LG are modeled by matrix differential equations (MDEs). That is shown more
simply in form than the vector differential equations, as in the literature [5–10,23–25]. This
may reduce the difficulty of the mathematical derivation because the matrix-straightening
operation and Kronecker-product operation are avoided. In addition, consider the restric-
tion that the states of dynamic links in CDN are unavailable due to physical constraints,
technical restraints, and expensive measurement costs. To remove this restriction, this
paper not only proposes the adaptive control scheme for NG, but also designs the coupling
term in LG based on the mutual coupling between nodes and links in CDN, which is
different from the method in [5–10]. It also guarantees that nodes and links in CDN can
asymptotically follow their respective reference targets. That is, the problem of double
MFAC of nodes and links in CDN is solved.

In this paper, we study double-MFAC problems of nodes and links in CDN, compared
with the most existing works on studying CDN and MFAC. This paper mainly has the
following contributions.

• The problems of double MFAC are first formulated and solved for nodes and links
in CDN.

• To solve the double-MFAC problem, the dynamic equations of nodes and links are
modeled by matrix differential equations (MDEs), which enables us to employ the
matrix algebra methods for system analysis.

• Note that the state information of LG is unavailable, and thus the LG cannot be controlled
directly. In order to address this issue, an effective coupling mechanism between NG
and LG is proposed based on a new adaptive control scheme synthesized for NG.

• The subsequent theoretical derivation and proof process show that with the proposed
coupling mechanism between NG and LG, the strictive model matching conditions in
MFAC of a single system (e.g., [26,27]) are no longer required in this paper.
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The structure of the rest of this paper is as follows. In Section 2, we propose the
mathematical model for CDN, which is considered to be formed by the mutual coupling
of NG and LG and give relevant mathematical assumptions. In Section 3, we synthesize
the adaptive control scheme for NG and design the effective coupling mechanism between
NG and LG to ensure double MFAC of nodes and links in CDN is realized. The illustrative
simulation example is given in Section 4 to validate the correctness and effectiveness of
the proposed control scheme and the coupling mechanism in this paper. We give the
conclusions in Section 5.

Notation: Rn denotes the n− dimensional Euclidean space. Rm×q represents the set
of m× q matrices. MT denotes the transpose of the matrix M. tr{∗} denotes the trace of
‘∗’, and ‖∗‖ denotes the Euclid norm of the vector or the matrix ‘∗’. diag{· · · } represents a
diagonal matrix. Om×q denotes a m× q zero matrix.

2. Model Description

Consider a class of uncertain controlled CDNs consisting of N nodes and links between
N nodes. Define the state vector of the ith node as xi = [xi1, xi2, . . . , xin]

T ∈ Rn, the time-
varying link weights from node j to the node i is lji = lji(t), the initial link weights from
node j to node i as lji

0, and the control input of the ith node as ui = [ui1, ui2, . . . , uin]
T ∈ Rn,

i, j = 1, 2, . . . , N. In this paper, we consider N nodes as a whole, called the node group
(NG), and all links as a link group (LG). Therefore, the uncertain controlled CDN can be
regarded as an interconnected system composed of NG and LG coupled with each other,
for which the dynamics are described as follows.{

Ẋ = AX + F(X, t) + H(X, t)L0Γ + H(X, t)LΓ + U
L̇ = PL + Θ(X)

(1)

where A ∈ Rn×n and P ∈ RN×N signify constant matrices, F(X, t) ∈ Rn×N represents a
continuous nonlinear matrix function, and H(X, t) ∈ Rn×N is the inner coupling matrix
of NG. Γ = diag{α1, α2, . . . , αN} ∈ RN×N represents coupling-strength matrix, where αi is
the coupling strength of node i in the NG; i = 1, 2, . . . , N. Θ(X) ∈ RN×N refers to coupling
term, which describes the coupling relationship between nodes and links. X ∈ Rn×N ,
U ∈ Rn×N , Lo ∈ RN×N , and L ∈ RN×N express the state matrix of NG, the control input
matrix of NG, the initial state matrix, and the state matrix of LG, respectively, which are

defined as follows. X ∆
= [x1, x2, . . . , xN ], U ∆

= [u1, u2, . . . , uN ], L0
∆
= [lji

0]N×N , L ∆
= [lji]N×N .

Remark 1. (i). Equation (1) can be widely used to describe numerous physical and engineering sys-
tems in practice [18,28–30]. For instance, consider a 1-DOF discretizable structural system with N
discretized elements, each of which is regarded a controlled node, and the stiffness variation between
discretized elements is regarded as the time-varying link weights. Guided by this idea, the dynamics
of the ith discretized element are described as the following differential equation by using Newton’s

theorem. mi z̈i = fi(t)− fdi(żi)−
N
∑

j=1
[k ji

0 + k ji(t)]bj(zj, żj, t), in which mi ∈ R, fdi(żi) ∈ R,

and fi(t) ∈ R represent the mass, damping force, and external force of the ith discretized element,
respectively. k ji

0 denotes the initial stiffness between the jth discretized element and the ith dis-
cretized element, k ji(t) represents the stiffness variation of the ith discretized element caused by the
displacement change of the jth discretized element. The dynamic mathematical model of stiffness
variation matrix K = [k ji(t)]N×N is depicted as K̇ = BK + Φ(Z), Z = [z1, z2, . . . , zN ] ∈ R1×N ,
i, j = 1, 2, . . . , N. Then, we regard N discretized elements as a whole (NG), and the stiffness
variation matrix as the state variable of LG; therefore, its dynamics model can be co-written in
the form of Equation (1) with the following transformations: xi = żi, X = [ż1, ż2, . . . , żN ] ∈
R1×N , A = 0, F(X, t) = [m1

−1( f1(t)− fd1(x1)), m2
−1( f2(t)− fd2(x2)), · · ·mN

−1( fN(t)−
fdN(xN))] ∈ R1×N , L0 = [k ji

0]N×N , L = K = [k ji(t)]N×N , P = B ∈ RN×N , U =

O1×N , Θ(X) = Φ(Z) ∈ RN×N , Γ = diag(m1
−1, m2

−1, . . . , mN
−1) ∈ RN×N and H(X, t) =
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[−b1(
t∫

0
x1(t)dt + z1(0), x1, t),−b2(

t∫
0

x2(t)dt + z2(0), x2, t), . . . ,−bN(
t∫

0
xN(t)dt + zN(0), xN ,

t)] ∈ R1×N . (ii). The dynamics model in the theoretical results [11,12,23,31] of the research on
CDN can also be co-written in the form of Equation (1) through appropriate transformations.
Accordingly, it is reasonable and widely applicable to describe the dynamics of CDN by Equation (1).

Assumption 1. Consider the CDN (1): (i). The constant matrix A is unknown, and the matrix
function H(X, t) is known and bounded. (ii) There exists an unknown non-negative number such
that the inequality ‖F(X, t)‖ ≤ δ is satisfied, which implies the matrix function F(X, t) is unknown
but bounded. (iii) The constant matrix P is a Hurwitz matrix.

Remark 2. (i). The assumption that matrix P is a Hurwitz matrix is commonly used in existing
works on CDN problems (see for example [24,25,31]). (ii). If Assumption 1 is satisfied, we can
obtain the following Lyapunov equation.

PTS + SP = −W (2)

where matrices W ∈ RN×N and S ∈ RN×N represent given the positive definite symmetric matrix
and its corresponding positive definite symmetric matrix solution about Equation (2), respectively.
(iii). Many systems, such as a Lorenz chaotic system [23] and Chua circuit chaotic system [23], can
satisfy the inequality ‖F(X, t)‖ ≤ δ in Assumption 1. In addition, an adaptive law can be designed
to estimate the unknown bound δ of the nonlinear matrix function F(X, t).

We propose the reference model for the CDN (1), which is described by the following
matrix differential equation.{

Ẋm = AmXm + G(Xm, t)Lm + BmUm
L̇m = AlmLm + BlmXm

(3)

where Xm ∈ Rn×N and Lm ∈ RN×N denote the reference state matrices for NG and LG,
respectively. Am ∈ Rn×n, Bm ∈ Rn×m, Alm ∈ RN×N , and Blm ∈ N×n are constant matrices,
G(Xm, t) ∈ Rn×N denotes the continuous nonlinear matrix function, and Um ∈ Rm×N

represents the reference input matrix of NG.

Remark 3. (i). Since the reference model (3) can also be used to describe the dynamics of CDN,
the double-MFAC problem of CDN in this paper means that make the states of the controlled CDN
follow the state of the given CDN. More precisely, we aim to make the states of the nodes and links
asymptotically follow their respective reference models. It is worth noting that their respective
reference models have mutual interconnections. (ii). For the 1-DOF discretized structural system,
Equation (3) can be used to describe the formwork in which the structural system maintains stability
under axial forces. This means that if displacement velocity of discretized elements and stiffness
variation between them can be changed according to Equation (3), the involved structural system
can be guaranteed to be stable in the sense shown in references [32–34].

Assumption 2. The constant matrix Am in Equation (3) is a Hurwitz matrix.

Remark 4. (i). Assumption 2 is commonly used in existing works on MFAC problems (see, for
example, [17,26,27]). (ii). If Assumption 2 holds, then for any given positive definite symmetric ma-
trix Q ∈ Rn×n, the following Lyapunov equation has the corresponding positive definite symmetric
matrix solution M ∈ Rn×n.

Am
T M + MAm = −Q (4)
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3. Main Results

According to Equations (1) and (3), we definite the model following errors for NG
and LG in CDN as EX = X− Xm and EL = L− Lm, respectively. Then, in order to achieve
double MFAC for NG and LG in CDN, we give the control target as follows.

The control target. Consider the CDN (1) composed of the mutual coupling NG and
LG, whose reference model is modeled by Equation (3). Suppose that Assumption 1 and
Assumption 2 hold, and the state matrices of NG and LG are available and unavailable,
respectively. Our objective is to synthesize an adaptive control scheme U of NG and
design coupling term Θ(X) in LG, such that the CDN (1) asymptotically follows the
reference model (3), i.e., lim

t→+∞
EX = On×N , lim

t→+∞
EL = ON×N , in which On×N and ON×N

represent the n×N and N×N zero matrices, respectively. Furthermore, the other involved
parameters are guaranteed to be bounded.

According to Equations (1) and (3), we can obtain that models following error-dynamic
equations for NG and LG are as follows, respectively.

ĖX =Ẋ− Ẋm

=AX + F(X, t) + H(X, t)L0Γ + H(X, t)LΓ + U − AmXm − G(Xm, t)Lm − BmUm

=AmEX + (A− Am)X + F(X, t) + H(X, t)L0Γ + H(X, t)ELΓ + H(X, t)LmΓ

+ U − G(Xm, t)Lm − BmUm (5)

ĖL =L̇− L̇m

=PL + Θ(X)− AlmLm − BlmXm

=PL− PLm + PLm + Θ(X)− AlmLm − BlmXm

=PEL + (P− Alm)Lm + Θ(X)− BlmXm (6)

Based on Assumption 1, we introduce the estimate value δ̂ of unknown bounds δ
and the estimate error δ̃ = δ − δ̂. Let Kp denote the estimate of Kp

∗ = A − Am and
K̃p = Kp

∗ − Kp denote its estimate error. In order to achieve the control target proposed in
this paper, we synthesized an adaptive control scheme U for NG and designed the coupling
term Θ(X) in LG, which are shown as follows.

U = −KpX− H(X, t)L0Γ− H(X, t)LmΓ + G(Xm, t)Lm + BmUm + U1 (7)

U1 = −δ̂sign(MEX) (8)

K̇p = Λp MEXXT (9)

˙̂δ = ε
∥∥∥EX

T M
∥∥∥ (10)

Θ(X) = (Alm − P)Lm − S−1HT(X, t)MEXΓ + BlmXm (11)

where sign(MEX) =

{
MEX
‖MEX‖

, EX 6= On×N

On×N , EX = On×N
represents the matrix signal function,

ε > 0 is an adjustable parameter, and Λp ∈ Rn×n is the given adjustable positive defi-
nite symmetric matrix.
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Remark 5. (i). The adaptive control scheme U for NG is generated by Equations (7)–(10), which
includes three parts. The first one −KpX is the feedback term about state matrix X of NG, in which
the estimate matrix Kp is updated by Equation (9). The second one −H(X, t)L0Γ− H(X, t)LmΓ +
G(Xm, t)Lm + BmUm is the term related to the reference models of NG and LG, in which all the
information is known. The last one −δ̂sign(MEX) is a robust term to overcome the nonlinear
bounded uncertain term F(X, t) involved in NG, in which the unknown bound is estimated by the
adaptive law (10). (ii). The adjustable parameters ε in Equation (10) and Λp in Equation (9) are
selected while considering a trade-off based on the practical situation.

By substituting the adaptive control scheme (7)–(10) into the model following error
dynamics (Equation (5)), the following formula can be obtained.

ĖX = AmEX + K̃pX + F(X, t) + H(X, t)ELΓ + U1 (12)

Theorem 1. Consider the CDN (1) whose reference model is given by Equation (3). If Assumptions
1 and 2 are satisfied, by employing the synthesized adaptive control scheme (7)–(10) for NG and the
designed coupling term (11) in LG, it can be ensured that double MFAC of NG and LG in CDN is
realized. That is, lim

t→+∞
EX = lim

t→+∞
(X − Xm) = On×N , lim

t→+∞
EL = lim

t→+∞
(L− Lm) = ON×N

hold. On×N and ON×N denote n× N and N × N-dimensional zero matrices, respectively.

Remark 6. (1). The detailed proof of Theorem 1 is in Appendix A, please refer to Appendix A at
the end of this paper. (2). The steps for applying Theorem 1 are given as follows.
Step (i). Propose the reference model (3); determine parameter matrices Am, Alm, Blm, and Bm; find
the nonlinear matrix function G(Xm, t) and the reference control input matrix Um.
Step (ii). Determine the coupling strength matrix Γ, the constant matrix P, the inner coupling
matrix H(X, t), and the initial state matrices L0 and Z(0) in the controlled CDN.
Step (iii). Obtain positive definite matrices M and S by solving Lyapunov equations, Equations (4)
and (2), respectively. Then, by substituting the above parameters into the designed adaptive control
scheme (7)–(10) and the coupling term (11), which ensures the states of NG and LG can asymp-
totically follow their respective reference models, the double MFAC of NG and LG in CDN is
guaranteed.

4. Simulation Example

In this paper—refer to reference [18]—consider axial plane vibration (n = 1) of an
elastic beam. We used the finite element analysis method to discretize it into N elements
(N = 20), where the stiffness variation was considered as the links between discretized
elements. In addition, it should be noted that the elastic restoring force of each discretized
element is not only related to its own stiffness, but also related to the stiffness of other
discretized elements. Therefore, under the action of axial force, the motion equation of each
controlled element with damping force can be expressed as follows.

mi z̈i + fdi(żi) +
N

∑
j=1

[k ji
0 + k ji(t)]zj = fi(t) + vi (13)

where zi ∈ R, mi ∈ R, fdi(żi), and fi(t) represent the axial displacement, the mass, the damp-
ing force, and the axial external force of the ith element, respectively. k ji

0 is the initial
stiffness (static stiffness) between the ith element and the jth element. k ji(t) is the stiffness
variation between the ith element and the jth element, which implies the bending effect of
the jth element on the ith element through the elastic restoring force. vi ∈ R is the control
input of the ith element, i, j = 1, 2, . . . , N.

The dynamics mathematical model of the stiffness variation for the elastic beam under
axial external force is given as follows.

K̇ = BK + Φ(Z) (14)



Entropy 2023, 25, 115 7 of 14

where the stiffness variation matrix K ∈ RN×N , the constant matrix B ∈ RN×N ,
Z = [z1, z2, . . . , zN ] ∈ R1×N , and the coupling matrix Φ(Z) ∈ RN×N denotes the coupling
relation between displacement velocity and stiffness variation of the discretized elements.

By the transformation xi = żi, the motion equations for N elements and the dynamics
equation of stiffness variation can be rewritten together in the form of Equation (1), in which
X = [x1, x2, . . . , xN ] ∈ R1×N , A = 0, F(X, t) = [m1

−1( f1(t) − fd1(x1)), m2
−1( f2(t) −

fd2(x2)), . . . , mN
−1( fN(t) − fdN(xN))] ∈ R1×N , L0 = [k ji

0]N×N , L = L(t) = [k ji(t)]N×N ,
Γ = diag[m1

−1, m2
−1, . . . , mN

−1] ∈ RN×N , U = [m1
−1v1, m2

−1v2, . . . .mN
−1vN ] ∈ R1×N ,

P = B ∈ RN×N , H(X, t) = [−(
∫ t

0 x1dt + z1(0)), − (
∫ t

0 x2dt + z2(0)), . . . ,
−(
∫ t

0 xNdt + zN(0))] ∈ R1×N , Θ(X) = Φ(Z) ∈ RN×N .
Convert the dynamic equations (13) and (14) of the elastic beam into the form of

Equation (1) according to the above transformations. Next, based on the form of Equa-
tion (1), we give its reference model as shown in Equation (3).

Remark 7. (i). In this simulation, Equation (3) gives a template that can ensure the stability of the
elastic beam in the sense of these studies [32–34]. That is to say, as long as the displacement velocity
and the stiffness variation of the controlled elastic beam are under the axial external force change
according to Equation (3), the stability of the controlled elastic beam in the sense of literature [32–34]
can be achieved. (ii). From the results in references [35,36], it can be seen that the controller designed
in this paper can be regarded as achieving active mass damping (AMD) control.

Inspired by the stability of structural systems in the sense described in
certain papers [18,32–34], we determined the parameters involved in Equation (3) in this
simulation, which are shown as follows. In this paper, we used the Matlab toolbox for the
numerical simulation.

(i). Generate a r×N dimension matrix randomly by usingλ̄ = rand(r, N) (r = 2); then
let Um = uk

m cos(λ̄πt)e−2t, where uk
m > 0 is an arbitrarily, small positive number. The ma-

trix Bm = bm ∗ rand(1, r) with bm is chosen arbitrarily in (0, 1) by command “rand(1)”, Am
is chosen arbitrarily in (−6, 0) by command “−6 ∗ rand(1)”.

(ii). By command “Ω = uni f rnd(−1, 3, N, N)”, generate an N × N dimensional
invertible matrix Ω, and ensure that its elements are within the range (−1, 3). Then, give a
N × N dimension diagonal matrix Π = diag{alm

1, alm
2, . . . , alm

N}, with the negative real
numbers alm

k chosen arbitrarily by the command “−2 ∗ rand(1)”, k = 1, 2, . . . , N. Then, let
Alm = Ω−1ΠΩ. Generate the matrix Blm randomly by using the command “rand(N, n)”,
which can ensure that its elements are selected within the range of (0, 1).

In addition, we draw on the experience of literature [18], the parameters and matrices
of the controlled elastic beam involved in this simulation are selected according to the
following rules.

(a). Given the total length of elastic beam l = 20, the length of the ith element li,

and satisfaction of
N
∑

i=1
li = l, the mass of the ith element mi = µiρili, in which ρi is the

mass density of the ith element chosen arbitrarily by “ρi = 3 ∗ rand(1)”; 0 < µi < 1 is an
adjustable parameter. The damp force of the ith element was chosen as fdi(xi) = ςxi, where
ς is a parameter chosen in [1, 3]. The external force was chosen as fi(t) = ai sin(ωiπt),
for which the amplitude and angular frequency were chosen arbitrarily by “rand(1)” and
“5 ∗ rand(1)”, respectively.

(b). The matrix B in Equation (14) is also generated similarly by the above rules of
choosing the matrix Alm. Obtain the positive definite symmetric matrix S by solving the
Lyapunov equation, Equation (2), where W = w ∗ eye(N) with w = 100. Since we consider
the axial plane motion of the elastic beam, M is a positive real number in the Lyapunov
equation, Equation (4), which can be selected within the appropriate range of (10, 20).
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(c). The adjustable parameter ε in Equation (10) is selected by ε = 2 ∗ rand(1). The selec-
tion of adjustable parameter Λp is given by the following rules. Firstly, generate an n−order
diagonal matrix Λp1 randomly according to the command “Λp1 = diag(rand(n, 1))”; then,
obtain an n−order orthogonal matrix Λp2 by command “Λp2 = orth(rand(n, n))”; then,
choose Λp = Λp2

TΛp1Λp2.
(d). The initial state matrices X(0) and L(0) are chosen by randn(1, N) and randn(N, N),

respectively.
According to the above parameter selection, combined with the synthesized adaptive

control scheme for NG, (7)–(10), and the designed coupling term in LG, (11), we can get the
following simulation results shown in Figures 1–7.

Figure 1. (a) Time response curves of reference displacement velocity Xm(t). (b) Time response
curves of reference stiffness vibration Lm(t).

Figure 2. The time response curves of the model following errors for the displacement velocity
X(t)− Xm(t) without a controller.

According to the simulation results shown in Figures 1–7, we can obtain the follow-
ing observations.

(i). Figure 1 gives the expected displacement velocity and stiffness variation curves
(reference targets) of discretized elements, which can ensure the stability of the elastic beam
in the sense of the authors of [32–34] under the axial external force.
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(ii). From Figures 4 and 5, we can clearly see that under the action of the synthesized
adaptive control scheme (Equations (7)–(10)) and designed coupling term (11), the dis-
placement velocity of discretized elements and the stiffness variation between them can
asymptotically travel toward their respective reference target values. A comparison of
Figures 2, 3, and 5 shows the effectiveness of the control scheme and coupling term de-
signed in this paper.

(iii). Figure 6 shows that the estimate value δ̂ of unknown bound δ for nonlinear
matrix function is bounded, and Figure 7 shows that the estimate matrix Kp in the control
scheme is also bounded, which are required by the control target proposed in this article.
At the same time, this also shows the effective estimation for unknown parameters can be
guaranteed by designed adaptive laws (9) and (10).

Figure 3. The time response curves of the model following errors for the stiffness vibration L(t)−
Lm(t) without a controller.

Figure 4. (a) Time response curves of displacement velocity X(t) for a controlled elastic beam with a
controller and coupling term. (b) Time response curves of stiffness vibration L(t) for a controlled
elastic beam with a controller and coupling term.
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Figure 5. (a) Model following error curves of displacement velocity X(t)− Xm(t) for a controlled
elastic beam with a controller and coupling term. (b) Model following error curves of stiffness
vibration L(t)− Lm(t) for a controlled elastic beam with a controller and coupling term.
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Figure 6. The time response curve of the estimate value δ̂.
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Figure 7. The time response curve for the norm of estimate matrix Kp in the controller.
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5. Conclusions

This paper mainly focused on synthesizing the adaptive control scheme for NG
and designing the coupling term in LG to achieve double MFAC of nodes and links in
CDN. Firstly, we used matrix differential equations (MDEs) to describe the dynamics
characteristics of NG and LG in CDN, respectively, which are different from most existing
works on CDN. Then, based on the assumptions proposed in this paper, combined with
the Lyapunov stability theorem, the coupling term in LG was designed with the help
of the proposed control scheme for NG such that double MFAC of nodes and links in
CDN is realized; at the same time, the involved estimation parameters are guaranteed to
be bounded. The most outstanding innovation of this paper is to study double-MFAC
problems of nodes and links in CDN, while the coupling role between nodes and links is
fully considered to remove the restriction on the state information of links. For a dynamics
model of links with uncertainties, designing a better adaptive control scheme to make the
double MFAC of links and nodes in CDN was implemented, which will be investigated in
our future work.
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Appendix A

Proof of Theorem 1

According to the results in literature [23], we can select the positive definite func-
tion V = V(EX, EL, K̃p, δ̃) = tr{EX

T MEX}+ tr{EL
TSEL}+ tr{K̃T

p Λp
−1K̃p}+ ε−1δ̃2 about

elements EX, EL, K̃p and δ̃, in which positive definite symmetric matrices M and S are
determined by Equations (4) and (2), respectively.

It is well known that the traces of matrices B and C with an appropriate dimension
have the following properties.
(a). tr{B + C} = tr{B}+ tr{C}
(b). tr{BC} = tr{CB}
(c). tr{B} = tr{BT}
(d). tr{BC} ≤ ‖B‖ · ‖C‖

Then, by using Assumptions 1 and 2, the adaptive control scheme (7)–(10) for NG
and the coupling term (11) in LG, combined with the above-mentioned properties, we can
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obtain that the orbit derivative of positive definite function V = V(EX, EL, K̃p, δ̃) along
model following error dynamic Equations (6) and (12) is obtained that.

V̇ =tr{ĖT
X MEX}+ tr{EX

T MĖX}+ tr{ĖT
L SEL}+ tr{EL

TSĖL}+ 2tr{ ˙̃Kp
T

Λp
−1K̃p}+ 2ε−1δ̃ ˙̃δ

=tr{[AmEX + K̃pX + F(X, t) + H(X, t)ELΓ + U1]
T MEX}

+ tr{EX
T M[AmEX + K̃pX + F(X, t) + H(X, t)ELΓ + U1]}

+ tr{[PEL + (P− Alm)Lm + Θ(X)− BlmXm]
TSEL}+ 2tr{ ˙̃Kp

T
Λp
−1K̃p}

+ tr{EL
TS[PEL + (P− Alm)Lm + Θ(X)− BlmXm]}+ 2ε−1δ̃ ˙̃δ

=tr{EX
T [Am

T M + MAm]EX}+ tr{EL
T [PTS + SP]EL}

+ 2tr{EX
T M[K̃pX + F(X, t) + H(X, t)ELΓ + U1}

+ tr{EL
TS[(P− Alm)Lm + Θ(X)− BlmXm]}+ 2tr{ ˙̃Kp

T
Λp
−1K̃p}+ 2ε−1δ̃ ˙̃δ

=− tr{EX
TQEX} − tr{EL

TWEL}+ 2tr{EX
T MK̃pX + ˙̃Kp

T
Λp
−1K̃p}

+ 2tr{EX
T MF(X, t)− δ̂EX

T Msign(MEX)}+ 2ε−1δ̃ ˙̃δ

+ 2tr{EX
T MH(X, t)ELΓ}+ 2tr{EL

TS[(P− Alm)Lm + Θ(X)− BlmXm]}

≤− tr{EX
TQEX} − tr{EL

TWEL}+ 2
∥∥∥EX

T M
∥∥∥ · [‖F(X, t)‖ − δ̂] + 2ε−1δ̃ ˙̃δ

+ 2tr{[XEX
T M + ˙̃Kp

T
Λp
−1]K̃p}+ 2tr{EL

TS[S−1HT(X, t)MEXΓ

+ (P− Alm)Lm + Θ(X)− BlmXm]}

≤− tr{EX
TQEX} − tr{EL

TWEL}+ 2δ̃[
∥∥∥EX

T M
∥∥∥+ ε−1 ˙̃δ]

=− tr{EX
TQEX} − tr{EL

TWEL}
≤0 (A1)

According to inequality (A1), we can know that the model following errors EX and EL
of NG and LG, the estimate errors K̃p and δ̃ are bounded. Furthermore, by applying the
above obtained results to Equations (12) and (6), it can be known that ĖX and ĖL are also
bounded. Then, according to Barbalat Lemma [37,38], we can obtain that lim

t→+∞
EX = On×N ,

lim
t→+∞

EL = ON×N . Therefore, This completes the proof of Theorem 1.
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