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Abstract: Quantum graphs are ideally suited to studying the spectral statistics of chaotic systems.
Depending on the boundary conditions at the vertices, there are Neumann and Dirichlet graphs. The
latter ones correspond to totally disassembled graphs with a spectrum being the superposition of
the spectra of the individual bonds. According to the interlacing theorem, Neumann and Dirichlet
eigenvalues on average alternate as a function of the wave number, with the consequence that the
Neumann spectral statistics deviate from random matrix predictions. There is, e.g., a strict upper
bound for the spacing of neighboring Neumann eigenvalues given by the number of bonds (in units
of the mean level spacing). Here, we present analytic expressions for level spacing distribution
and number variance for ensemble averaged spectra of Dirichlet graphs in dependence of the
bond number, and compare them with numerical results. For a number of small Neumann graphs,
numerical results for the same quantities are shown, and their deviations from random matrix
predictions are discussed.

Keywords: quantum graphs; interlacing theorem; random matrix theory

1. Motivation

Quantum graphs are composed of bonds which are connected with each other at
vertices. Along the bonds wave propagation is governed by the Schrödinger equation
without potential and boundary conditions depending on the details of the coupling at
the vertices. Quantum graphs were first introduced by Pauling [1] in the context of free
electron models of organic molecules. Later, they were studied intensely in physics [2] and
mathematics [3], and experimentally implemented in correspondingly-shaped microwave
networks [4]. They are conceptually simple, but still complex, and there is a straightforward
symbolic alphabet to classify the periodic orbits. Casati and coworkers [5] suggested that
the universal features of the spectra of chaotic systems might be described by random
matrix theory (RMT), which later was expressed by Bohigas, Giannoni, and Schmit [6] in
the form of a conjecture. Using supersymmetry techniques, Gnutzmann and Altland [7]
proved the conjecture for the two-point correlation function for fully connected graphs with
incommensurate bond lengths. Their result was generalized to all correlation functions
by Pluhař and Weidenmüller [8]. Just as for billiard systems [9], there is a one-to-one
correspondence between a quantum graph and the corresponding microwave networks,
which has been used, in particular, by Sirko and coworkers in numerous experiments to
study spectral and scattering properties of microwave graphs (see e.g., Ref. [4]).

In a recent microwave experiment in tetrahedral graphs [10], however, we noticed that
one important aspect is missing in the above scenario. It is hidden in the structure of the
equation system determining the graph spectrum. Using energy and current conservation
(the Kirchhoff rules in experimental networks), one arrives at a secular equation [2]

V

∑
m=1

hnm ϕm = 0 , (1)
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where the sum runs over all vertices V, and ϕm is the potential at vertex m. In the ex-
periment, the bonds are connected by ordinary T junctions corresponding to Neumann
boundary conditions. For this situation, the elements of the secular matrix h are given by

hnm = −δnm ∑
m′

cot klnm′ +
1

sin klnm
, (2)

where the lnm are the lengths of the bonds connecting vertices n and m, and k is the
wave number. For the homogeneous equation system (1) to have non-trivial solutions,
the determinant of h(k) has to vanish,

|h(k)| = 0 . (3)

The roots kn of the equation generate the spectrum of the graph. It will be called “Neumann”
spectrum in the following since the T junctions at all vertices obey Neumann boundary
conditions. On the other hand, hnm becomes singular, whenever klnm is an integer multiple
of π. This situation corresponds to a totally disassembled graph with a spectrum being the
sum of the spectra of all individual bonds with Dirichlet boundary conditions at both ends,
thus the vertices have no influence any longer. This “Dirichlet” spectrum hence appears
via the poles of |h(k)|, whereas the Neumann spectrum is given by the zeros of |h(k)|. In the
following, all lengths will be assumed to be incommensurable to avoid degeneracies of the
Dirichlet spectrum.

This “spectral duality”, as we termed it in our previous publication [10], has important
consequences for the spectral statistics. The cause is the interlacing theorem (see, e.g., Chap-
ter 3.11 of Ref. [3]): If the boundary conditions at one vertex of a graph are changed from Neumann
to Dirichlet, or somewhere in between, the eigenvalues of the original and the new graph appear
strictly alternating.

To move from the Neumann to the Dirichlet spectrum for a complete graph, the bound-
ary conditions have to be changed one after the other at all vertices, not just at one of them.
Now, there is no longer a strict alternation in the sequence of the respective eigenvalues,
but still a strong correlation remains—the maximum number of Neumann eigenvalues
confined between two successive Dirichlet ones is given by the number of vertices V,
and vice versa.

The mean density of states for a graph of a total length of ltot is given by

ρ̄(k) =
ltot

π
. (4)

For a graph with B bonds and a given total length, the maximum level spacing is found
for the limiting case where all bonds are equal. For this case, the Dirichlet spectrum is
B-fold degenerate, and the maximum distance between neighboring eigenvalues, in units
of the mean level spacing, is just smax = B. Due to the interlacing theorem, the same
must be true for the Neumann resonances. There is hence a cut-off in the level spacing
distribution p(s) at smax = B, at the latest, both for the Dirichlet and the Neumann spectrum.
Consequences of spectral interlacing for the number variance have been discussed already
in our previous paper [10].

Thus, there are clear deviations from the RMT expectation for small graphs. This is
not in contradiction with the proofs mentioned in the beginning that the spectra of graphs
with irrational length ratio do exhibit RMT behavior, since these proofs work in the limit
of infinitely large graphs only. From the practical point of view this is of little help since
numerical, as well as experimental, studies are necessarily restricted to comparatively
small graphs.

Therefore, an understanding of the impact of Dirichlet–Neumann interlacing is manda-
tory for the correct interpretation of the spectral statistics in small graphs. Since, in the
moment, a good idea to approach Neumann spectral statistics is still missing, we start with
a more modest task—the interpretation of Dirichlet spectral statistics. Analytic results are
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given for level spacing distribution and number variance for a random superposition of
lattice fence spectra and compared with numerical results. For the Neumann spectra, we
restrict ourselves to an illustration of the fingerprints of spectral interlacing in level spacing
distribution and number variance, but have to leave the theoretical interpretation to future
papers. We do not discuss experimental results from microwave graphs in the present
paper. This remark may be necessary since probably this is exactly what readers do expect
from our group.

2. Dirichlet Graphs

For Dirichlet graphs, there are Dirichlet boundary conditions at each end of all bonds,
thus the bonds are not coupled at the vertices and the spectrum corresponds to a superposi-
tion of B separated bonds. Here, we present analytical and numerical results of the spectral
statistics for ensemble-averaged Dirichlet graphs. Following the usual practice, the mean
density of states ρ̄(k) = ltot/π was kept constant and normalized to one, meaning a total
length of ltot = π for all graphs entering the average. For the numerics, the lengths had
been created by generating B− 1 random numbers rn between 0 and π, and by taking the
appearing B segments as lengths ln. The procedure yields pB(l1, . . . , lB) =

1
πB−1 δ(∑ ln − π)

for the joint length probability. The ln are hence uniformly distributed on the interval 0 to
π with the constraint ∑ ln = π. Integrating out all ln but one obtains the distribution

pB(l) =
B− 1
πB−1 (π − l)B−2 (5)

for the remaining l, being constant only for B = 2. The derivation and a plot of the length
distributions can be found in Appendix A.

Alternatively, one could think of taking B lengths l′n from an interval between 0 and 1,
and afterward, normalizing each length via ln = πl′n/ ∑B

n=1 l′n to a mean density of one,
i.e., ∑ ln = π. The resulting joint length probability is non-uniform, in contrast to the one
above. For the sake of conciseness, we shall refer in the following to the two respective
ensembles as the uniform and the non-uniform one. The non-uniform approach would be
more in the spirit of the usual unfolding technique used in quantum chaos to make spectra
taken from different systems comparable. For the non-uniform ensemble again, numerical
length distributions are presented in Appendix A. Since it would be hard to obtain analytical
results for the non-uniform ensemble, all analytics and numerics, if not explicitly stated
differently, are for the uniform one.

In the next two subsections, theoretical expressions for nearest neighbor spacing
distribution p(s) and number variance Σ2 are given and compared with numerical data.

2.1. Nearest Neighbor Spacing Distribution for Dirichlet Graphs

To calculate the distribution of nearest neighbors spacings p(s) for the Dirichlet spec-
trum of a graph, we apply a strategy that had been used already by Berry and Robnik [11]
to calculate p(s) for an uncorrelated superposition of two spectra, one associated with the
chaotic part, the other with the regular part of a mixed phase-space system. A key element
in the calculation is the gap probability e(s) describing the probability for a spectral range
of length s to be empty of eigenvalues. The gap probability is related to the level spacing
distribution via

p(s) = e′′(s) , (6)

where a mean level spacing of one has been assumed. Expression (6) is well-known to those
working in the field, but for readers not familiar with the subject, a didactic derivation is
given in Appendix B. For a picket fence spectrum with a mean level spacing of ∆s = 1,
the gap probability is given by

e(s) =

{
1− s, if 0 ≤ s ≤ 1 ,
0, s > 1 .

(7)
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e(s) is, in contrast to p(s), multiplicative for superimposed uncorrelated spectra,

e(s) = ∏
n

en(s) , (8)

whence follows for the Dirichlet spectrum of a graph with B bonds of lengths ln, n = 1, . . . , B

eB(k) =
B

∏
n=1

e
(

ln
π

k
)

. (9)

From Equation (9) for eB(k), the Dirichlet level spacing distribution can now be obtained
by taking the second derivative, see Equation (6). The Dirichlet level spacing distribution
has already been calculated by Barra and Gaspard [12], who did not follow, however,
the approach of Berry and Robnik [11]. Their derivation therefore is much less concise and
considerably longer then the present one, see the appendix of [12].

Expression (9) has to be averaged over all different realizations of ln with the constraint
that the total length ltot is constant

B

∑
n=1

ln = ltot . (10)

with the substitution sn = ln
π k, the constraint becomes

s =
B

∑
n=1

sn =
ltot

π
k . (11)

Thus, s is the wave number in units of the mean level spacing π/ltot. In the following we
shall use the letter s exclusively for spectra with a mean level spacing of ∆s = 1. Now the
average can written as

〈eB(s)〉 =
(B− 1)!

sB−1

∫ s

0
ds1e(s1)

∫ s−s1

0
ds2e(s2) · · ·

∫ s−s1−···−sB−2

0
dsB−1e(sB−1)

· e(s− sB−1 − · · · − s1)

=
(B− 1)!

sB−1 wB(s) , (12)

where wB(s) is given by

wB(s) =
∫ s

0
ds1e(s1)

∫ s−s1

0
ds2e(s2) · · ·

=
∫ s

0
ds1e(s1)wB−1(s− s1) , with w1(s) = e(s) . (13)

The factorial in Equation (12) reflects the number of possible l sequences to do the average.
Equation (13) can be used to calculate wB(s) iteratively. For B = 2, e.g., one obtains

w2(s) =



s∫
0

ds1e(s1)e(s− s1) = s− s2 + 1
6 s3 , s < 1 ,

1∫
s−1

ds1e(s1)e(s− s1) =
4
3 − 2s + s2 − 1

6 s3 , 1 < s < 2 ,

0 , s > 2 ,

(14)
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where the limits of integration in the different s windows take care of the cut-off of e(s).
With help of Equations (12) and (6), we now obtain for the level spacing distribution

p2(s) =


1
3 , 0 < s < 1 ,
8− x3

3x3 , 1 < s < 2 ,

0 , s > 2 .

(15)

In this way, the pB(s) may be obtained iteratively, resulting in formulas with a com-
plexity increasing step by step.

A more direct approach takes advantage of the fact that the integral in Equation (13) is
nothing but a convolution. In such a situation, Laplace transform techniques are the method
of choice. Applying a Laplace transform to Equation (13), the convolution theorem yields

ŵB(λ) = ê(λ)ŵB−1(λ) , (16)

where
ŵB(λ) = L[wB(s)] =

∫ ∞

0
wB(s)e−λsds (17)

and
ê(λ) = L[e(s)] =

∫ ∞

0
e(x)e−λxdx =

1
λ2

[
e−λ − 1 + λ

]
(18)

are the Laplace transforms of w(s), and e(s), respectively. Iterating Equation (16), one gets

ŵB(λ) = [ê(λ)]B , (19)

whence wB(s) is obtained via an inverse Laplace transform

wB(x) = L−1(ŵB(λ)) . (20)

The inverse Laplace transform can be done with the result

wB(s) =


0 , s > B ,

bsc
∑

m=0

B
∑

l=m
cB

ml(−1)l−m(s−m)l+B−1 , s < B ,
(21)

where bsc denotes the largest integer ≤ s and

cB
ml =

B!
m!(l −m)!(B− l)!(B + l − 1)!

. (22)

Further details can be found in Appendix C.
To verify our results, we compare the analytical results with numerical simulations. In

Figure 1, the histograms for B = 2 to 6 and 100 are shown together with the corresponding
theoretical predictions in a linear, and in Figure 2 in a logarithmic scale. All distributions
show the expected cut-off at smax = B. There is a perfect agreement between numerics and
theory. Note the discontinuity for B = 2 at s = 1, which for larger B is smoothed out and
vanishes for B→ ∞, where an an exponential decay is expected, corresponding to a Poisson
distribution. This can be seen in Figures 1f and 2f, showing the results for B = 100. There
are still deviations from the exponential behavior as can be seen in the inset of Figure 2f,
showing the same results over a larger s range. Still the analytic solution matches better. In
Appendix D, numerical findings are presented for the non-uniform ensemble.



Entropy 2023, 25, 109 6 of 15

s

0.0

0.5

1.0

1.5

2.0

p
(s

)

(a)

s

(b)

s

(c)

0 1 2 3 4 5 6

s

0.0

0.5

1.0

1.5

2.0

p
(s

)

(d)

0 1 2 3 4 5 6

s

(e)

0 1 2 3 4 5 6

s

(f)

Figure 1. The distribution of nearest neighbor spacings of the Dirichlet graphs for different numbers
of bonds B = 2 (a), 3 (b), 4 (c) , 5 (d), 6 (e) , 100 (f) in linear scale. The solid lines correspond to numer-
ical simulations taking into account 109 realization, each of them containing about 900 spacings. The
blue dotted lines corresponds to the theoretical prediction, Equations (6) and (12). In (f), the orange
dashed line corresponds to a Poisson distribution, i.e., an exponential.
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Figure 2. The same as Figure 1 but in logarithm scale. In the inset in (f), the abscissa ranges from 0 to
16, and the ordinate from 10−9 to 5.

2.2. Number Variance for Dirichlet Graphs

The number variance, defined as

Σ2(s) = 〈n2〉 − (〈n〉)2 , (23)
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where n is the number of eigenvalues in an interval of length s, yields for the lattice fence
spectrum of a single bond of length l

Σ2(s) = {s}[1− {s}] , with s =
kl
π

and {s} = s− bsc . (24)

It is convenient to express Σ2(s) in terms of its Fourier transform,

Σ2(s) =
1
6
− 1

π2

∞

∑
m=1

cos(2πms)
m2 . (25)

For B bonds with independent bond lengths ln, the spectrum is just the superposition of
the B spectra with bond lengths l1, l2, . . . , lB. The number variation Σ2(s) is additive for
uncorrelated spectra leading to

〈Σ2(s)〉l = B

{
1
6
− 1

π2

∞

∑
m=1

〈cos(2πmsk)〉l
m2

}
(26)

for the ensemble averaged number variance, where sk =
klk
π , and 〈. . . 〉l means the average

over all ln with the constraint ∑ lk = ltot, i.e.,

〈cos(αlk)〉l =
π∫

0

dl pB(l) cos(αl) , (27)

with α = 2mk and pB(l) given by Equation (5).
In Figure 3, the ensemble averaged number variance for Dirichlet graphs are shown

for a number of different bonds. For a single bond (B = 1), there is just one lattice fence
spectrum with a spacing of one. Hence, one observes a periodic modulation with an
average value of 1/6, as described by Equation (25). With increasing B, these oscillations
are damped out more and more, until Σ2(s) eventually approaches the linear increase
expected for a Poissonian ensemble. A good agreement between the simulations and the
analytical predictions given by Equation (27) is found.

0 1 2 3 4 5

s

0.0

0.5

1.0

1.5

2.0

2.5

Σ
2
(s

)

5 10 15 20 25 30 35 40

s

Figure 3. Ensemble averaged number variance Σ2(s) for the Dirichlet graphs with B =

1, 2, 3, 6, 9, 12, 15, 100 bonds. The solid lines correspond to the numerical simulations and the blue
dotted lines to the analytical result given by Equation (26). The horizontal green dashed lines mark
the limit Σ2(s)→ B/6 for s→ ∞. The straight orange dashed line represents the number variance
for integrable systems given by Σ2(s) = s. Note the change of the abscissa scale at s = 5.



Entropy 2023, 25, 109 8 of 15

3. Neumann Graphs

Here, we present the results of the Neumann graphs shown in Table 1. We restricted
ourselves to graphs where bonds are connected at least to two other bonds and where there
are no disconnected parts. In addition the verticity VB, the number of bonds that connect at
a vertex, has been assumed to be the same for all vertices. The smallest graph of interest is
the tetrahedron which has been used repeatedly for RMT studies in numerics [13], as well
as in experiments [4,10].

Table 1. The investigated graphs for Neumann boundary conditions at the vertices. The lower part
of the table shows the results of the numerics: (i) sc is the s value, where p(s) drops below 10−5, i. e.,
p(sc) = 10−5, (ii) sm is the s value, where Σ2(s) takes its maximal value, and (iii) Σ2

sat is the limit of
Σ2(s) for s→ ∞, obtained by taking the average of Σ2(s) in the range of s between 10 and 20.

Name Tetrahedron f. c. with V = 5 Octahedron Hexahedron

#Bonds B 6 10 12 12

#Vertices V 4 5 6 8

Valency of vertices 3 4 4 3

Fully connected (f. c.) Yes Yes No No

sc 3.19 3.75 3.96 3.56

sm 1.64 2.56 2.88 2.08

Σ2
sat 0.40 0.48 0.51 0.44

3.1. Nearest Neighbor Spacing Distribution for Neumann Graphs

Figure 4 shows level spacing distributions for the graphs presented in Table 1. In
addition, the exact RMT nearest neighbor distribution is shown [14,15]. Whereas the linear
plot suggests a reasonable agreement with the RMT prediction, in the logarithmic plot
for all four graphs, a suppression for large values becomes obvious, with the strongest
suppression for the tetrahedron having the smallest number of bonds. This is in accordance
with the expectation; due to the interlacing theorem, the largest possible distance is given
by the number of bonds, B = 6 for the tetrahedron, and 10 or 12 for the other graphs. The
decay, however, does not increase monotonously with B—it is faster for the hexahedron
than for the octahedron, though the number of bonds is the same, and the decay for the
fully connected five-vertices graph is as fast as for the octahedron, though the number of
bonds is not the same.

Similar deviations of p(s) from RMT have also been observed by Barra and Gas-
pard [12] but not discussed in detail.

To quantify these findings, we determined sc, the value where p(s) drops below 10−5,
i.e., p(sc) = 10−5, close to the limit of our statistical precision. In Figure 4, this s value
reflects the point where p(s) crosses the abscissa. The extracted values are presented in
Table 1. Regrettably, it is impossible to fix the cut-off point by the numerics, which should
be, e.g., smax = 6 for the tetrahedron. This would need more than 1011 spacings, by far
beyond our computer resources.
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Figure 4. Level spacing distributions for the graphs shown in Table 1 in a logarithmic scale, with the
tetrahedron (blue), the fully connected graph with 5 vertices (orange), the octahedron (green), and the
hexahedron (red). The plots were generated by superimposing the results from 52.2 · 106, 14.6 · 106,
6.7 · 106, 35.0 · 106 spacings. The inset shows the same data in a linear scale. In addition, the exact
RMT distribution is plotted (dashed black).

3.2. Number Variance for Neumann Graphs

In Figure 5, the ensemble-averaged number variances for the graphs shown in Table 1
are plotted, exhibiting a saturation at about s = 2 in contrast to the behavior predicted by
RMT. Similar deviations from RMT predictions for the number variance in graphs have
been reported in Refs. [16,17], and for the spectral rigidity in Ref. [4]. For non-experts, we
mention that the spectral rigidity may be looked upon as a smoothed version of the number
variance (the exact definition is technical and not of relevance here [14]). Already in 1985,
Casati and coworkers [18] discovered a saturation of the spectral rigidity in the spectra of
rectangular billiards, which could be traced back by Berry to the influence of the shortest
periodic orbit [19]. In the present case this can not be the explanation. From the shortest
periodic orbit, there should be a saturation of Σ2(s) at about ssat = π/lmin = ltot/lmin.
Since necessarily lmin ≤ ltot/B, periodic orbit theory predicts a saturation of the number
variance not until ssat ≥ B, whereas actually for all graphs the saturation is observed much
earlier at about s = 2. In the lower part of Table 1, the saturation values are given, as well as
sm corresponding to the s value where Σ2(s) is maximal. sm is a convenient tool to quantify
the point of cross-over from a linear increase of Σ2(s) for small s values to a saturation for
s→ ∞. There is a clear correlation between sc, sm, and Σ2

sat, collected in the lower part of
Table 1. From the interlacing theorem one would expect a correlation of these quantities
with the bond number, which is observed for the first three graphs presented in the table,
the tetrahedron, the totally connected graphs with five vertices, and the octahedron, but the
hexahedron does not fit into the sequence. In fact, there is a stronger correlation with the
vertex valency, the number of bonds meeting at a vertex. Obviously, the interlacing theorem
alone is not sufficient to describe all these features.



Entropy 2023, 25, 109 10 of 15

0 2 4 6 8 10 12 14

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Σ
2
(s

)

Figure 5. Number variance Σ2(s) for the tetrahedron (solid blue), the fully connected graph with
5 vertices (dashed orange), the octahedron (dashed dotted green), and the hexahedron (dotted red).
The solid black line correspond to the RMT prediction, the horizontal thin dashed green lines mark
the limiting values obtained from an average of Σ2(s) over the range s = 10 to 20.

A quantitative explanation, in particular, of the saturation values, has to be postponed
to further studies, but there is a qualitative explanation. Semiclassical theory relates RMT
to periodic orbits [20]. Essential ingredients are correlations between orbits and their time-
reversed partners, in case there is time-reversal symmetry [19], and between various types
of self-intersecting orbits with their non-intersecting partners [21,22]. Apart from this, all
orbit lengths are assumed as uncorrelated. This assumption is severely violated in graphs,
where all orbits are composed from a finite number of elements.

4. Conclusions

The implications of spectral interlacing in quantum graphs have been discussed. For
Dirichlet graphs, explicit analytic expressions have been obtained for level spacing dis-
tribution and number variance, and compared with numerical results. For Neumann
graphs, numerical results for the same quantities have been presented, showing clear devi-
ations from RMT predictions due to spectral interlacing. For Neumann graphs, an analytic
description of these features is still missing and has to be left to future work.
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Appendix A. Length Distributions

In most of our numerical studies, the lengths were created by generating B− 1 random
numbers rn between 0 and π, and taking the appearing B segments as lengths li, resulting
in the uniform ensemble introduced in Section 2. This results in a joint probability

p(l1, . . . , lB) = 〈δ(l1 − r1)δ(l2 − r2 + r1) · · · δ(lB − π + rB−1)〉r (A1)

for the lengths l1, . . . , lB. The brackets denote an average over the ri,

〈. . . 〉r =
B−1

∏
i=0

(
1
π

∫ π

0
dri

)
. . . (A2)

with the constraint 0 ≤ r1 ≤ · · · ≤ rB−1 ≤ π. Due to the delta functions, the integrations
are done easily step-by-step with the result

p(l1, . . . , lB) =
1

πB−1 δ

(
π −

B

∑
i=0

li

)
. (A3)

The ln are thus equally distributed over the interval 0 to π with the constraint ∑ ln = π.
Integrating over all ln but one, the distribution for a single length l is obtained,

pB(l) =
(B− 1)!

πB−1

π−l∫
0

dl1

π−l−l1∫
0

dl2· · ·
π−l−l1···−lB−2∫

0

dlB−1 δ

(
π − l −

B−1

∑
i=0

li

)
, (A4)

where the factorial takes account of the number of possible sequences to do the integra-
tions. The integrations can be performed iteratively, the result is Equation (5). Figure A1
shows numerically obtained length distributions together with the theoretical curves from
Equation (5). A perfect agreement is found.

Figure A2 shows the same for the non-uniform ensemble but without the analytic.
There are clear differences to the uniform ensemble. In particular, for B = 2, there is a
uniform length distribution for the first ensemble, whereas for the second one, there is a
cusp in the distribution for l = π/2. We did not try to calculate analytic expressions for the
length distribution for the latter case, they are not needed in the present context.

0 1
4
π 1

2
π 3

4
π π

l

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
B

(l
)

(a)

0 1
4
π 1

2
π 3

4
π π

l
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10−2

10−1

100

(b)

Figure A1. Distribution of lengths for the uniform ensemble in a linear (a) and a logarithmic (b)
scale, for B = 1, . . . 10, and 100 numbers of bonds, using 107 realizations, shown as colored solid lines.
The blue dotted lines correspond to the analytic expression (5). With increasing B the distribution
concentrates more and more at l values close to 0.
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Figure A2. The same as in Figure A1, but for the non-uniform ensemble, and without analytical
expression.

Appendix B. Derivation of Equation (6)

The relation between gap probability e(k) and level spacing distribution p(k) is ob-
tained as follows (see, e.g., Section 3.2.2 of Ref. [23]):

The difference (e(k)− e(k + ∆k)) may be interpreted as

e(k)− e(k + ∆k) = h(k)ρ∆k . (A5)

Here, h(k) is the one-sided gap probability, namely the probability for an interval of length
s to be empty of eigenvalue, and an eigenvalue at one end of the interval, let us assume the
lower one. ρ∆k is the probability to have an eigenvalue in the interval ∆s, where ρ is the
mean density of states. It follows

h(k) = −1
ρ

e′(k) . (A6)

Furthermore, [h(k)− h(k + ∆k)] may be interpreted as the probability to have one eigen-
value at the lower end and the next nearest one between k and k + ∆k, i.e.,

h(k)− h(k + ∆k) = p(k)∆k , (A7)

whence follows
p(k) = −h′(k) , (A8)

where p(k) is the probability density for an interval to be empty of eigenvalues, and an
eigenvalue on each side, i.e., the nearest neighbor spacing distribution.

Combining Equations (A6) and (A8), one obtains the wanted relation between e(k)
and p(k),

p(k) =
1
ρ

e′′(k) , (A9)

reducing to Equation (6) for a spectrum with a mean density ρ = 1. For a graphical
illustration see Figure A3.
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Figure A3. (a) Graphical illustration of e(k), h(k), p(k) (from top to bottom). (b) e(s), h(s), p(s) for a
lattice fence spectrum with spacing ∆s = 1.

Appendix C. Calculation of the Inverse Laplace Transform (20)

Using the standard formula for the inverse Laplace transform Equation (20) yields

wB(x) =
1

2πi

i∞+a∫
−i∞+a

dλ
1

λ2B

(
e−λ − 1 + λ

)B
eλx (A10)

=
1

2πi

B

∑
k=0

(
B
k

) i∞+a∫
−i∞+a

dλ

λ2B eλ(x−k)(λ− 1)B−k .

The path of integration has to be performed to the right of all singularities of the
integrand. The only possible singularity is at λ = 0, hence a has to be positive real. The
path of integration can be closed at infinity by a large semi-circle either to the left, for x > k,
or to the right, for x < k.

For x < k, the integration loop encloses no singularities, i.e.,
∮

dλ · · · = 0, for x > k
the integration can be performed by means of the residuum method resulting in

wB(x) =
kmax

∑
k=0

(
B
k

)
1

(2B− 1)!
∂2B−1

∂λ2B−1

[
eλ(x−k)(λ− 1)B−k

]∣∣∣
λ=0

, (A11)

where kmax = Min(B, bxc). For x > B, Equation (A11) yields

wB(x) =
1

(2B− 1)!
∂2B−1

∂λ2B−1

B

∑
k=0

(
B
k

)[
eλ(x−k)(λ− 1)B−k

]∣∣∣∣∣
λ=0

(A12)

=
1

(2B− 1)!
∂2B−1

∂λ2B−1

[(
e−λ − 1 + λ

)B
eλx
]∣∣∣∣

λ=0
= 0 ,

since (e−λ − 1 + λ) = O(λ2). For x < B, the sum in Equation (A11) runs from 0 to bxc,
and after a number of elementary steps one arrives at Equation (21).

Appendix D. Dirichlet Level Spacing Distributions for the Non-Uniform Ensemble

To illustrate the difference between the two ensembles introduced in Section 2, we
present here numerical results for the level spacing distribution for the non-uniform en-
sembles. Figures A4 and A5 show the results in linear and logarithmic scale. In addition,
the analytical curves for the uniform ensemble are plotted. Not surprisingly, there are
deviations in detail, but the qualitative behavior, in particular, the discontinuities for integer
values of s, and the cut-off at s = B is the same in both cases. Note that the non-uniform
ensemble approaches the Poisson limit faster than the uniform one, see inset of Figure A5f.



Entropy 2023, 25, 109 14 of 15

s

0.0

0.5

1.0

1.5

2.0

p
(s

)

(a)

s

(b)

s

(c)

0 1 2 3 4 5 6

s

0.0

0.5

1.0

1.5

2.0

p
(s

)

(d)

0 1 2 3 4 5 6

s

(e)

0 1 2 3 4 5 6

s

(f)

Figure A4. Level spacing distribution for the non-uniform ensemble in linear scale for different
number of bonds B = 2 (a), 3 (b), 4 (c) , 5 (d), 6 (e) , 100 (f). The blue dotted lines correspond to the
analytic results for the uniform ensemble.
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Figure A5. The same as Figure A4, but in a logarithmic scale. In the inset in (f), the abscissa ranges
from 0 to 16, and the ordinate from 10−9 to 5.
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