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Abstract: The Chinese stock market exhibits many characteristics that deviate from the efficient
market hypothesis and the trading volume contains a great deal of complexity information that the
price cannot reflect. Do small or big orders drive trading volume? We studied the complex behavior of
different orders from a microstructure perspective. We used ETF data of the CSI300, SSE50, and CSI500
indices and divided transactions into big and small orders. A multifractal detrended fluctuation
analysis (MFDFA) method was used to study persistence. It was found that the persistence of small
orders was stronger than that of big orders, which was caused by correlation with time. A multiscale
composite complexity synchronization (MCCS) method was used to study the synchronization of
orders and total volume. It was found that small orders drove selling-out transactions in the CSI300
market and that big orders drove selling-out transactions in the CSI500 market. Our findings are
useful for understanding the microstructure of the trading volume in the Chinese market.
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1. Introduction

Many transactions take place in the stock market every day and these transactions
cause market fluctuations. The Chinese stock market has many characteristics that deviate
from an efficient market [1,2] and financial anomalies, such as momentum and reversal
effects in the stock market, show that price does not fully reflect market information. The
trading volume contains a great deal of complexity information that price cannot reflect
as a direct description of stock trading. The stock trading volume contains a lot of infor-
mation, including fundamental stock trading information [3] and long-term stock market
performance data [4]. For stock technical indicators, the trading volume can increase in-
formation on price and earnings [5,6], reflect volatility information about the stock [7],
and provide international earnings spillover information [8]. Many volume studies have
linked volume to expected returns. The volume–price relationship is a key issue and is
important in the stock market [9,10]; the correlation between them changes with time [11].
The relationship between volume and price volatility has also been studied as it affects
the stock market [12], the money market [13] and the foreign exchange market [14]. Some
researchers have suggested that risk exposure [15] and household belief dispersion [16]
are related to the trading volume of stocks. The driving force behind the trading volume
is a problem that has concerned many investigators [17,18]. Studies undertaken include
those from the investor’s perspective and consider which types of investors are the main
drivers of trading volume. With respect to trading volume, buying and selling-out volume
have been investigated separately [19]. In the present study, we sought to examine the
information contained in the volume microstructure. The financial market is similar to
a physical system made up of numerous interacting agents and many economists have
used physical methods to study its complexity [20]. To investigate the complex information
contained in trading volume data, we applied multifractal and entropy methods.

The Peter fractal market hypothesis states that the stock price follows fractional Brown-
ian motion and challenges the strict assumption of an efficient market [21]. Hurst found that
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the current value of the time series affects the future value in a way that transcends random
perturbations [22]. The study defined this phenomenon as the long memory of the time
series and proposed the use of rescaled range analysis (R/S) for measurement. Mandelbrot
proposed fractional Brownian motion (FBM) in 1968, developing a model combined with the
Hurst index to form a well-established research system [23]. Peng proposed the detrending
fluctuation analysis method (DFA) applied to the investigation of DNA sequences [24]. This
method is more accurate and easier to implement than the R/S method and has gradually
become the mainstream method for measuring long-term memory. Kantelhardt proposed
the multifractal detrended fluctuation analysis (MFDFA) method based on improvement of
the detrended fluctuation analysis (DFA) method, extending the method to multiple scales
to correspond more closely to the reality of financial data [25]. Economists have applied
long memory to non-stationary time series in the financial market and used multifractal
methods to study the stock market [26,27], the futures market [28], the foreign exchange
market [29], and the Bitcoin market [30,31]. Thompson verified improved fitting using
the MFDFA method when measuring financial time series generalized Hurst indices and
multifractal spectra [32].

In 1948, Shannon proposed the concept of information entropy and suggested that the
greater the entropy, the greater the uncertainty of the variable, and the greater the amount of
information required. Many scholars have extended the entropy method and proposed new
entropy measurement methods, such as Deng entropy [33], dispersion entropy [34], and mul-
tiscale entropy [35]. The application of entropy in finance is based on information entropy.
In 1972, Philippatos and Wilson first applied entropy to finance, building portfolios with
minimal entropy, and received considerable returns [36]. The concept of entropy is applied in
options pricing [37], risk measurement [38], and utility calculations [39]. In the stock market,
entropy is used in the study of volume heterogeneity [40], volatility forecasting [41,42], and
the investigation of stock market regularity during turbulence periods [43]. In recent years,
entropy has been used to measure the similarity between financial markets [44], to study
the synchronization of stock returns [45], and to determine the similarity between stock and
commodity markets [46]. Pincus proposed an approximate entropy method [47] to measure
time series complexity. Richman proposed a more accurate sample entropy method based
on the approximate entropy [48]. Costa introduced a coarse-graining procedure to assess
multiscale entropy at multiple timescales [49]. Xu researched the complexity problem of
time series. Their study combined the entropy measurement method with the complexity
invariant distance (CID) and proposed a multiscale composite complexity synchronization
(MCCS) approach, which can replace cross-sample entropy when calculating the similarity
of different time series [50].

There have been many investigations regarding the microstructure of the stock market.
The trading volume is often included in microstructure research as trading volume has a
driving effect on volatility, opening price, and income spillover [5,7,8,51]. Suominen used
a game model to study the information content of the trading volume [52], while Wang
studied the circuit breakers and volume structure of the Chinese stock market [53]. Ormos
studied the impact of the financial crisis on the microstructure of the trading volume [54].
Xu first investigated the microstructure of the Chinese stock market in terms of volume and
volatility [55], while Covrig and Ng studied the driving forces behind trading volume from
an investor perspective [18]. Alvarez-Ramírez and Rodríguez used the DFA method to study
the temporal correlation of trading volume [56]. Lee observed a stronger cross-correlation
in stock buy volume from a buy and sell trade perspective [19]. The previous studies only
investigated the microstructure of trading volume; however, we have applied economic
physics methods to investigate the complexity behavior of trading volume. For the benefit
of the reader, Table 1 summarizes previous studies and highlights the contribution of this
paper. The driving influences of volume for big and small orders are conceivably different,
being affected by time correlation, and selling transactions are more likely to have a clear
driving force. This is a hypothesis that we discuss in the paper.
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Table 1. Summary of previous literature.

Study Market Microstructure Variable Method Main Findings

Koubaa and
Slim [7]

Developed and emerging
stock market Volume and volatility Non-linear STFIGARCH model Large volume drives the high volatility regime

Barclay and
Hendershott [5] US stock market Volume and open price Econometric model Pre-open trading contributes to the efficiency of the opening price

Sheng et al. [8] Major stock markets Volume and return AR-GARCH model International return spillover effects are sensitive to different levels of trading activity

Suominen [52] / Volume, volatility and price Game equilibrium model Explanation of trading volume containing useful information for predicting volatility

Ormos and
Timotity [54] Budapest Stock Exchange Investor trading Probabilistic model Evidence of changes in investors’ trading in the financial crisis

Wang et al. [53] Chinese stock market Price, volatility and volume Econometric model The circuit-breakers do not affect bid-ask spreads and reduce volume and trades

Louhichi [51] CAC40 Index stock market Volume and volatility GARCH model Supporting evidence for strategic asymmetric information hypothesis

Xu [55] Chinese stock market Volatility and volume VAR model High volatility is explained by its lagged volatilities and trading volume

Covrig and Ng [18] US stock market Volume Dynamic regressive model Institutional trading generates a more pronounced effect on
volume autocorrelation than individual investor trading

Alvarez-Ramírez
and Rodríguez [56] US stock market Volume Detrended fluctuation analysis The strength of correlations exhibits important temporal variations

Lee et al. [19] Korean stock market Volume Correlation function The properties of the correlations of buy and sell volumes differ

This study Chinese stock market Volume MFDFA and MCCS
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We aim to study the complexity behavior of different orders to find which orders drive
the trading volume of the Chinese stock market. We investigate the fractal characteristics of
trading volume and the complexity synchronization between the total volume and trading
orders. We use the ETF data of the CSI 300, the SSE 50, and the CSI 500 indices from the
Chinese stock market. We divide transactions into buying transactions and selling-out
transactions and discuss their complexity characteristics. The MFDFA method is used to
obtain a multifractality index and the fractal spectrum of the volume. In addition, the fractal
characteristics of different markets are compared. We also plot the multifractality curves
and analyze the reasons for the fractal characteristics of the three markets using the shuffle
sequence. We find that small orders are persistent. On this basis, we analyze the complexity
synchronization of the orders and total volume. We find that the transactions are influenced
by different orders in different markets. For the selling-out market, small orders are the
leading force in CSI300, while big orders are the main force in CSI500. This feature is caused
by the correlation of time series.

The paper is organized as follows: Section 2 describes the ETF data and order transac-
tion indicators and provides detailed MFDFA and MCCS calculations. Section 3 provides a
simple explanatory analysis of the data, presents descriptive statistics and discusses their
characteristics. Section 4 discusses the fractal characteristics and complex synchronization
characteristics of orders and discusses them in relation to the findings of earlier studies.
Section 5 gives the concrete value of the investment, considers the transferability of the
methodology, and suggests future research directions.

2. Data and Methodology
2.1. Data

ETF is the exchange-traded fund. ETF tracks the sector index or the market index
and can be purchased and redeemed at trading time or traded in the market like stocks.
Investors can use ETFs for arbitrage; in the Chinese market, ETFs cannot be short sold. This
paper uses data from the CSI300 ETF, SSE50 ETF, and CSI500 ETF from 1 January 2018
to 30 May 2022. CSI300 is the most representative index of the Chinese stock market and
reflects the overall situation of China’s A-share market. The SSE50 is composed of 50 stocks
with the highest dividend yield and the largest cash dividend and reflects the performance
of leading enterprises in the Chinese market. The CSI500 reflects the stock performance of
growth companies in the Chinese market. We selected the largest of the three index ETFs:
Huatai-PB CSI300 ETF (510300), ChinaAMC SSE50 ETF (510050), and ChinaSouthern CSI500
ETF (510500).

The data includes the daily total volume and the daily trading order volume; we
select the initiative buying and selling-out volume. The initiative buying is to agree at the
lowest price of the selling orders; the initiative selling-out is to agree at the highest price
of the buying orders. For the total volume, we use the total trading shares of the buying
and selling-out. For trading orders, we divide trading orders into small orders and big
orders.Transactions with a turnover of less than 40,000 yuan represent small orders, and
transactions with a turnover of more than 1 million yuan represent big orders. The data
was obtained from the Wind financial terminal.

2.2. MFDFA Method

The MFDFA method divides time series into sub-intervals and eliminates local trends,
fits a residual sequence function, calculates the generalized Hurst exponent, and expresses
the multifractal characteristics of time series through the power law correlation of functions
and multifractal spectra. The MFDFA method is briefly described below.

Given a sample time series x(t)(t = 1, 2 . . . N), the sequence length is N. The MFDFA
method consists of several steps:

Step 1 Construct a time series side, where x̄ = ∑N
t=1 x(t)

X(i) =
i

∑
t=1

[x(t)− x̄], i = 1, 2, . . . , N (1)
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Step 2 Split the sub-interval

We divide X(i) into Ns = int(N/s) with s as the equal interval; the length of the time
series N is not always an integer multiple of the interval s. We ensure that the information
of the sequences is included in the segments, thereby, the sequence obtains 2Ns segments.

Step 3 Local trend elimination

For each segment υ, the trend can be eliminated with a local polynomial, where m = 3
is selected

γυ(i) = X[(υ− 1)s + i]− xυ(i) (2)

xυ(i) = δmim + . . . + δ1i + δ0 (3)

F2(s, υ) =
1
s

s

∑
i=1

[γυ(i)]2 (4)

Step 4 Calculates the volatility function, where q is not equal to 0

Fq(s) = {
1

NS

Ns

∑
υ=1

[F2(s, υ)]
q
2 }

1
q (5)

Step 5 Calculates the scale variable

The power-law function Fq(s) satisfies the following relationship Fq(s)∝sh(q), h(q) is
the slope of logFq(s) = h(q)log(s) + log C, called the generalized Hurst index, adjust q
to get a different h(q). When q > 0, the characteristics of large fluctuating segments are
indicated, and when q < 0, the characteristics of small fluctuating segments are indicated.
When h(q) > 0.5, the sequence is persistent and the previously ascending sequence still
rises afterwards; When 0 < h(q) < 0.5, the sequence is anti-persistent and the previously
ascending sequences revert to the mean. Then, we plot multifractal spectra to present the
fractal behaviors of the sequences [57].

τ(q) = qh(q)− 1 (6)

α(q) = h(q) + qh′(q) (7)

f (α) = qα(q)− τ(q) (8)

We use α to describe the time series’ variation and depict the partial multifractal
characteristics. The smaller α, the greater the singularity. τ(q) is the Renyi index, f (α) is
the multifractal spectrum. The greater the fractal spectrum width αmax − αmin, the more
significant the fractal and the greater the slope of the Hurst index. ∆ f (α) = f (α)max −
f (α)min; the larger the ∆ f (α), the greater the difference between series, the greater the
fluctuation, the more uneven the distribution.

2.3. MCCS Method

For financial time series, this method first follows a coarse-graining procedure to the
series and then calculates a complexity synchronization measure, which is composed of
sample entropy and complexity invariant distance.

Given two equal length time series xn, yn with multiscale scale factor τ, where
Nτ = int(n/τ),

x(τ)j =
1
τ

jτ

∑
i=(j−1)τ+1

x(i), 1≤j≤Nτ (9)

y(τ)j =
1
τ

jτ

∑
i=(j−1)τ+1

y(i), 1≤j≤Nτ (10)
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The sample entropy is an improvement on the approximate entropy and is calculated
as follows: For the time series xn, m is the giving dimension, which can constitute the
m-dimensional vector xm(i) = {xi, xi+1, . . . , xi+m−1}, where i ∈ {1, 2, . . . , n−m}; in this
paper, m = 2. The distance between two vectors xm(i) and xm(j) is d(xm(i), xm(j)) =
max(|xi+k − xj+k| : 0≤k≤m− 1); when the distance d is less than the tolerance level r, the
vector xm(i) is said to be close to xm(j), Nm

i (r̂) is the number of vectors close to the vector
xm(i), tolerance r is 0.15 times the standard deviation in this paper, and the probability of
being close to xm(i) is

Cm
i (r̂) =

Nm
i (r̂)

n−m− 1
(11)

The mean for this probability is

Cm(r̂) =
1

n−m

n−m

∑
i=1

Cm
i (r̂) (12)

The sample entropy is defined as [48]

SampEn(x, m, r̂) = − log(
Cm+1(r̂)

Cm(r̂)
) (13)

The generalized complexity invariant distance measures the complexity relationship
between two-time series, x and y, according to the Minkowski distance,

∆x = {x2 − x1, x3 − x2, . . . , xn − xn−1} (14)

∆y = {y2 − y1, y3 − y2, . . . , yn − yn−1} (15)

‖x‖p =
n

∑
i=1
|xi|p (16)

‖y‖p =
n

∑
i=1
|yi|p (17)

The generalized complexity invariant distance is calculated as

GCID(x, y, p) = ‖x− y‖p×max{‖∆x‖p, ‖∆y‖p}
min{‖∆x‖p, ‖∆y‖p} (18)

We define MCCS(x, y, p, τ) = CCS(x(τ), y(τ), p), where CCS is calculated from the
sample entropy and the generalized complexity invariant distance,

CCS(x, y, p) = [SampEn(|x− y|p, m, r̂)×GCID(x, y, p)]
1
p (19)

The correlation coefficient ρMCCS of multiscale complexity synchronization between x
and y is defined as,

ρMCCS(x, y, p, τ) = exp{−MCCS(x, y, p, τ)} (20)

3. Explanatory Analysis

Table 2 shows the order transaction of the CSI300, SSE50 and CSI500 markets. The
SSE50 market has a higher volume and the CSI500 market has a lower volume. For different
orders, the mean and standard deviation of buying and selling transactions for big orders
are higher than those for small orders, which indicates that the big orders have a higher
absolute volume than small orders and dramatic volatility. The volume of the three markets
shows peak characteristics and the JB test results strongly reject the normal distribution
hypothesis. This suggests that the volume of the three markets does not closely follow a
normal distribution and needs to be studied from the perspective of a fractal market.
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Table 2. Descriptive statistics on the volume of the three markets.

Panel A: CSI300 Buy-Small Buy-Big Sell-Small Sell-Big

Obs 1069 1069 1069 1069
Mean 1.15× 107 8.79× 107 1.03× 107 8.85× 107

Max 9.96× 107 6.09× 108 4.50× 107 5.29× 108

Min 1.69× 106 9.65× 106 1.92× 106 6.04× 106

S.D. 8.81× 106 6.24× 107 6.16× 106 6.34× 107

Skewness 3.27 2.00 2.05 1.86
Kurtosis 17.66 7.36 6.02 5.69

Jarque–Bera 15,802.23 *** 3123.95 *** 2364.75 *** 2055.29 ***

Panel B: SSE50 buy-small buy-big sell-small sell-big

Obs 1069 1069 1069 1069
Mean 2.03× 107 1.02× 108 1.80× 107 9.66× 107

Max 1.46× 108 8.49× 108 9.01× 107 5.38× 108

Min 3.62× 106 4.34× 106 4.31× 106 1.01× 107

S.D. 1.48× 107 7.42× 107 1.07× 107 6.44× 107

Skewness 2.60 2.85 2.15 2.04
Kurtosis 10.58 15.51 7.30 6.71

Jarque–Bera 6187.74 *** 12,162.79 *** 3192.14 *** 2745.94 ***

Panel C: CSI500 buy-small buy-big sell-small sell-big

Obs 1069 1069 1069 1069
Mean 6.00× 106 4.61× 107 5.18× 106 4.08× 107

Max 4.02× 107 2.83× 108 2.18× 107 3.40× 108

Min 6.35× 105 1.64× 106 5.92× 105 1.37× 106

S.D. 4.33× 106 3.38× 107 2.94× 106 3.35× 107

Skewness 2.52 1.80 1.42 2.33
Kurtosis 10.73 5.24 3.66 9.90

Jarque–Bera 6256.93 *** 1800.07 *** 955.60 *** 5333.14 ***
*** is significant at the 1% level.

We consider the inconsistencies between the different markets; the data is normalized,

xnew =
x− xmin

xmax − xmin
(21)

To study the characteristic of big and small orders in different markets, Figures 1–3
present relevant histograms. The big and small orders in the three markets have obvious
spikes and right-bias characteristics.

(a)

0 0.25 0.5 0.75 1
normalized volume

0

20

40

60

80

F
re

q
u
e
n
c
y

CSI300buy-big

(b)

0 0.25 0.5 0.75 1
normalized volume

0

20

40

60

80

100

F
re

q
u
e
n
c
y

CSI300buy-small

(c)

0 0.25 0.5 0.75 1
normalized volume

0

20

40

60

F
re

q
u
e
n
c
y

CSI300sell-big

(d)

0 0.25 0.5 0.75 1
normalized volume

0

20

40

60

F
re

q
u
e
n
c
y

CSI300sell-small
Figure 1. Cont.
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Figure 1. Distribution histogram of big and small orders in the CSI300 market. (a) big order of buying
transaction. (b) small order of buying transaction. (c) big order of selling transaction. (d) small order
of selling transaction.
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Figure 2. Distribution histogram of big and small orders in the SSE50 market. (a) big order of buying
transaction. (b) small order of buying transaction. (c) big order of selling transaction. (d) small order
of selling transaction.
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Figure 3. Distribution histogram of big and small orders in the CSI500 market. (a) big order of buying
transaction. (b) small order of buying transaction. (c) big order of selling transaction. (d) small order
of selling transaction.

4. Results and Discussion
4.1. Fractal Characteristics of Big and Small Orders

We divide big and small orders into buying and selling-out trades and obtain four types
of orders. We plot the generalized Hurst index curve; the fluctuation scale q is selected as
(−15, 15). The result are presented in Figure 4. The Hurst curves of the three markets are
all above 0.5, the transaction shows persistence, and the persistence of small fluctuations is
especially significant. In the CSI300 market, the selling-out transaction for big orders has
a stronger persistence. The buying transactions for big orders have lower persistence with
small fluctuations, while the buying transactions for small orders have lower persistence with
significant fluctuations. In the CSI500 market, the different orders have similar persistence
and the persistence has differences including both minimal and great fluctuations. For the
SSE50 market, the buying transactions of small orders show a high degree of persistence
and the persistence of the big orders is lower than that of the small orders. When q > 10,
the Hurst index for big buying transactions is close to 0.5, indicating that, when significant
fluctuations occur, the market volume is random and there is no obvious persistence or
anti-persistence.

The Hurst curve after the shuffle of the original sequence is presented in Figure 5. The
Hurst index of the three markets significantly reduces, showing that the persistence of the
transaction is caused by the time series correlation. For the CSI300 market, the small orders
after the shuffle have apparent persistence under small fluctuations. The transaction of big
orders is close to 0.5 when q is near 0, indicating that, when small fluctuations occur, the
buying transactions for big orders have no prominent memory characteristics. The SSE50
market shows the characteristic of persistence with small fluctuations and anti-persistence
with big fluctuations; the buying transactions for small orders is highly persistent. In
the CSI500 market, the selling-out transaction of small orders always shows persistence,
indicating that small orders are the force behind selling-out transactions.
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Figure 4. Hurst curve of small and big orders. (a) CSI300. (b) SSE50. (c) CSI500.
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Figure 5. Hurst curve of small and big orders after shuffle. (a) CSI300. (b) SSE50. (c) CSI500.

We report multifractal results for weekly volume in Figures 6 and 7. The results are
similar to the daily volume in Figure 4, with strong persistence in all three markets. In con-
trast to Figure 5, the generalized Hurst curve in Figure 7 is not smooth and very close, but
shows persistence with small fluctuations and anti-persistence with big fluctuations; the
persistence of small orders is higher than that of big orders. The results show that the time
correlation is the reason for the strong persistence of the weekly trading volume, but that
time correlation also affects the scaling effect of q. We suspect that, in the Chinese stock
market, this may be because weekly trading volume is affected by holidays.
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Figure 6. Hurst curve of small and big orders with weekly volume. (a) CSI300. (b) SSE50. (c) CSI500.
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Figure 7. Hurst curve of small and big orders with weekly volume after shuffle. (a) CSI300. (b) SSE50.
(c) CSI500.

4.2. The Complexity Synchronization Characteristic of Orders

To determine whether big or small orders force the transaction, we calculated the syn-
chronization of the different orders and total volume. Figure 7 shows the situation for the
three markets when p = 2. Figure 8a shows the obvious hierarchical characteristics of trans-
actions in the CSI300 market. The synchronization of big order buying transactions is higher
and the synchronization of big order selling-out transactions is lower. The synchronization
difference in buying transactions is greater than that of selling-out transactions in the CSI300
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market. Figure 8c shows that there is no significant difference in the synchronization of the
SSE50 market. When τ is less than four, the big order buying transaction is higher, while,
when τ is greater than four, the synchronization of small order selling-out transactions is
more prominent. Figure 8e shows that the CSI500 market is similar to the CSI300 market.
The buying transactions for big orders have the highest degree of synchronization, but
for sell-out transactions, the synchronization of big orders is higher. Figure 8b,d,f is the
complexity synchronization after shuffle according to the shuffle rules [25]. The synchro-
nization of the three markets has different degrees of reduction, with the decline in the
CSI300 market being the most obvious. This suggests that the synchronization results partly
from the correlation of the time series. The stratification of the three markets also changes
after the shuffle. The stratification phenomenon is not obvious after the shuffle in the CSI300
market. The synchronization of small order selling-out behavior is higher than that for big
orders and small orders are the dominant force in selling transactions. The CSI500 market
shows a more obvious stratification phenomenon after the shuffle. This suggests that the
synchronization is weakened by the correlation of the time series in the CSI500 market. The
synchronization of big orders is higher than that of small orders and big orders are the
leading force in market transactions. For the relatively mature SSE50 market, there is no
obvious dominant force in market transactions.
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Figure 8. The complexity synchronization of buying and selling-out transactions, MCCS correlation
coefficients with p = 2 of (a) original sequence of CSI300, (b) shuffled sequence of CSI300, (c) original
sequence of SSE50, (d) shuffled sequence of SSE50, (e) original sequence of CSI500, and (f) shuffled
sequence of CSI500.
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We present the complexity synchronization characteristic for weekly volume in Figure 9a.
In Figure 9, small selling orders are shown to have stronger synchronization than big
orders, which is consistent with the daily volume result, though this result is cut by time
correlation. In Figure 9f, buy transactions are driven by big orders in the CSI500 market. In
Figure 9d, there is no obvious driving force for trading in the SSE50 market, which is also
consistent with the daily volume result.
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Figure 9. The complexity synchronization of buying and selling-out transactions with weekly volume,
MCCS correlation coefficients with p = 2 of (a) original sequence of CSI300, (b) shuffled sequence
of CSI300, (c) original sequence of SSE50, (d) shuffled sequence of SSE50, (e) original sequence of
CSI500, and (f) shuffled sequence of CSI500.

To further understand the complexity synchronization of the total volume and different
orders in the three markets, three-dimensional diagrams are presented in Figures 10 and 11
with a multiscale exponent p and a coarse grain factor τ. Figure 10 shows the buying
transaction and Figure 11 shows the selling transaction. For buying and selling orders in
different markets, with a change in p, the figures show the characteristics of first rapidly
increasing and then remaining basically unchanged. With a change in τ, the figures show
a positive correlation trend of different degrees. However, there are differences between
the changes for the different transactions. In Figure 8, the Euclidean distance is used to
measure the complexity invariant distance, where p = 2. In Figures 10 and 11, we use the
Minkowski distance to measure the complexity invariant distance. Therefore, Figure 8 can
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be seen as a slice of Figures 10 and 11 at p = 2. For the variation in MCCS values, p = 2
is in the increasing part and is a top plane at p > 5. As τ increases, the synchronization
gradually increases, especially when τ is less than five. This positive relationship is more
obvious in small order buying transactions of the CSI500 market. Compared with Figure 10,
the top plane of each plot in Figure 11 fluctuates to a greater extent. The fluctuation in
Figure 10b is the most pronounced, exhibiting a rugged top plane and the top surface of
the other plots is smoother. In the increasing part of the three-dimensional figure, as p
increases, as shown in Figure 10b,f increases more rapidly, exhibiting a rapid color change
in the figure. Figure 10a shows a noticeable drop when p is large, but the change is still
smooth, showing a color change in the top plane. This implies that there is a significant
peak in the MCCS value when p < 5.

Figure 10. Three-dimensional diagram of the complexity synchronization of order-buying transac-
tions. (a,c,e) is the small order behavior, (b,d,f) is the graph of big order behavior.
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Figure 11. Three-dimensional diagram of the complexity synchronization of order selling-out trans-
actions. (a,c,e) is the small order behavior, (b,d,f) is the graph of big order behavior.

4.3. Discussion

The results of the fractal analysis indicate that the trading volume of the Chinese stock
market shows strong persistence, which is caused by the correlation of time. When we
remove the time correlation by shuffle, it is found that the persistence of small orders is
more potent than that of big orders and that the Chinese stock market shows persistence of
small fluctuations and anti-persistence of big fluctuations. We observed that selling trades are
driven by small order transactions which are unaffected by the time correlation. However,
there is no apparent driving force for buying trades. In the CSI500 market, selling transactions
are driven by big orders. We think that this may be because the majority of retail investors
are in the CSI500 market. Transactions are mainly carried out in small orders, but big orders,
which have more considerable weight, are the dominant force in the CSI500 market.

Previous studies of the stock market microstructure have mostly focused on the
relationship between technical indicators, including volume and price, and volume and
volatility. These studies found interaction between variables. Studies of the microstructure
of volume also focus on the temporal correlation of volume and the driving force of this
correlation. We directly studied the complex behavior of volume itself to determine the
driving force of volume. Early studies showed that volume drives volatility [7] and stock
price [5], and some studies have shown that volatility drives volume [51]. For trading
volume, institutional investors are a stronger driving force for volume correlation than
individual investors [18] and trading volume itself has a strong time correlation [56]. Buying
transactions are more inter-related than selling transactions [19]. Financial rules and shocks
can also reduce trading volume [53,54]. We did not only consider the relationship between
variables, but also focused on the variable itself. We used the MFDFA and MCCS methods,
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which utilize more nuanced market information than the econometric regression models
used in previous studies. Earlier studies were based on microstructure analysis from the
perspective of the relationship between variables, whereas, we explain the microstructure
of the volume indicator itself.

5. Conclusions

We used MFDFA and MCCS methods to study the complexity behavior of small and
big orders in the Chinese stock market and found that the driving forces of different markets
were different. Our results are informative for market participants. Market investors can
better understand the buying and selling transactions in the stock market, discern the
intentions of different trading forces in the market, and gain more information from the
trading volume in the investment. For emerging markets, such as the Chinese market, the
results of CSI300 are more informative, and for developed markets, the results of SSE50
can be used as a reference. For policy makers, different policies need to be formulated for
different markets due to the different drivers of different markets. For the SSE50 market,
policies can be relatively lenient, while for the CSI500 market, which is driven by big orders,
targeted policies can help improve market efficiency. Our study has certain limitations.
We have only considered the absolute value of the volume, and have not undertaken in-
depth investigation of the volatility of different orders—future studies may pursue this. In
addition, our results may have been influenced by the global health crisis and it is sensible
to recognize that this period differs from those without such crisis. Finally, the complexity
analysis method can be applied to the study of other financial markets. This may include
complexity synchronization between different futures markets and the complexity behavior
of futures and stock markets.
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