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Abstract: In this paper, we explore a new approach in which understanding is interpreted as a set
representation. We prove that understanding/representation, finding the appropriate coordination
of data, is equivalent to finding the minimum of the representational entropy. For the control of
the search for the correct representation, we propose a loss function as a combination of the represen-
tational entropy, type one and type two errors. Computational complexity estimates are presented
for the process of understanding and using the representation found.
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1. Introduction

Intelligence in general is the ability to respond quickly and adequately to challenges
of the external world. Animals need to be able to recognise enemies and predators quickly.
This can be considered as a one-sided classification, one class versus all the others. In [1]
the authors argue that responding extremely quickly requires a different solution than
classical classification or learning. There, they propose a new paradigm, fundamentally
different from classification, to cover the cognitive process of understanding. The present
paper shows the theoretical feasibility of the comprehension process and proposes practical
development of the process of understanding.

The authors in [1] argue, following the strategy of representation learning [2,3], that
understanding a topic is equivalent to finding the right representation of the data. Ac-
cording to this approach, understanding does not involve data compression, but merely
the rearrangement of known facts/characteristics that fit best to the observed phenomena.

There is a subtle philosophical difference between understanding and learning, al-
though they may seem technically similar and are part of our cognitive work. Classic
AI/ML tasks such as classification, clustering, encoding, etc. go hand in hand with under-
standing, “model building”. Before we are able build a proper model, we try to classify
objects based on their characteristics, features, or try to cluster them. If we find a strik-
ingly good arrangement, it can lead to a model idea. After some trials we find a model
that fits the data well (after adjusting a few parameters) and meets our expectations of
the model. We stress here that model building always involves some preliminary assump-
tions (which can be good or bad). Once you have a suitable model in hand, the task of
classification or clustering is easy. As an example, let us consider a classification problem.
If we have to classify a new item, we have to compare its features with those of the possible
classes. If we have a model, a few relations between some features should be checked
to identify the right class. This is the bird tweet phenomenon. Without a model, it is
difficult (expensive in terms of algorithmic steps) to find the solution, while the model
plays the role of the bird and tells us the correct answer. Imagine that we have sample
points from several polynomials of order one, two and three. If we are given a new set of
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sample points from an unknown polynomial, even if we know the three classes, we need
to compare several class elements with the new one until we find a class element that is
convincingly close, similar, to the new one. Contrary, if we know the laws of the three
classes, a quick model fitting yields the answer. We will see that this quick solution comes
at a price. While supervised or unsupervised learning algorithms have relatively low
complexity, finding a model that well characterizes the classes, the relationship between
the features, is a very difficult task with much higher complexity. The difference is typically
exponential, or even hyper-exponential, depending on the task.

Let us take a closer look at the learning and model building processes. We talk about
training when we have a feature set of data and we want to fine-tune a combination of
these features (pick out a few key ones) to optimise some behaviour (usually classification
or clustering, in some cases forecasting or filling in missing data). The task of under-
standing, on the other hand, is to find the best data model that reveals the relationships
(functions, laws) between features and best describes a problem that is set prior the whole in-
vestigation. We call this the context of model building. Training always requires an explicit
loss function that decides whether the trained system behaves correctly or not. This may
be rather implicit, as in the case of auto-encoders or reinforcement learning. In the process
of understanding, we consider only the input data set and try to figure out the feature
functions that separate our data set from the rest of the world.

More formally, in the task of understanding the representative elements of the system
(sub-universe) we want to understand, are presented one by one to the model-building
apparatus. It has separating and descriptive coordinates (paper [1] called them relevant
and irrelevant coordinates, respectively, based on observed features). These are either kept
as they are or modified to better fit the new observed element. The separation coordinates
are expected to be constant 1 for the elements of the investigated sub-universe. Meanwhile,
the descriptive coordinates distinguish the elements of our subset piece-by-piece. After
observing a large enough number of samples, we expect to have a good understanding,
and later our understanding can also be the basis for a quick classification.

Again, we emphasize that we think that there is no understanding/model building
without context, prior assumptions, questions and prior elimination of almost all the aspects
of the universe, except some that are the particular subject of the investigation, the problem
to be solved. In problem setting, we must specify the set of objects Ω and the function space
that maps the “measurements” of the elements of the space to the new “coordinates”. In our
abstract model, the sub-space of binary functions which has log2(Ω) variables should be
specified. Overall, the context is given by Ω and the chosen function space.

One simplified example could be the predefined scale of the study. We may search for
a model of sand in a desert. If we have bird’s eye view photographs of the desert (106 mm
scale), we can try to shift and overlap the dunes in the images and find that there is an almost
periodic pattern that describes well the sand surface. The model can be formalised using
trigonometric series. Time lapsed video recordings of the same scale can reveal wave-like
behaviour and explain the periodicity (or falsify the static view). At a 101–102 mm scale,
surface tension, friction, avalanche effects may contribute to the description of the obser-
vation. The formalism should be based on polynomials of a few order, chaotic systems,
or stochastic dynamical systems. On a scale of 10−3–10−0 mm, fragmentation, particle
collision processes can be captured and the formalism can be based on branching processes
or dynamical systems with external potentials (forces) from statistical physics.

In general, it is not easy to decide whether a coordination is appropriate in the above
sense or not. Are we satisfied with the coordination (representation) or do we need further
investigation, sample elements? To facilitate this, it was suggested in [4] to associate
an entropy with each representation, which is minimal if the coordinates are chosen
properly. In [4], some properties of the proposed entropy function were investigated and
it was demonstrated in simple examples that it indeed performs the desired task.

In the present paper, we take a closer look at the practical understanding process.
First, we recall the formal model of understanding. We then show that representation
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entropy is minimal if and only if the representation is canonical, i.e., a representation that
separates the subset and describes the elements in terms of “independent” coordinates.
We propose a loss function for representations and provide theoretical and practical cal-
culation of the type one and type two errors of representations. Finally, an estimate of
the cost/complexity of the understanding procedure is given.

2. The Representational Entropy

We assume that Ω is a finite set, {Ω,F , P} is a probability space, and P is uniform
over Ω :P(ω) = 1

|Ω| for ω ∈ Ω.

For simplicity, we use sets with cardinality 2k with k > 0 integers. |Ω| = 2N . Let
Ω1 ⊂ Ω with |Ω1| = 2N1 .

Definition 1. A coordination of Ω is a bijection x = {xi}N
i=1 : Ω→ {0, 1}N . The coordinates are

the binary functions: xi : Ω→ {0, 1} for i = 1, . . . , N.

For continuous variables see the discussion in [1] .

Definition 2. A representation of Ω1 ⊂ Ω is a coordination in which the set Ω1 and its comple-
ment Ω2 = Ω\Ω1 are distinguished by N − I1 coordinates (binary functions), called separation
coordinates (SCs), if all of them are 1 on Ω1, and at least one of them is zero on Ω2. The other
I1 coordinates called Descriptive Coordinates (DCs). Given that permutation of coordinates is
irrelevant we may assume that the separation coordinates have the lower index:

∀i ∈ {1, . . . , N − I1} xi(ω) = 1 if ω ∈ Ω1,
∃i ∈ {1, . . . , N − I1} xi(ω) = 0 if ω /∈ Ω1.

Definition 3. A representation of Ω1 is optimal (canonical) if all the DCs as random variables are
independent over Ω1 (with respect of the uniform distribution over Ω).

Let us denote the descriptive coordinates by y = {yi}I1
i=1, and the function they

provide by y : Ω1 → {0, 1}I1 as well.
It is shown in [1] that the optimal (canonical) coordination always exists and coincides

with the binary labeling of the elements of Ω1 by descriptive coordinates, that is, by labeling
them with the N1-length binary vectors. One should observe immediately that y : Ω1 →
{0, 1}N1 is a bijection for the canonical representation.

Definition 4. The representation entropy is defined as follows: let pi(σ) = PΩ1(xi(ωi) = σ),
σ ∈ {0, 1}:

Srep(x, Ω1) = −
N

∑
i=1

1

∑
σ=0

pi (σ) log2 pi (σ).

For convenience, let H(x) = SShannon(x) denote the classical Shannon entropy:

H(ξ) = ∑
k
−pk log(pk),

where pk = P(ξ = xk). Using that notation we have the following observation.

Lemma 1. The representation has minimal representational entropy if and only if the coordinates
are independent (or in other words, the representation is complete).
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Proof. At first, let us note that the entropy H(y|Ω1) of the DCs is constant, equal to N1,
which justifies the search for a minimum. The statement of the Lemma is just reformulation
of the well-known fact that

H(z1, z2, . . . , zn) ≤
n

∑
i=1

H(zi) (1)

and equality holds if and only if all the zi-s are independent. We give a short proof of
this statement since it is in several textbooks (e.g., [5] ) but not all the proofs are clear
or complete.

If the family of random variables z = {zi}n
i=1 is independent then we have the equality

in (1) by the chain rule. Let us assume that the family of random variables z is not
independent. In that case, there are I1 and I2 ⊂ {1, 2, . . . , n} such that I1 ∩ I2 = ∅,
I1 ∪ I2 ⊂ {1, 2, . . . , n}, I1, I2 6= ∅ and x = {zi}i∈I1

, y =
{

zj
}

j∈I2
such that the variables x

and y are not independent and

H(z) = H(x, y) � H(x) + H(y).

For convenience let us reorder zi − s so that I1 = {1, ..k}, I2 = {k + 1, . . . , n}. Using
that notation we have that

H(z1,z2, . . . , zn) = H(z) � H(x) + H(y) ≤
k

∑
i=1

H(zi) +
n

∑
i=k+1

H(zi)

H(z1,z2, . . . , zn) �
n

∑
i=1

H(zi),

which shows the reverse implication.

3. Search

Let us assume that we have a given coordination x. Without loss of generality, we can
assume that the first N − I1 coordinates are going to represent Ω1 with value 1-s. The type
one error is:

α = α(x, Ω1) = P
(
∪{xi(ω) = 0}N−N1

i=1 |ω ∈ Ω1

)
and the type two error is:

β = β(x, Ω1) = P
(
{xi(ω) = 1}N−I1

i=1 |ω /∈ Ω1

)
.

The loss function is then defined as

L(x, Ω1) = Srep(x, Ω1) + λα(x, Ω1) + µβ(x, Ω1)

where λ, µ ≥ 0 regularizing meta parameters.
One should take into consideration when choosing the meta-parameters λ, µ that

log2|Ω1| ≤ Srep(x, Ω1) ≤ N,

0 ≤ α, β ≤ 1.

The theoretical values of the error probabilities are cumbersome, but interesting on
their own. Their detailed calculation is given in Appendix A. The empirical estimates are
easy. Similarly to the ML procedure, we split the sample into two. We use the first to create
a coordination of the learning set, assuming that we have large enough sample then with
the second part we calculate the estimate of the type one error. If we have access to non Ω1
elements, then we can calculate the estimate of the probability of type two error as well.
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Costs

The representation cost can also be a factor in the design of the coordination. There
are different costs.

1. Creation of the coordinates that include the presentation of ω-s, building of the xi
coordinates and, at least once, the calculation of the ready coordinates.

2. Storage of the coordinate functions.
3. Calculation of the representation entropy, type one and type two errors.
4. Cost of decision if ω ∈ Ω1 and full coordination of ω.

Let Ω2 ⊂ Ω1 be the set of presented items. The creation of a complete coordination of
Ω2 needs the presentation of |Ω2| = 2N2 elements. The canonical, complete representation
contains r2 = N − N2 functions xi|Ω2 ≡ 1 and further N2 functions which maps to the
lexicographical ordered binary vectors of length N2. All the functions should be different.
A very conservative estimate of the construction cost is the typical length l(N) of a binary
function of N inputs: (c.f. [6])

l(xi) = l(N) ∼ 2N/ log2 N

Of course if the function class is restricted, much lower cost is possible, but without
the explicit knowledge of that we can not incorporate into our estimate. We need N such
functions (where the choice of the value of N is based on expert guess, suggestion, external
parameter of the process, can not be specified by the procedure). The cost of learning CL is
estimated by

CL = number of items× number of functions × cost of a function

∼ c2N2 N2N/ log2 N,

where c ≥ 1 given that each constructed function should be calculated at least once for each
ω ∈ Ω2.

The storage and recall of the representation needs at least

CL ∼ c′N2N/ log2 N

steps.
The representation entropy for a complete representation is fixed ( 1/M2 ), no calcula-

tion needed. Type one error can be estimated with the observed relative frequency which is
based on the investigation of M3 number of Ω1 elements. That needs

Ctest = number of items× number of functions × cost of a calculation of a function

∼ c′M3(N − N2)2N/ log2 N

steps. If we have access to, or can create, Ω\Ω1 elements for test purposes, a similar
estimate can be given for the cost of the estimate of type two error.

Finally, from the above consideration, it is clear that for an ω the decision if ω ∈ Ω1
needs

Cdecision ∼ (N − N2)2N/ log2 N

steps and the full representation needs

C f ull ∼ N2N/ log2 N

steps.

4. Summary and Discussion

The goal of understanding is to build a data model by which we can make a distinction
between the “essential” an “unimportant” items.
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Following [1], we identify the set of essential data through their characteristic features.
This means that we calculate some quantities that have a given value for our distinguished
set. We should build our data representation based on the characteristic and irrelevant fea-
tures, which are called separation and descriptive coordinates in this paper. Once we know
all the separation coordinates, we can identify our singled out set with 100% certainty.

In practice, however, it is very tedious to find this coordination and verify if it is
optimal. It is much easier if we have a real valued function (loss function) that is minimal
for the correct data representation. In this work, we have proven with mathematical rigour
that the representation entropy defined in Definition 4 has exactly this property.

It is worth to emphasize that this representation quality measure is of statistical
nature. While the generally used loss functions can be computed for each input, the use of
representation entropy requires the knowledge of the bitwise probability distribution of
the outputs, and thus it is available only after having seen enough examples from the given
set. Once we know the bitwise probabilities, we can compute the representation entropy
with the psuedo-code given by Algorithm 1.

Algorithm 1 Representation Entropy from bitwise probability distributions

1: procedure S(p ∈ [0, 1]N) . p are the bitwise probabilities of 1.
2: S← 0
3: for i = 0, 1, . . . N − 1 do
4: S← S− pi log2 pi − (1− pi) log2(1− pi)
5: end for
6: return S
7: end procedure

In this paper, we worked in an abstract world with complete information, meaning
that we know all possible inputs, and we can approach all elements of our specific set.
In this case, we can find the best data representation using the psuedo-code of Algorithm 2,
based on evolution algorithm.

Algorithm 2 Evolution Algorithm to find the proper representation

Require:
N ← number of bits of the input
Ω1 ← set to be represented

Ensure: initialization
R0 ← X → {0, 1}N original coordination (e.g., pixels)
Sbest ← N

1: for a given number of iteration do
2: P← random {0, 1}N → {0, 1}N bijection (permutation)
3: x ← (0, 0, . . . 0) N dimensional zero vector
4: for ω in Ω1 do
5: x ← x + P(R0(ω)).
6: end for
7: p← x/|Ω1| . These are the bitwise probabilities of 1.
8: if S(p) < Sbest then
9: Pbest ← P

10: end if
11: end for
12: return Pbest ◦ R0

This algorithm works because the minimal representation entropy corresponds to
the best coordination of the data.

In fact, in the abstract world we can also construct the best representation (c.f. [1])
as follows. The original R0 representation associates an integer number to all elements,
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interpreting its binary coordinates as digits of a binary number. Here the Ω1 set usually
shows up randomly. However, we can find a permutation P that sends the element of Ω1
to the top of the list. Then P ◦ R0 associates the numbers 0, 1, . . . 2N1 − 1 with the elements
of Ω1, i.e., only its first N1 bits can be different from one. In this representation, therefore,
the first N1 bits are uniformly distributed, the higher bits are all one, thus the representation
entropy is N1 = SShannon. The type one and type two errors are all zero. Therefore Pbest = P.

This solution, however, is not feasible in practice, since we do not have complete
information. Then we shall use the given pseudo-code, with two modifications. The first
is that we can not sample the whole {0, 1}N → {0, 1}N bijections, since the cardinality
of this space is 2N !, which is usually too big to be parametrized. In practice, therefore,
we shall be content with a relatively small subset of all the representations, which we should
choose very carefully. For an appropriate choice of the function class, we can take into
account a number of arguments, we shall examine the symmetry of the system, we may
consider simple function classes (such as linear or low order polynomials), and we shall
rely on the field knowledge, accumulated common wisdom in the given area.

The other reason is that usually we do not know the complete Ω and Ω1 sets, we only
see some samples of it. In fact we do not even know the cardinality of Ω1 in general.
To mitigate the problem of the limited number of observations in Ω1, we may apply
methods that potentially improve the convergence. In this paper we have suggested to
incorporate into the cost function the type one and type two errors. That may be useful
from this point of view.

Even with the best strategy, if we do not have complete information, the fixed values
of the separation coordinates determine an Ω′ 6= Ω1 subset. Then a number of questions
arise, such as what is the relation of Ω′ and Ω1, how to choose the set of available co-
ordinations, how many separation and descriptive coordinates are worth to keep, and so
on. These questions are the subject of our future studies.
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Appendix A

Let us calculate the error probabilities in coordination of the set Ω1. Let M = 2N

and M1 = 2N1 First, let us investigate the process in which we develop the representation
of Ω1. Let us assume that we have shown Ω2 ⊂ Ω1 (with M2 = 2N2 = |Ω2| ). Based
on the given information, we can not represent Ω1, but we can create as it is shown in [1]
the complete representation of Ω2. We use that as “approximation” for the representation
of Ω1. We analyse the relationship of the representation of Ω1 and Ω2 in particular from
the point of view how the type one and type two errors behave.
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Let Ri (i = 1, 2) denote the index set of SCs for Ωi-s and assume that l = |R1 ∩ R2|.
First, we calculate Pl the probability that is based on the Ω2 data that we have a representa-
tion which has l common SCs with R1.

Pl =
1

M1M2

(
N
l

)(
N − l
r1 − l

)(
N − r1

r2 − l

)
2m,

where m = N − r1 − r2 + l = N2 − r1 + l. The type one error is for an ω ∈ Ω1 is that
we decide oppositely based on R2.

P
(
x|R2 ≡ 1| x|R1 ≡ 1, l = |R1 ∩ R2|

)
=

1
2N2

(
r1 + r2 − l

r2

)
2N2−(r1−l),

we have

α = 1−
r 1

∑
l=0

1
2N2

(
r1 + r2 − l

r2

)
2N2−(r1−l)Pl

The type two error takes place if x|N1 ≡ 1 but ω /∈ Ω1. We now count the possible
cases when the selective bits of Ω2 and of Ω1 overlap at most in N − N1 − 1 places and
produce false positive result. Let again m = N − r1 − r2 + l, then

β = P
(
{xi(ω) = 1}N−N1

i=1 |ω /∈ Ω1

)
=

1
2N1

r2

∑
l=0

N1

∑
k=1

(
N −m
r1 − k

)(
m
k

)
2kPl

Given that the true size of Ω and Ω1 is typically unknown, the theoretical values of
the type one and two errors can not be calculated. On the other hand, the empirical values
can be obtained based on a proper sample.
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