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Abstract: Contrastive learning is a representation learning method performed by contrasting a sample
to other similar samples so that they are brought closely together, forming clusters in the feature
space. The learning process is typically conducted using a two-stage training architecture, and it
utilizes the contrastive loss (CL) for its feature learning. Contrastive learning has been shown to be
quite successful in handling imbalanced datasets, in which some classes are overrepresented while
some others are underrepresented. However, previous studies have not specifically modified CL for
imbalanced datasets. In this work, we introduce an asymmetric version of CL, referred to as ACL, in
order to directly address the problem of class imbalance. In addition, we propose the asymmetric
focal contrastive loss (AFCL) as a further generalization of both ACL and focal contrastive loss (FCL).
The results on the imbalanced FMNIST and ISIC 2018 datasets show that the AFCL is capable of
outperforming the CL and FCL in terms of both weighted and unweighted classification accuracies.

Keywords: asymmetric loss; class imbalance; contrastive loss; entropy; focal loss

1. Introduction

Class imbalance is a major obstacle occurring within a dataset when certain classes in
the dataset are overrepresented (referred to as majority classes), while some are underrep-
resented (referred to as minority classes). This can be problematic for a large number of
classification models. A deep learning model such as a convolutional neural network (CNN)
might not be able to properly learn from the minority classes. Consequently, the model
would be less likely to correctly identify minority samples as they occur. This is especially
crucial in medical imaging, since a model that cannot identify rare diseases would not be
effective for diagnostic purposes. For example, the ISIC 2018 dataset [1,2] is an imbalanced
medical dataset that consists of images of skin lesions that appear in various frequencies
during screening.

To produce a less imbalanced dataset, it is possible to resample the dataset by either
increasing the number of minority samples [3–6] or decreasing the number of majority
samples [7–10]. Other methods for handling class imbalance include substituting the
standard cross-entropy (CE) loss for a more suitable loss, such as the focal loss (FL).
Lin et al. [11] modified the CE loss into FL so that minority classes can be prioritized. This
is done by ensuring that the model focuses on samples that are harder to classify during
model training. Recent studies also unveiled the potential of contrastive learning as a way
to combat imbalanced datasets [12–15].

Contrastive learning is performed by contrasting a sample (called an anchor) to other
similar samples (called positive samples) so that they are mapped closely together in
the feature space. As a consequence, dissimilar samples (called negative samples) are
pushed away from the anchor, forming clusters in the feature space based on similarity.
In this research, contrastive learning is done using a two-stage training architecture, which
utilizes the contrastive loss (CL) formulated by Khosla et al. [16]. This formulation of CL is
supervised, and it can contrast the anchor to multiple positive samples belonging to the
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same class. This is unlike self-supervised contrastive learning [17–20], which contrasts the
anchor to only one positive sample in the mini-batch.

In this work, we propose a modification of supervised CL that is referred to as the
asymmetric contrastive loss (ACL). Unlike CL, the ACL is able to directly contrast the
anchor to its negative samples so that they are pushed apart in the feature space. This
becomes important when a rare sample has no other positive samples in the mini-batch.
To our knowledge, we are the first to modify the supervised version of CL in order to
address class imbalance, effectively augmenting several studies performed previously
in [12,13]. The proposed ACL is aimed toward improving the effectiveness of the two-
stage architecture originally presented in [12,13], especially in the feature learning aspect.
In addition, the ACL is designed as a generalization of CL, and thus, it provides more
flexibility and tuning opportunities as a loss function.

We also consider the asymmetric variant of the focal contrastive loss (FCL) [21], which
is called the asymmetric focal contrastive loss (AFCL). Using FMNIST and ISIC 2018 as
datasets, experiments were performed to test the performance of both the ACL and AFCL
in binary classification tasks. It was observed that the AFCL was superior to the CL and
FCL in multiple class imbalance scenarios, provided that suitable hyperparameters were
used. In addition, this work provides a streamlined survey of the literature related to
entropy and loss functions.

2. Related Work

Several studies have been conducted in recent years on the application of contrastive
losses to imbalanced datasets. On Siamese networks, for example, Wang et al. [14] and
Alenezi et al. [15] proposed the novel focal CL and W-shaped CL, respectively. Their
methods managed to achieve state-of-the-art performance in handling the class imbalance
problem, wherein Wang et al. used satellite images and Alenezi et al. used skin lesion
images as datasets. Their CL functions had a different form from that of the supervised CL
of Khosla et al. [16], which is the CL that upon which our study is based.

Marrakchi et al. [12] and Chen et al. [13] independently adopted supervised CL to
combat class imbalance in the medical domain. They both used a two-stage architecture
consisting of (1) feature learning using CL, followed by (2) fine-tuning using classification
loss. Their architectures were almost identical; they differed only in the type of loss function
during fine-tuning (Marrakchi et al. used cross-entropy loss, while Chen et al. used focal
loss). One limitation present in these studies was that CL was not modified further to
deal with imbalance and was implemented as is. Therefore, our aim is to generalize
CL in order to effectively learn from imbalanced datasets using the aforementioned two-
stage architecture.

In this paper, we present a novel CL referred to as the ACL, and we include its
focal-based variant, AFCL. Our motivation for introducing the losses comes from both
the asymmetric loss due to Ben-Baruch et al. [22] and the focal contrastive loss due to
Zhang et al. [21], whose explanations are provided in Section 3. Although these losses
were proposed for different applications (fine-tuning and multi-label classification, respec-
tively), it turns out that these ideas can be applied to our goal of modifying CL so as to
handle imbalance.

3. Background on Entropy and Loss Functions

In this section, we provide a literature review on the basics of information theory and
loss functions for easy reference.

3.1. Entropy, Information, and Divergence

Introduced by Shannon [23], entropy provides a measure of the amount of information
contained in a random variable, usually in bits. The entropy H(X) of a random variable X
is given by the formula

H(X) = EPX [− log(PX(X))]. (1)
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Given two random variables X and Y, their joint entropy H(X, Y) is the entropy of the
joint random variable (X, Y):

H(X, Y) = EP(X,Y)

[
− log(P(X,Y)(X, Y))

]
. (2)

In addition, the conditional entropy H(Y | X) is defined as

H(Y | X) = EP(Y,X)

[
− log(PY|X(Y | X)

]
. (3)

Conditional entropy is used to measure the average amount of information contained
in Y when the value of X is given. Conditional entropy is bounded above by the original
entropy; that is, H(Y | X) ≤ H(Y), with equality if and only if X and Y are independent [24].
The formulas for entropy, joint entropy, and conditional entropy can be derived via an
axiomatic approach [25,26].

The mutual information I(X; Y) is a measure of dependence between random variables
X and Y [27]. It provides the amount of information about one random variable provided
by the other random variable, and it is defined by

I(X; Y) = H(X)− H(X | Y) = H(Y)− H(Y | X). (4)

Mutual information is symmetric. In other words, I(X; Y) = I(Y; X). Mutual in-
formation is also nonnegative (I(X; Y) ≥ 0), and I(X; Y) = 0 if and only if X and Y are
independent [24].

The dissimilarity between random variables X and X′ on the same space X can be
measured using the notion of KL-divergence:

DKL(X ‖X′) = EPX

[
log
(

PX(X)

PX′(X)

)]
. (5)

Similarly to mutual information, KL-divergence is nonnegative (DKL(X ‖X′) ≥ 0),
and DKL(X ‖X′) = 0 if and only if X = X′ [24]. Unlike mutual information, KL-divergence
is asymmetric, so DKL(X ‖X′) and DKL(X′ ‖X) are not necessarily equal.

3.2. Cross-Entropy and Focal Loss

Given random variables X and X̂ on the same space X , their cross-entropy H(X; X̂) is
defined as [28]:

H(X; X̂) = EPX

[
− log(PX̂(X)

]
. (6)

Cross-entropy is the average number of bits needed to encode the true distribution X
when its estimate X̂ is provided [29]. A small value of H(X; X̂) implies that X̂ is a good
estimate for X. Cross-entropy is connected to KL-divergence via the following identity:

H(X; X̂) = H(X) + DKL(X ‖ X̂). (7)

When X̂ = X, the equality H(X; X̂) = H(X) holds.
Now, the cross-entropy loss and focal loss are provided within the context of a binary

classification task consisting of two classes labeled 0 and 1. Suppose that y ∈ {0, 1} denotes
the ground-truth class and p ∈ [0, 1] denotes the estimated probability for the class labeled 1.
The value of 1− p is then the estimated probability for the class labeled 0. The cross-entropy
(CE) loss is given by

LCE = −y log(p)− (1− y) log(1− p)

=

{
− log(p) y = 1,
− log(1− p) y = 0.
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If y = 1, then the loss LCE is zero when p = 1. On the other hand, if y = 0, then
the loss is zero when 1 − p = 1. In either case, the CE loss is minimized when the
estimated probability of the true class is maximized, which is the desired property of a
good classification model.

The focal loss (FL) [11] is a modification of the CE loss introduced to put more focus on
hard-to-classify examples. It is given by the following formula:

Lfoc = −y(1− p)γ log(p)− (1− y)pγ log(1− p). (8)

The parameter γ in Lfoc is known as the focusing parameter. Choosing a larger value of
γ would push the model to focus on training from the misclassified examples. For instance,
suppose that γ = 4 and denote the estimated probability of the true class by pt. The graph
in Figure 1 shows that when pt > 0.5, the FL is quite small. Hence, the model would be
less concerned about learning from an example when pt is already sufficiently large. FL
is a useful choice when class imbalance exists, as it can help the model focus on the less
represented samples within the dataset.

Figure 1. A graph illustrating the focal loss given the predicted probability of the ground-truth class,
with varying values of γ.

3.3. Asymmetric Loss

For multi-label classification with K labels, let yi ∈ {0, 1} be the ground truth for class
i and let pi ∈ [0, 1] be its estimated probability obtained by the model. The aggregate
classification loss is then

L =
K

∑
i=1
Li, (9)

where
Li = −yiL+i − (1− yi)L−i . (10)

If FL is the chosen type of loss, L+i and L−i are set as follows:

L+i = (1− pi)
γ log(pi) and L−i = pγ

i log(1− pi). (11)

In a typical multi-label dataset, the ground truth yi has value 0 for the majority of
classes i. Consequently, the negative terms L−i dominate in the calculation of the aggregate
loss L. Asymmetric loss (ASL) [22] is a proposed solution to this problem. ASL emphasizes
the contribution of the positive terms by modifying the losses of (11) to

L+i = (1− pi)
γ+

log(pi) (12)

and
L−i = (p(m)

i )γ− log(1− p(m)
i ), (13)
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where γ+, γ− are hyperparameters and p(m)
i is the shifted probability of pi obtained from the

probability margin m ≥ 0 via the formula

p(m)
i = max(pi −m, 0). (14)

This shift helps decrease the contribution of L−i . Indeed, if we set m = 1, then L−i = 0.

3.4. Contrastive Loss

Contrastive learning is a learning method for learning representations from data.
A supervised approach of contrastive learning was introduced by Khosla et al. [16] to learn
from a set of sample–label pairs {(xi, yi)}N

i=1 in a mini-batch of size N. The samples xi are
fed through a feature encoder Enc(·) and a projection head Proj(·) in succession to obtain
features zi = Proj(Enc(xi)). The feature encoder extracts features from xi, whereas the
projection head projects the features into a lower dimension and applies `2-normalization
so that zi lies in the unit hypersphere. In other words, ‖zi‖2 = 1.

A pair (zi, zj), where i 6= j, is referred to as a positive pair if the features share the
same class label (yi = yj), and it is a negative pair if the features have different class labels
(yi 6= yj). Contrastive learning aims to maximize the similarity between zi and zj whenever
they form a positive pair and minimize their similarity whenever they form a negative pair.
This similarity is measured with cosine similarity [29]:

κ(zi, zj) =
zi · zj

‖zi‖2‖zj‖2
= zi · zj. (15)

From the above equation, we have κ(zi, zj) ∈ [−1, 1]. In addition, κ(zi, zj) = 1 when
zi = zj, and κ(zi, zj) = −1 when zi and zj form a 180◦ angle.

Fixing zi as the anchor, let Ai = {zk | k 6= i} be the set of features other than zi and let
Pi = {zk ∈ Ai | yk = yi} be the set of zk such that (zi, zk) is a positive pair. The predicted
probability pij that zi and zj belong to the same class is obtained by applying the softmax
function to the the set of similarities between zi and zk ∈ Ai:

pij =
exp(zi · zj/τ)

∑zk∈Ai
exp(zi · zk/τ)

, (16)

where τ is referred to as the temperature parameter. Since our goal is to maximize pij
whenever zj ∈ Pi, the contrastive loss that is to be minimized is formulated as

Lcon = −
n

∑
i=1

1
|Pi| ∑

zj∈Pi

log(pij). (17)

Information-theoretical properties of Lcon are given in [21], for which we provide a
summary. Let X, Y, and Z denote random variables of the samples, labels, and features,
respectively. The following theorem states that Lcon is positively proportional to H(Z |
Y)− H(Z) under the assumption that no class imbalance exists.

Theorem 1 (Zhang et al. [21]). Assuming that features are `2-normalized and the dataset is
balanced,

Lcon ∝ H(Z | Y)− H(Z). (18)

Theorem 1 implies that minimizing Lcon is equivalent to minimizing the conditional
entropy H(Z | Y) and maximizing the feature entropy H(Z). Since I(Z; Y) = H(Z) −
H(Z | Y), minimizing Lcon is equivalent to maximizing the mutual information I(Z; Y)
between features Z and class labels Y. In other words, contrastive learning aims to extract
the maximum amount of information from class labels and encode it in the form of features.
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After the features are extracted, a classifier Clas(·) is assigned to convert zi into a
prediction ŷi = Clas(zi) of the class label. The random variable of predicted class labels is
denoted by Ŷ.

For the next theorem, the definition of conditional cross-entropy H(Y; Ŷ | Z) is given
as follows:

H(Y; Ŷ | Z) = EP(Y,Z)

[
− log(P(Ŷ,Z)(Y, Z)

]
. (19)

Conditional CE measures the average amount of information needed to encode the
true distribution Y using its estimate Ŷ given the value of Z. A small value of H(Y; Ŷ | Z)
implies that Ŷ is a good estimate for Y given Z.

Theorem 2 (Zhang et al. [21]). Assuming that features are `2-normalized and the dataset is
balanced,

Lcon ∝ inf H(Y; Ŷ | Z)− H(Y), (20)

where the infimum is taken over classifiers.

Theorem 2 implies that minimizing Lcon will minimize the infimum of conditional
cross-entropy H(Y; Ŷ | Z) taken over classifiers. As a consequence, contrastive learning is
able to encode features in Z such that the best classifier can produce a good estimate of Y
given the information provided by the feature encoder.

The formula for Lcon can be modified so as to resemble the focal loss, resulting in a
loss function known as the focal contrastive loss (FCL) [21]:

LFC = −
n

∑
i=1

1
|Pi| ∑

zj∈Pi

(1− pij) log(pij). (21)

4. Proposed Loss Functions and Architecture

In this section, our proposed modification of the contrastive loss, which is called the
asymmetric contrastive loss, is introduced. In addition, the architecture of the model in
which the contrastive losses are implemented is explained. Our proposed asymmetric loss
function is novel, while the architecture is obtained from [12,13] with no changes made.
Thus, our contribution lies simply in the change of the loss function.

4.1. Asymmetric Contrastive Loss

In (17), the inside summation of the contrastive loss is evaluated over Pi. Consequently,
according to (16), each anchor zi is contrasted with vectors zj that belong to the same class.
This does not present a problem when the mini-batch contains plenty of examples from
each class. However, the calculated loss may not give each class a fair contribution when
some classes are less represented in the mini-batch.

In Figure 2, a sampled mini-batch consists of 11 examples with a blue-colored class la-
bel and one example with a red-colored class label. When the anchor zi is the representation
of the red-colored sample, zi does not directly contribute to the calculation of Lcon, since Pi
is empty. In other words, zi cannot be contrasted to any other sample in the mini-batch.
This scenario is likely to happen when the dataset is imbalanced, and it motivates us
to modify CL so that each anchor zi can also be contrasted with zj not belonging to the
same class.
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Figure 2. A mini-batch consisting of 11 examples with a blue-colored class label and one example
with a red-colored class label.

Let Ni = Ai \ Pi be the set of vectors zk such that (zi, zk) is a negative pair. Motivated
by the L+i and L−i of (10), we define

L+i =
1
|Pi| ∑

zj∈Pi

log(pij) (22)

and
L−i =

1
|Ni| ∑

zj∈Ni

log(1− pij), (23)

where pij = exp(zi · zj/τ)/ ∑zk∈Ai
exp(zi · zk/τ). The loss function L+i contrasts zi to

vectors in Pi, whereas L−i contrasts zi to vectors in Ni. The resulting asymmetric contrastive
loss (ACL) is given by the formula

LAC = −
n

∑
i=1

(L+i + ηL−i ), (24)

where η ≥ 0 is a fixed hyperparameter. If η = 0, then LAC = Lcon. Hence, ACL is a
generalization of CL.

When the batch size is set to a large number (over 100, for example), the value pij
tends to be very small. This causes L−i to be much smaller than L+i . In order to balance
their contribution to the total loss LAC, a large value for η is usually chosen (between 60
and 300 in our experiment).

In summary, we propose ACL in order to (1) generalize the CL via the addition
of a summation over negative samples and (2) specifically address the problem of class
imbalance. ACL is intended to be both more flexible and robust to imbalances than the
vanilla CL.

4.2. Asymmetric Focal Contrastive Loss

Following the formulation of LFC in (21), L+i can be modified to have the following
formula:

L+i =
1
|Pi| ∑

zj∈Pi

(1− pij)
γ log(pij). (25)

Using this loss, the asymmetric focal contrastive loss (AFCL) is then given by

LAFC = −
n

∑
i=1

(L+i + ηL−i ), (26)

where L−i = 1
|Ni | ∑zj∈Ni

log(1− pij). We do not modify L−i by adding the multiplicative

term (pij)
γ, since pij is usually too small and would make L−i vanish if the term is added.

We have LAFC = LFC when γ = 1. Thus, AFCL generalizes the FCL. Unlike with the
FCL, we add the hyperparameter γ ≥ 0 to the loss function so as to provide some flexibility
to the loss function.
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4.3. Model Architecture

This section explains the inner workings of the classification model used for the
implementation of the contrastive losses. The architecture of the model is taken from [12,13].
The training strategy for the model, as shown in Figure 3, comprises two stages: the feature-
learning stage and the fine-tuning stage.

Figure 3. A two-stage training strategy consisting of: (1) feature learning using contrastive loss
and (2) classifier fine-tuning using either FL or CE loss.

In the first stage, each mini-batch is fed through a feature encoder. We consider either
ResNet-18 or ResNet-50 [30] for the architecture of the feature encoder. The output of the
feature encoder is projected by the projection head to generate a vector z of length 128.
If ResNet-18 is used for the feature encoder, then the projection head consists of two layers
of lengths 512 and 128. If ResNet-50 is used, then the two layers are of lengths 2048 and
128. Afterwards, z is `2-normalized, and the model parameters are updated using some
version of the contrastive loss (either CL, FCL, ACL, or AFCL).

After the first stage is complete, the feature encoder is frozen and the projection head is
removed. In its place, we have a one-layer classification head that generates the estimated
probability that the training sample belongs to a certain class. The parameters of the
classification head are updated using either the FL or CE loss. The final classification model
is the feature encoder trained during the first stage, together with the classification head
trained during the second stage. Since the classification head is a significantly smaller
architecture than the feature encoder, the training is mostly focused on the first stage. As a
consequence, we typically need a larger number of epochs for the feature-learning stage
compared to the fine-tuning stage.

5. Experiments

The datasets and settings of our experiments are outlined in this section. We pro-
vide and discuss the results of the experiments on the FMNIST and ISIC 2018 datasets.
The PyTorch implementation is available on GitHub (https://github.com/valentinovito/
Asymmetric-CL, accessed on 8 September 2022).

5.1. Datasets

In our experiments, the training strategy outlined in Section 4.3 was applied to two
imbalanced datasets. The first was a modified version of the Fashion-MNIST (FMNIST)
dataset [31], and the second was the International Skin Imaging Collaboration (ISIC) 2018
medical dataset [1,2].

The FMNIST dataset consisted of low-resolution (28× 28 pixels) grayscale images of
ten classes of clothing. In this study, we took only two classes to form a binary classification
task: the T-shirt and shirt classes. The samples were taken such that the proportion between
the T-shirt and shirt images could be imbalanced, depending on the scenario. On the other
hand, the ISIC 2018 dataset consisted of high-resolution RGB images of seven classes of skin
lesions. As with FMNIST, we used only two classes for the experiments: the melanoma and
dermatofibroma classes. Illustrations of the sample images of both datasets are provided in
Figure 4.

https://github.com/valentinovito/Asymmetric-CL
https://github.com/valentinovito/Asymmetric-CL
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FMNIST was chosen as our dataset, since, although simple, it is a benchmark dataset
for testing deep learning models for computer vision. On the other hand, ISIC 2018 was
chosen since it is a domain-appropriate imbalanced dataset for our model. We first applied
the model (using AFCL as the loss function) to the more lightweight FMNIST dataset under
various class imbalance scenarios. This was conducted to check the appropriate values of
the η and γ parameters of the AFCL under different imbalance conditions. Afterwards,
the model was applied to the ISIC 2018 dataset using the optimal parameter values obtained
during the FMNIST experiments.

Figure 4. Sample images of the FMNIST and ISIC 2018 datasets.

5.2. Experimental Details

The experiments were conducted using the NVIDIA Tesla P100-PCIE GPU allocated by
the Google Colaboratory Pro platform. The models and loss functions were implemented
using PyTorch. To process the FMNIST dataset, we used the simpler ResNet-18 architecture
as the feature encoder and trained it for 20 epochs. On the other hand, to process the ISIC
2018 dataset, we used the deeper ResNet-50 as the feature encoder and trained it for 40
epochs. For both the FMNIST and ISIC 2018 datasets, the learning rate and batch size
were set to 10−2 and 128, respectively. In addition, the classification head was trained for
10 epochs. The encoder and the classification head were both trained using the Adam
optimizer. Finally, the temperature parameter τ of the contrastive loss was set to its default
value of 0.07.

The evaluation metrics utilized in the experiment were (weighted) accuracy and
unweighted accuracy (UWA), both of which could be calculated from the number of true
positives (TP), true negatives (TN), false negatives (FN), and false positives (FP) using
the formulas

Accuracy =
TP + TN

TP + TN + FN + FP
(27)

and

UWA =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
, (28)

respectively. Unlike accuracy, the UWA provided the average of the individual class
accuracies regardless of the number of samples in the test set of each class. UWA is an
appropriate metric when a dataset is significantly imbalanced [32].

For heavily imbalanced datasets, a high accuracy and low UWA may mean that the
model is biased towards classifying samples as part of the majority class. This indicates
that the model does not properly learn from the minority samples. In contrast, a lower
accuracy with a high UWA indicates that the model takes significant risks to classify some
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samples as part of the minority class. Our aim was to construct a model that maximized
both metrics simultaneously; that is, a model that could learn unbiasedly from both the
majority and minority samples with minimal misclassification error.

5.3. Experiments Using FMNIST

The data used in the FMNIST experiment comprised 1000 images classified as either a
T-shirt or a shirt. The dataset was split 70/30 for model training and testing. The images
were augmented using random rotations and random flips. We deployed 11 class imbalance
scenarios on the dataset, which controlled the proportion between the T-shirt class and the
shirt class. For example, if the proportion was 60:40, then 600 T-shirt images and 400 shirt
images were sampled to form the experimental dataset. Our proportions ranged from 50:50
to 98:2.

During the first stage, the ResNet-18 encoder was trained using the AFCL. Afterwards,
the classification head was trained using the CE loss during the second stage. As AFCL
contains two parameters, η and γ, our goal was to tune each of these parameters indepen-
dently, keeping the other parameter fixed. First, η was tuned as we set γ = 0, followed
by the tuning of γ as we set η = 0. Each experiment was performed four times in total.
The average accuracy and UWA of these four runs are provided in Table 1 (for the tuning
of η) and Table 2 (for the tuning of γ).

Table 1. The accuracy and UWA (averaged over four independent runs) of 11 class imbalance
scenarios using various values of η for the AFCL. The parameter γ was consistently set to 0.

Scenario Metric
η

0 60 120 180 240 300

50:50 Accuracy 78.92 77.83 79.75 71.08 77.17 78.83
UWA 79.00 78.28 80.32 72.53 77.87 79.42

55:45 Accuracy 79.50 79.50 79.33 77.83 77.67 77.75
UWA 78.70 79.34 79.15 77.17 78.21 76.50

60:40 Accuracy 84.50 82.92 82.42 81.33 82.08 83.17
UWA 83.09 81.82 81.27 79.71 81.74 81.66

65:35 Accuracy 81.50 83.42 83.25 81.59 82.58 79.25
UWA 79.19 80.91 80.73 77.92 79.43 75.42

70:30 Accuracy 82.50 84.33 85.08 82.08 83.42 83.00
UWA 78.41 78.26 80.91 77.78 79.14 75.11

75:25 Accuracy 86.75 85.17 85.58 85.17 86.92 86.58
UWA 77.87 76.48 77.74 77.03 78.63 77.57

80:20 Accuracy 86.00 87.25 87.33 87.92 87.00 88.25
UWA 76.16 74.65 76.94 76.28 77.49 76.97

85:15 Accuracy 87.33 87.08 86.75 87.42 87.33 87.67
UWA 70.08 66.34 55.77 68.33 69.83 62.83

90:10 Accuracy 90.83 91.00 90.83 90.67 89.50 91.67
UWA 64.91 68.61 66.11 64.02 61.77 72.58

95:5 Accuracy 94.42 93.33 93.42 94.00 92.83 93.25
UWA 54.77 60.70 54.24 50.00 49.38 54.80

98:2 Accuracy 97.42 97.83 98.08 98.08 98.33 98.08
UWA 52.45 52.66 55.87 55.87 49.83 52.79
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Table 2. The accuracy and UWA (averaged over four independent runs) of 11 class imbalance
scenarios using various values of γ for the AFCL. The parameter η was consistently set to 0.

Scenario Metric
γ

0 1 2 4 7 10

50:50 Accuracy 78.08 74.83 77.08 77.58 76.58 77.50
UWA 77.70 74.84 76.77 77.55 76.55 77.25

55:45 Accuracy 80.17 81.25 80.75 80.00 81.75 76.83
UWA 80.14 81.19 80.69 79.96 81.70 76.82

60:40 Accuracy 79.42 78.50 77.92 80.17 80.67 80.08
UWA 84.42 83.42 80.00 83.00 82.42 82.92

65:35 Accuracy 84.42 83.42 80.00 83.00 82.42 82.92
UWA 81.98 81.22 77.87 80.39 80.68 80.16

70:30 Accuracy 83.75 83.83 82.17 82.58 84.83 82.25
UWA 79.64 79.18 77.82 77.51 79.67 78.71

75:25 Accuracy 85.42 86.17 84.42 84.83 85.75 86.00
UWA 76.27 79.85 77.08 76.41 77.34 78.47

80:20 Accuracy 89.33 89.58 87.67 89.42 87.33 88.00
UWA 77.59 78.67 78.43 79.31 78.97 70.12

85:15 Accuracy 87.42 89.00 88.17 88.33 89.08 90.08
UWA 64.97 72.08 71.99 71.47 71.95 77.04

90:10 Accuracy 92.42 92.33 93.42 93.25 92.58 91.25
UWA 64.00 67.94 66.04 74.42 80.54 68.35

95:5 Accuracy 94.17 93.17 95.33 95.00 94.00 95.09
UWA 62.13 53.11 57.64 59.17 55.22 55.82

98:2 Accuracy 96.92 96.92 95.00 96.00 96.92 96.67
UWA 56.59 51.56 55.61 52.63 53.10 52.98

For the tuning of η, six values of η were experimented on: η ∈ {0, 60, 120, 180, 240, 300}.
When η = 0, the loss function was reduced to the ordinary CL. As observed in Table 1,
the optimal value of η tended to be larger when the dataset was moderately imbalanced.
As the scenario went from 60:40 to 90:10, the parameter η that maximized accuracy increased
in value, from η = 0 when the proportion was 60:40 to η = 300 when the proportion was
90:10. In general, this indicated that the L−i term of the ACL became more essential to the
overall loss as the dataset got more imbalanced, confirming the reasoning contained in
Section 4.1.

As seen in Table 2, we experimented on γ ∈ {0, 1, 2, 4, 7, 10}, where choosing γ = 0
meant that we were using the CL. Although the overall pattern of the optimal γ was less
apparent than η of the previous experiment, some insights could still be obtained. When
the scenario was between 70:30 and 90:10, the focusing parameter γ was optimally chosen
when it was larger than zero. This was in direct contrast to when the proportion was
perfectly balanced (50:50), where γ = 0 was the most optimal parameter. This suggests
that a larger value of γ should be considered when class imbalance is significantly present
within a dataset.

When the dataset was balanced, however, our experiments suggested that neither
asymmetry nor focality was markedly helpful. Indeed, in the 50:50 scenario, CL already
provided the second-best accuracy in Table 1 and the best accuracy in Table 2. In Table 1, the
CL was the case where η = 0 was chosen. In Table 2, on the other hand, the CL was used
when γ = 0. Therefore, our proposed loss function works best with imbalanced datasets.

5.4. Experiments Using ISIC 2018

From the ISIC 2018 dataset, a total of 1113 melanoma images and 115 dermatofibroma
images were combined to create the experimental dataset. As with the previous experiment,
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the dataset was split 70/30 for training and testing. The images were resized to 128× 128
pixels. The ResNet-50 encoder was trained using one of the available contrastive losses,
which included the CL/FCL as baselines and the ACL/AFCL as the proposed loss functions.
The classification head was trained using FL as the loss function, with its focusing parameter
set to γ = 2.

The proportion between the melanoma class and the dermatofibroma class in the
experimental dataset was close to 90:10. Using the results from Tables 1 and 2 as a heuristic
for determining the optimal parameter values, we set η = 300 and γ = 2, 7. It is worth
mentioning that even though γ = 2 produced the best accuracy in the FMNIST experiment,
the UWA of the resulting model was quite poor. However, we decided to include this value
in this experiment for completeness.

The results of this experiment are given in Table 3. As in the previous section, each
experiment was conducted four times, so the table lists the average accuracy and UWA
of these four runs for each contrastive loss tested. Each run, which included both model
training and testing, was completed in roughly 80 min using our computational setup.

From Table 3, CL and ACL performed the worst in terms of UWA and accuracy,
respectively. However, ACL gave the best UWA among all losses. This may indicate that
the ACL encouraged the model to take the risky approach of classifying some samples
as part of the minority class at the expense of accuracy. Overall, AFCL with η = 300 and
γ = 7 emerged as the best loss in this experiment, producing the best accuracy and the
second-best UWA behind the ACL. This led us to conclude that the AFCL, with optimal
hyperparameters chosen, is superior to the vanilla CL and FCL.

Table 3. The accuracy and UWA (averaged over four independent runs) of the model when trained
using various contrastive losses.

Loss Function Accuracy UWA

CL [16] 93.00 72.25
FCL [21] 93.07 74.34

ACL (η = 300) 85.94 75.54
AFCL (η = 300, γ = 2) 92.39 74.36
AFCL (η = 300, γ = 7) 93.75 74.62

6. Conclusions and Future Work

In this work, we introduced an asymmetric version of both contrastive loss (CL) and
focal contrastive loss (FCL), which are referred to as ACL and AFCL, respectively. These
asymmetric variants of the contrastive loss were proposed to provide more focus on the
minority class. The experimental model used was a two-stage architecture consisting of
a feature-learning stage and a classifier fine-tuning stage. This model was applied to the
imbalanced FMNIST and ISIC 2018 datasets using various contrastive losses. Our results
show that the AFCL was able to outperform the CL and FCL in terms of both weighted and
unweighted accuracies. On the ISIC 2018 binary classification task, AFCL, with η = 300 and
γ = 7 as hyperparameters, achieved an accuracy of 93.75% and an unweighted accuracy of
74.62%. This is in contrast to the FCL, which achieved 93.07% and 74.34% on both metrics,
respectively.

The experiments in this research were conducted using datasets consisting of approx-
imately 1000 images in total. In the future, the experimental model may be applied to
larger-scale datasets in order to test its scalability. In addition, other models based on the
ACL and AFCL can also be developed for specific datasets, ideally within the realm of
multi-class classification.
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