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Abstract: Bayesian techniques for engineering problems, which rely on Gaussian process (GP)
regression, are known for their ability to quantify epistemic and aleatory uncertainties and for
being data efficient. The mathematical elegance of applying these methods usually comes at a high
computational cost when compared to deterministic and empirical Bayesian methods. Furthermore,
using these methods becomes practically infeasible in scenarios characterized by a large number of
inputs and thousands of training data. The focus of this work is on enhancing Gaussian process based
metamodeling and model calibration tasks, when the size of the training datasets is significantly
large. To achieve this goal, we employ a stochastic variational inference algorithm that enables rapid
statistical learning of the calibration parameters and hyperparameter tuning, while retaining the rigor
of Bayesian inference. The numerical performance of the algorithm is demonstrated on multiple
metamodeling and model calibration problems with thousands of training data.

Keywords: Gaussian processes; stochastic variational inference; multifidelity modeling; manifold
gradient ascent; structural dynamics; vibration torsion

1. Introduction

Modern engineering tasks are often characterized by the need to perform large scale
expensive laboratory experiments or amortize hours of computation, performing simula-
tions that are based on sophisticated mathematical formulations. While these “high-fidelity”
sources of information provide detailed insight into the complex physical process, one
usually faces a heavy computational runtime or a massive financial investment. In addition
to this, obtaining data by running experiments or simulations needs more advanced insight,
that might not always be extricated from the data by applying state-of-the-art methods
used to build data-driven metamodels [1]. Finally, with the advent of Industry 4.0 [2],
developing digital twins, which are commonly probabilistic surrogate models representing
the underlying physical process, is becoming a routine practice across the industry. In a
realistic scenario, the paucity of data and noise in the recorded measurements are challenges
that also need to be taken into account.

Surrogate modeling methods that have shown promise in dealing with problems
of the aforementioned kind, typically include Gaussian process (GP) regression [3–5],
probabilistic deep neural networks [6–8] or polynomial chaos expansions [9–11]. The
application of these methods has been extended to problems from different domains, such as
manufacturing [12,13], flow through porous media [10,14], and combustion mechanics [15].
Classic formulations of these methods provide a meaningful representation of a model
from uncertainty and noise, and they demonstrate strong predictive performance on
unseen data. However, these approaches are susceptible to challenges such as limited
training data, multiple sources of information that model the same process, and the lack
of identifiability of model parameters [16]. By referring to the model at-hand that meets
the accuracy required by the current application as a “high-fidelity” model, one standard
approach in the literature is to employ similar “low-fidelity” models whose characteristic
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is that they provide a lower accuracy on the model output, though they are cheaper to
evaluate. A detailed review on multifidelity approaches, that is, approaches that employ
more than one models to approximate the same physical process with different levels of
accuracy, can be found in [17]. In brief, the most common ways in which the low accuracy–
low computational cost is achieved are by simplified physics models (coarse-grid PDE
solver) [18], reduced-order models [19], data-fit interpolation models [20,21] and machine
learning and mathematical surrogates [22,23].

In this work, our focus is on applying GP regression to problems that have thousands
of data [24]. Secondly, we focus on the use of GP regression in both the single-fidelity
(where only a high-fidelity model is considered) and the multifidelity (both a low- and a
high-fidelity model are employed) modeling scenarios. In the second scenario, we focus
on the case where data from two sources of varying fidelity are available, and the task
involves calibrating the so-called tuners of the low-fidelity source. In all these tasks, we
resort to a fully Bayesian formulation of the GP regression, differentiating ourselves from
the works of [25–27], the details of which are discussed in Ghosh et al. [28]. This is a
critical aspect of this work, as retaining a fully Bayesian treatment for the metamodeling
and model calibration tasks with GPs is a major challenge from a computational and
numerical perspective. In some of the authors’ previous work (see Pandita et al. [29]), it
was demonstrated how savings in computational time could be achieved using adaptive
sequential Monte Carlo methods fused with a fully Bayesian treatment, applied to tasks of
the above kind. However, the utilization of hundreds of computational processing units or
cores is not always practically possible, necessitating the need for alternative approaches.
Other adaptive algorithms that accelerate Markov chain Monte Carlo methods for Bayesian
inference [30–32] and optimal-transport-based approaches that circumvent the need for
MCMC methods [33] have shown promise in recent years.

Most of the above-mentioned works rely on computational power and heavy use of
large-scale computing in order to overcome the challenges of training the models. Our
main contribution in this work is to achieve computational efficiency by leveraging a
variational formulation of Bayesian inference, commonly known as black-box variational
inference (BBVI) [34], and by improving the performance of the optimization scheme
involved using efficient subsampling, rather than resorting to online access to exorbitant
computational resources.

Variational methods [35,36] to Bayesian inference have shown promise in various
tasks that resort to a Bayesian formalism in order to train surrogate models [37,38], calibrate
physical models [39], and more recently across a swathe of deep learning tasks [40–42].
The key ingredient in variational inference (VI) that enables efficient posterior density
exploration conditioned on large quantities of data is to perform the required likelihood
function evaluations using random batch-sampling. Introducing this additional level of
stochasticity in the algorithm, resulting in what is known as stochastic variational inference
(SVI) [43], allows for fast likelihood evaluations during the optimization procedure and
scales the algorithm, while a full exploration of the available training dataset is still guaran-
teed. SVI has been previously successfully applied for training deep GP models [44] and
sparse GPs in big data scenarios [45]. In this work, we apply SVI to train hybrid Gaussian
process models that make use of training data stemming from multiple levels of fidelity,
while at the same time they can incorporate calibration parameters. Specifically, we adopt
the well-known Kennedy–O’Hagan formulation [46] that relies on an autoregressive GP
scheme, and we develop a training algorithm that scales BBVI for big data problems using
batch-sampling. We identify the optimal Gaussian approximations to the true posterior
densities of the model’s hyperparameters by solving the variational problem with respect to
full covariance matrices, thus capturing all correlations between the parameters. To achieve
this, we make use of a manifold gradient ascent algorithm that performs the optimization
directly on the manifold of symmetric positive semidefinite matrices, as opposed to solving
complex constrained optimization problems.
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The outline of the paper is as follows: We present the mathematical details of the
autoregressive multifidelity calibration model in Section 2. In Sections 3 and 4, we expand
on the details of the black-box variational inference and its use in scaling up for big data
problems, and we introduce the manifold gradient ascent optimization scheme, to be used
for carrying out the optimization task. To illustrate the direct applicability of the proposed
approach on calibrating models using data from sources of varying fidelity, we use a set of
synthetic functions in Section 5.1. We demonstrate the impact of the extended variational
formulation on a benchmark machine learning dataset with thousands of training data,
in Section 5.2. In Section 5.3, we highlight the impact of the proposed formulation on
a challenging multifidelity problem, in the high-sample regime with over ten thousand
training data, where the parameters of interest include the uncertain tuners of the low-
fidelity simulation model. We summarize our conclusions and directions for future work
in Section 6.

2. Multifidelity Gaussian Process Modeling and Calibration
2.1. Autoregressive Gaussian Processes

We consider the Kennedy and O’Hagan’s formulation [47], where two simulators are
available, namely yh(x), yl(x, θ), where yh represents some high-fidelity computer code
and yl(x, θ) represents a low-fidelity simulation code. The design variable x is assumed
to take values within a space of feasible designs X ⊂ RD, while θ is a set of calibration
parameters that characterize the low-fidelity simulator.

The relationship between the two codes is assumed to be

yh(x, θ) = ρyl(x, θ) + δ(x) + ε(x), (1)

where δ(x) is a discrepancy term that is statistically independent of yl(x, θ) and ε(x) ac-
counts for measurement noise and is independent of both yl(x, θ) and δ(x). The coefficient
ρ satisfies

ρ =
cov[yh(x, θ), yl(x, θ)]

var[yl(x, θ)]
(2)

and therefore accounts for the correlation between the models. Although in general, ρ can
be considered a function of x [48,49], we assume for simplicity that it is constant throughout
this work. Further, we take yl(x, θ), δ(x) to be Gaussian processes with zero mean and
variances σ2

l rl(x, x′) and σ2
δ rδ(x, x′), respectively, where rl and rδ are correlation kernels,

here to be taken as squared exponential functions

rt(x, x′) = exp

[
−

D

∑
i=1

(xi − x′i)
2

`2
i,t

]
, t = l, δ, (3)

with `i,t being the correlation length or length scale along dimension i, for the two kernels
(t = l, δ).

The framework defined above may suffer from issues that pertain to recovering the cor-
rect solutions for the parameters being calibrated, also known as identifiability issues. These
drawbacks are known in the literature and have been discussed in various works [50–52]. In
this work, we limit our focus on improving the computational efficiency in a fully Bayesian
formulation, while acknowledging this characteristic of the multifidelity framework.

2.2. Posterior Distribution

Assume a set of observations are available, namely, Dl = {xi, θi, yi}
Nl
i=1 and

Dh = {xi, yi}
Nh
i=1 are the input to output sets of points corresponding to the low- and

high-fidelity simulators, respectively. Conditioning the distribution of yh(x∗, θ) evaluated
at some test point x∗ on the available data D := Dl ∪Dh and taking into account the prior
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choices and the independence between yl(·) and δ(·), we can write the posterior density as
a Gaussian process with mean and variance given by [46]

µyh(x
∗, θ) = th(x

∗, θ)V−1
h y (4)

and
σ2

yh
(x∗, θ) = σ2

h (x
∗)− th(x

∗, θ)V−1
h th(x

∗, θ). (5)

In the above expressions, we use y = (yT
l , yT

h )
T ,

Vh(θ) =

[
V(l,l) V(l,h)(θ)

V(h,l)(θ) V(h,h)(θ)

]
(6)

where the diagonal block matrices are given by

V(l,l) = σ2
l

(
Rl(Dl) + σ2

εl
I
)

,

V(h,h)(θ) = σ2
δ

(
Rδ(Dh) + σ2

εh
I
)
+ σ2

l ρ2
(

Rl(Dh(θ)) + σ2
εl

I
)

,
(7)

and Rt(Dt) is the correlation matrix with entries rt(x, x′) for x, x′ ∈ Dt, t = l, δ. In the
above, Dh(θ) := {(xi, θ)}Nh

i=1 for xi ∈ Dh. The off-diagonal blocks are written as

V(l,h)(θ) = ρV(l,l)(Dl ,Dh(θ)). (8)

At last, we define the vector

th(x
∗, θ) =

(
ρσ2

l Rl((x∗, θ),Dl)
ρ2σ2

l Rl((x∗, θ),Dl) + σ2
δ Rδ(x∗,Dh)

)
. (9)

3. Variational Inference

Throughout this section we present the main ingredients of the variational inference
framework for the purpose of training Gaussian process models by means of exploring a
Bayesian posterior density. The target distribution in our case is the posterior distribution
of the Gaussian process hyperparameters ω, defined as the set of length scales `i,t, t = l, h
along each dimension of X , the variance parameters σ2

l , σ2
h , σ2

εt , t, h, and the calibration
parameters θ. This posterior density is conditioned on the training dataD, which in general
consist of the high- and low-fidelity input and output observations. From Bayes’ rule

p(ω|D) = p(D|ω)p(ω)

p(D) (10)

the posterior density is known as a function of the likelihood term and the prior density,
up to a proportionality constant. Variational inference [53,54] bypasses the challenge
of sampling from the posterior, by approximating it by an element q(ω) chosen from
a parametric family of distributions Q = {q(ω|λ) : λ ∈ Λ}, where Λ is some set that
determines the parameterization of the densities in Q. The criterion for choosing the
optimal density from the family is minimizing the Kullback–Leibler (KL) divergence
between the candidate and the target densities. We define the KL divergence between the
candidate and target densities as follows:

KL[q(ω|λ)||p(ω)] =
∫

q(ω|λ) log
(

q(ω|λ)
p(ω|D)

)
dω. (11)

Several techniques for solving the optimization problem exist in the literature [35] such
as mean-field VI [55] or nonparametric VI [39], and they are typically tailored to problem-
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specific choices of prior densities, approximating family of distributions, and the inference
problem under investigation.

One common characteristic of the approaches mentioned above is that they all trans-
form the problem of minimizing the KL divergence to an equivalent maximization problem
by substituting (10) into (11) to obtain

log p(D) = KL[q(ω|λ)||p(ω)] +F [q], (12)

where
F [q] = H[q] +

∫
q(ω|λ) log(p(D, ω))dω (13)

and H[q] is the entropy of q(ω|λ). Since the left-hand side of (12) is constant, we can
conclude that the variational solution can be obtained by maximizing F [q], which is
referred to as the evidence lower bound (ELBO).

Black-Box Variational Inference

One of the most popular choices for optimizing (13) is to directly employ a stochastic
gradient descent or ascent algorithm, after observing that the objective function can be
written as an expectation

F [q] = Eq[log p(D, θ)− log q(ω|λ)], (14)

where the expectation is taken with respect to q(ω|λ). The gradient of this expression with
respect to the parameters λ that we seek to optimize is

∇λF [q] = Eq[∇λ log q(ω|λ)(log p(D, ω)− log q(ω|λ))], (15)

where the gradient∇λ log q(ω|λ) is known as the score function for any probability density
q and the joint density can be expanded using Bayes’ rule to p(D, ω) = p(D|ω)p(ω).
A Monte Carlo estimator of (15) can be written as

∇̂λF [q] =
1
N

N

∑
i=1
∇λ log q(ωi|λ)

(
log p(D, ωi)− log q(ωi|λ)

)
, (16)

where ωi ∼ q(ω|λ). Note that in the above expression, the gradient appears only on
the score function, and can, in general, be computed analytically for certain families
of distributions. On the contrary, the log-joint term log p(D, ω) which depends on the
Bayesian model under investigation, needs not be differentiated. The gradient expression
does not make any further assumptions and applies generically on every Bayesian inference
problem, justifying the term coined to this approach as black-box variational inference [34].

To further scale the algorithm, we perform the log-joint function evaluations
p(D, ωi) = p(D|ωi)p(ωi) using batch sampling throughout the available dataset D, where
each time, a random subset of the dataset is used to form the likelihood term. To put things
in a realistic multifidelity context, it is highly unlikely that a big data problem will consist
of a large number of high-fidelity observations. Therefore, in this work, we consider the
following scenario where the number of training data points inDl is significantly larger that
the number of high-fidelity observations Dh, that is |Dl | � |Dh|, thus, the batch sampling
approach is applied only on Dl . At every evaluation of Equation (17), let Di

l be a random
subset of Dl and Di = Di

l ∪Dh, then Equation (17) is rewritten as follows:

∇̂λF [q] =
1
N

N

∑
i=1
∇λ log q(ωi|λ)

(
log p(Di, ωi)− log q(ωi|λ)

)
, (17)
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where Dl is subsampled N times, that is, the number of Monte Carlo samples used to
estimate ∇̂λF [q]. This scaling approaching was previously introduced in the literature as
stochastic variational inference (SVI) [43].

4. Stochastic Optimization
Manifold Gradient Ascent

For the case where the approximating family of distributionsQ consists of multivariate
Gaussian densities, that is, Q := {q(ω|λ) := N (ω|µ, Σ)}, a suitable optimization scheme
needs to be employed over the parameters λ = (µ, Σ) such that the symmetric positive
semidefiniteness property of the covariance matrix is not violated. Here, we employ a
stochastic optimization scheme that is tailored particularly to our problem. The scheme
applies a momentum algorithm for updating µ while performing the Σ update using a
manifold gradient ascent step. For such a case, we make use of the natural gradient [56] as
it is known to be invariant under parameterization [57].

The natural gradient on Riemannian manifolds is defined as

∇nat
λ F [q] = I−1

F ∇λF [q] (18)

where ∇λF [q] is the regular gradient and IF is the Fisher information for density q that is
defined as

IF(λ) = Eq

[
∇λ log q(ω|λ)(∇λ log q(ω|λ))T

]
. (19)

In the Gaussian distribution case, the Fisher information matrix becomes

IF(µ, Σ) =
(

Σ−1 0
0 IF(Σ)

)
, (20)

where the elements of IF(Σ) are (IF(Σ))σij ,σkl
= 1

2 tr
(

Σ−1 ∂Σ
∂σij

Σ−1 ∂Σ
∂σkl

)
, and the inverse

simplifies to

IF(λ)
−1 ≈

(
Σ 0
0 Σ⊗ Σ

)
, (21)

where “⊗” is the Kronecker product. Finally, the natural gradient of F [q] can be written as

∇nat
µ F [q] = Σ∇µF [q]
∇nat

Σ F [q] = Σ∇ΣF [q]Σ
. (22)

In our stochastic gradient ascent scheme, the parameters µ are updated using a momentum
algorithm with updating step

µt+1 = µt + γmµt (23)

where the momentum term mµt is given by

mµt+1 = υmµt + (1− υ)∇nat
µ F [q]. (24)

For the update on Σ, it is necessary to map the point on the tangent space, indicated by
the steepest ascent direction, back to the manifold. For that, we use a retraction mapping
that approximates the exponential map of the manifold of symmetric positive semidefinite
matrices [58].

In our case, we use

RΣ(ξ) = Σ + ξ +
1
2

ξΣ−1ξ. (25)
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Further, for the momentum update on the manifolds, we apply a vector transport that further
projects the translated points back to the tangent space, as was first done in [59]. For our
purposes, we apply the following mapping:

ΓΣ1→Σ2(ξ) = UξUT , U =
(

Σ2Σ−1
1

)1/2
. (26)

Finally, our computational algorithm is summarized in Algorithm 1.

Algorithm 1: Manifold gradient ascent
Initialize : Choose µ0, Σ0;

Estimate ∇µ0F [q] and ∇Σ0F [q] and the corresponding natural
gradients;

Initialize the momentum mµ0 = ∇nat
µ0
F [q] and mΣ0 = ∇nat

Σ0
F [q];

for t = 1 to T do
µt = µt−1 + γmt−1;
Σt = RΣt(γmΣt−1);
Estimate ∇µtF [q], ∇ΣtF [q];
Compute natural gradients ∇nat

µt F [q] = Σt∇µtF [q], ∇nat
Σt
F [q] = Σt∇ΣtF [q]Σt;

Update momentum terms: mµt = υmµt−1 + (1− υ)∇nat
µt F [q] and

mΣt = υΓΣt−1→Σt(mΣt) + (1− υ)∇nat
Σt
F [q];

end
End For

5. Numerical Examples

We studied the performance of the proposed algorithm on three problems. One
metamodeling problem and two multifidelity model calibration problems are used in the
sections that follow.

5.1. Academic Example

We first considered the following mathematical functions

f1(x, θ) = θ1(8wTx− 2) sin(5wTx− 4) + θ2(2wTx + 1
2 )

f2(x, θ) = f1(x, θ) + 30(wTx)2,
(27)

with the coupling indicating that f1(x, θ) can be considered to be a low-fidelity simulator
and f2(x, θ) the high-fidelity function. We took x ∈ R10 and the vector w was considered
a set of known parameters projecting the 10-dimensional vector x to R. For this example,
we took

w =



0.14042
−0.35474

0.42674
−0.09312
−0.21463

0.26425
0.25603
−0.18959

0.00467
−0.66800


. (28)

A set of 104 training points was generated from the low-fidelity function, that is, Dl =

{xi, θi, yi}104

i=1 while Dh = {xi, yi}200
i=1 consisted of 200 points simulated from f2, where the

calibration parameters were fixed to θ = (3/2, 30). All inputs were generated using a
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uniform Latin hypercube sampling on [−2, 2]10, while the θi’s were sampled uniformly
within [0.5, 2.5]× [20, 40]. The data are shown in Figure 1.

Figure 1. Training data for the academic example. Low-fidelity data are depicted with blue “×” while
high-fidelity observations are depicted with orange “+”.

To test for the robustness of the approach, we first performed the ELBO optimization
corresponding to training an autoregressive GP model on the available training data using a
varying number of Monte Carlo samples used to evaluate the ELBO gradient estimate (17),
namely N = 10, 50, and 100. We ran 5× 103 iterations of algorithm 1 using an initial
learning rate γ0 = 0.0001, momentum weight parameters υ = 0.6, and a random batch size
equal to 50 data points (0.5% of the full dataset) to enable the SVI feature. As expected,
the runtimes scaled linearly from 13 min for N = 10 to 61 min for N = 50, and 125 min
for N = 100. Improving the quality of the MC estimate of the F [q] function was expected
to improve optimization performance. This is highlighted in Table 1 which shows the
final ELBO values F [q] achieved after the optimization procedure was over and the mean
predictive standard deviation (std) over all test points. In addition, Figure 2 shows the
convergence of the objective function. It can be observed that increasing N resulted in
more robust convergence and attaining higher values closer to the true optimum that
subsequently resulted in better posterior estimates. The decrease in mean predictive std
indicated that the predictive accuracy was improved as well and the confidence increased.

Figure 2. Academic example: ELBO values vs. iterations for each training case (N = 10, 50, and 100).
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Table 1. Academic example: final ELBO values after 5000 iterations and the computational runtimes
for each training case (N = 10, 50, and 100).

N Final F [q] Mean Predictive Std Runtime

10 228.77 34.71 13’
50 265.64 27.82 61’

100 439.75 19.28 125’

Next, Figure 3 shows the comparison between the observations and the trained model
predictions along with a 45-degree line plot for the case where the number of MC samples
was as low as 10. As can be seen, the red “•” marks that correspond to the discrepancy-
adjusted prediction match exactly the observations and the variance remains low. The blue
“×” marks corresponding to the inferred low-fidelity simulator η(x, θ) fall below the line,
which agrees with the observed trends of the true functions as seen in Figure 1. Specifically,
the low-fidelity function appears to be the closest possible to the high-fidelity one on design
points x corresponding to values of wTx near the origin, which is when we should expect
the discrepancy term points to be the closest to the 45-degree line. When η(x, θ) reaches
very low or very high values (near −200 or 200, respectively), the discrepancy is the largest,
and indeed the points are far from the 45-degree line.

Figure 3. Prediction on the training data for low-fidelity term η(x, θ) and discrepancy-adjusted
high-fidelity output yh(x, θ) versus observations. Model was trained using 10 MC samples for the
ELBO evaluation.

Figure 4 shows the prediction versus observations plots for 500 test data points along
with a 45-degree line plots again for the three cases where the number of MC samples was
10, 50, and 100, respectively. At last, Figure 5 shows the posterior densities of the two
calibration parameters θ = (θ1, θ2) obtained using the VI framework. We observe a clear
improvement in the accuracy of the θ1 estimate as the number of Monte Carlo samples
increase from 10. To ensure numerical stability in our implementation, the Gaussian
approximation was applied on the log θ and the resulting density plots were based on a
kernel density estimation using 5× 103 samples from the optimal log-normal approximation
that was obtained using the VI approach.
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Figure 4. Prediction versus observations for 500 test data points. The model was trained using 10 MC
samples for the ELBO gradient evaluation.

Figure 5. Top: Posterior marginal densities for θ1 (left) and θ2 (right) obtained after the ELBO
optimization with a varying number of Monte Carlo samples. Bottom: Joint density plots obtain for
N = 10, 50, 100.

5.2. Chicago Crimes Statistics Dataset

In this section, we demonstrate the applicability of the proposed approach on a
metamodeling task. The dataset used for this problem was one of the three datasets under
the Query Analytics Workloads Dataset section, hosted by the University of California Irvine
open-source machine learning data repository (https://archive.ics.uci.edu/ml/datasets/
Query+Analytics+Workloads+Dataset accessed on 31 May 2022). This dataset was used
in other recent works [60,61] in order to benchmark the performance of the proposed
novel machine learning algorithms and has been derived from synthetic query analytics
workloads from (https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/
ijzp-q8t2 accessed on 31 May 2022). The quantity of interest being modeled was the number
of crimes reported or simply the count of crimes in a particular region, in the city of
Chicago [60]. The variables used to define the region included the x and y coordinates of
the center of the region and the radius of the region. Thus, the problem had three inputs
and one output. The dataset had ten thousand pairs of inputs and outputs. We leveraged
nine thousand points for training the fully Bayesian metamodel and left out one thousand
points as test data in order to evaluate the predictive performance of the trained model and
we ran 2× 104 iterations of our optimization scheme.

Two clear observations from Figure 6 are: (a) the predictive performance visibly
improves as the batch size of subsampled training data increases from across the three
subfigures (here we used batch sizes equal to 45, 67, and 90 samples that corresponded

https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
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to using 0.5%, 0.75%, and 1% of the available dataset), and (b) the predictive epistemic
uncertainty of the trained model also decreases, indicating a higher confidence in the model.
Table 2 shows the improvement of the predictive accuracy of the model as the batch size
used for training is increased, as that is illustrated through the root-mean-squared error
(RMSE) and the mean std values.

In addition to these, Figure 7 shows the increase in runtime of the algorithm as the
batch size of subsampled training data increases. For reference, we also present the runtimes
of the sparse GP implementations presented in [4] using the GPy package [62] for the same
number of iterations and batch size and a latent variable with 80 data points. As can be
seen, our approach reduced the runtime significantly for very small batch sizes while the
performance of the two algorithms was about the same when batch size became 90.

Figure 6. Prediction versus observations for 1000 test data points. The three models were trained
using batch sizes equal to 45 (top left), 67 (top right), and 90 (bottom) samples that were resampled
from the full dataset.

Figure 7. Runtime comparison for three different batch sizes for the Chicago crimes dataset.
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Table 2. Chicago crimes dataset: root-mean-squared error (RMSE) values and mean standard deviations
for the resulting model trained using different batch sizes.

Batch Size RMSE Value Mean Predictive Std

45 6.445 24.626
67 6.315 15.065
90 5.254 7.889

5.3. Torsional Vibration Problem

We considered the torsional vibration problem on the system depicted in Figure 8
consisting of three shafts and two discs of varying geometric characteristics and elasticity
properties. Our goal was to built a Gaussian process metamodel on the quantity of interest
that expressed the lowest natural frequency, given as

Y =

√
−b−

√
b2 − 4ac
2

/
2π, (29)

where a = 1,
b = −

(
K1+K2

J1
+ K2+K3

J2

)
, c = K1K2+K2K3+K1K3

J1 J2
. (30)

Figure 8. Torsional vibration on system consisting of and three shafts and two discs placed in between
successive shafts.

The torsional stiffness values were given by

Ki = θ1
πGidi
32Li

, i = 1, 2, 3 (31)

and the polar moments of inertia were given by

Jj = θ2Mj

(Dj

2

)2

, i = 1, 2 (32)

with Mj =
ρj
g πtj

Dj
4 , j = 1, 2. We considered a high-fidelity simulator where Yh f was

evaluated using θ1 = π/32, θ2 = 1
2 and shaft diameters d1 = 2, d2 = 1.825, and d3 = 2.25

in expressions (31) and (32), while data from a low-fidelity Yl f were also used, where θ1
and θ2 were considered unknown parameters to be inferred and all diameters were taken
equal d1 = d2 = d3 = 2. All 12 remaining geometric and elasticity properties of the system
were assumed to be design parameters and are described in Table 3.

We considered again an experimental scenario in the big data regime, where 104

simulation data points were generated from J1 and a much smaller number of high-fidelity
observations were available from J2. We tested the robustness of the approach by varying
the number of high-fidelity observations from only 50 points up to 250 and we compared
the runtimes. Due to the increasing number of data points used to optimize the ELBO, it
became necessary to adjust the maximum number of iterations for which the optimization
algorithm ran, and therefore, the resulting runtime was affected. For the first three cases, we
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performed 1000 iterations; for the case Nh f = 200, we performed 1500 iterations; and for the
remaining case (Nh f = 250), 2000 iterations were found to be necessary. Figure 9 shows the
convergence of the ELBO function along with the root-mean-squared error (RMSE) values
obtained for each trained model, based on 100 test data points. As expected, the RMSE
goes down with an increasing number of high-fidelity data as shown in Figure 9 bottom.

Table 3. Torsional vibration problem: description of the 12-dimensional input parameters and their
values ranges. Length, diameters and thicknesses are given in inches, moduli of rigidity are in lb/sq
inch, and weight densities are expressed in lb/cubic inch.

Part Parameter Value Range

Shaft 1 Length L1 [9, 11]
Modulus of rigidity G1 [1053, 1287] × 105

Shaft 2 Length L2 [10.8, 13.2]
Modulus of rigidity G2 [558, 682] × 104

Shaft 3 Length L3 [7.2, 8.8]
Modulus of rigidity G3 [351, 429] × 104

Disk 1 Diameter D1 [10.8, 13.2]
Thickness t1 [2.7, 3.3]

Weight density ρ1 [0.252, 0.308]
Disk 2 Diameter D2 [12.6, 15.4]

Thickness t2 [3.6, 4.4]
Weight density ρ2 [0.09, 0.11]

Figure 9. Torsional vibration problem: plots of the ELBO function vs. number of iterations (top) and
plot of the RMSE values (bottom) for different numbers of high-fidelity data points Nh f .

The posterior results for the calibrated parameters along with the runtime for each
case are shown in Table 4. As can be seen, the true values (0.98 and 0.5) fall within the
reported mean values of θ± 2 standard deviations for all cases. At last, the comparison of
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the model prediction versus observation, along with the 45-degree line plots, is provided
for the worse and best cases (Nh f = 50, 250) in Figure 10.

Table 4. Torsional vibration problem: posterior statistics for the calibration parameters (θ1, θ2) and
the computational runtimes for each training case.

Nh f θ1 (Mean, Std) θ2 (Mean, Std) Runtime

50 (0.092, 0.01) (0.484, 0.042) 9.7’
100 (0.091, 0.01) (0.487, 0.111) 12.9’
150 (0.132, 0.03) (0.682, 0.179) 14.1’
200 (0.145, 0.27) (0.554, 1.614) 44.6’
250 (0.088, 0.0008) (0.450, 0.0007) 54.4’

Figure 10. Torsional vibration problem: comparison of trained model prediction vs. observation on
100 test data points along with 45-degree line plots. The high-fidelity points used to train the model
were Nh f = 50 (top) and Nh f = 250 (bottom).

6. Conclusions

We enhanced and extended the state-of-the-art stochastic variational Bayesian formu-
lation for tasks that use GPs for multifidelity metamodeling and model calibration tasks,
in order to treat problems with tens of thousands of training data and model calibration
problems with more than ten inputs. The proposed mathematical formulation extended two
classic approaches, the so-called black-box VI and stochastic VI, while utilizing a manifold
gradient ascent scheme to accomplish the task of inferring the GP hyperparameters as well
as the calibration parameters. The major impact of our work was being able to perform
a fully Bayesian uncertainty quantification while training and calibrating models using
multifidelity GPs, albeit with large datasets and a moderately large number of inputs. Nu-
merical results on two challenging engineering problems visibly demonstrated a scale up of



Entropy 2022, 24, 1291 15 of 17

classical Bayesian GPs for multifidelity modeling to calibrate untuned computer simulators,
by enabling savings in computation. This speed-up is critical for engineering applications,
especially in the industry, where repeated model calibration tasks are a common occurrence
and can lead to accumulated savings using the proposed approach.

This work showed promise for accelerating the training procedure in Gaussian process
based metamodels without relying on enormous computational power. The key characteris-
tic in our approach was the batch-sampling step used in the stochastic variational inference
framework, which allowed the fast computation of the likelihood term and accelerated the
optimization task. One key challenge in our approach is that fine tuning of the optimization
is required in order to ensure a sufficiently large updating step in the optimization scheme,
while at the same time avoiding overshooting. Fine tuning the algorithm heavily depends
on the size of the batch samples being used, which is also relative to the original data size
that is available. Extremely small batch samples can result in very inaccurate likelihood
evaluations and eventually miss the optimum. Another important aspect mentioned above
is the number of Monte Carlo samples used for approximating the ELBO function. Very
small number of samples can lead to inaccurate estimates with large variance that fail
to converge, while on the other hand, a high number of samples makes the algorithm
computationally expensive and fails to achieve the desired speed up. Typically, big data
problems in Bayesian inference exhibit a well-defined posterior, therefore optimizing the
ELBO should always be a feasible task given that some fine tuning has been performed.
A limitation of the approach would the case where a big part of the data set is corrupted
or contains high noise, in which case, the exploration of the posterior via VI might be-
come challenging due to the complex nature of the true posterior. In such cases, more
complex variational approximations need to be considered which could, however, make
the algorithm less computationally efficient.

Other general challenges, not associated specifically with our approach, are problems
of extremely high input and output dimensions as well as highly nonsmooth response
functions. In such cases, a further development of our framework might be necessary such
that it aligns with similar approaches in the literature, for instance, enabling covariance
matrix sparsity, employing nonsmooth correlation kernels and last, but not least, leveraging
parallel computing.

Directions for future work include scaling up the proposed approach to problems
with higher input dimensionality, i.e., hundreds of inputs and with more than one sources
of information with lower-fidelity and large training data. Additionally, the proposed
approach needs more work in order to be applied to problems where the different sources
do not share the same inputs.

Author Contributions: Conceptualization, P.T.; methodology, P.T.; software, P.T.; validation, P.T. and
P.P.; writing—original draft preparation, P.T. and P.P.; writing—review and editing, P.T., P.P. and S.G.;
supervision, L.W.; project administration, S.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All details necessary for regenerating the data used in numerical
examples Sections 5.1 and 5.3 is provided in each problem description. Links for the publicly
available dataset used in numerical example Section 5.2 is also provided in the relevant section.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hill, W.J.; Hunter, W.G. A review of response surface methodology: A literature survey. Technometrics 1966, 8, 571–590. [CrossRef]
2. Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233–238. [CrossRef]

http://doi.org/10.2307/1266632
http://dx.doi.org/10.1016/j.promfg.2018.02.034


Entropy 2022, 24, 1291 16 of 17

3. Rasmussen, C.E. Gaussian Processes in Machine Learning; Summer School on Machine Learning; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 63–71.

4. Hensman, J.; Fusi, N.; Lawrence, N.D. Gaussian processes for Big data. In Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence, Bellevue, WA, USA, 11–15 August 2013; pp. 282–290.

5. Damianou, A.; Lawrence, N.D. Deep gaussian processes. In Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics, Scottsdale, AZ, USA, 29 August 2013; pp. 207–215.

6. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
7. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings

of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1050–1059.
8. Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles.

Adv. Neural Inf. Process. Syst. 2017, 30, 1–12.
9. Ghanem, R.; Spanos, P.D. Polynomial chaos in stochastic finite elements. J. Appl. Mech. 1990, 57, 197–202. [CrossRef]
10. Tsilifis, P.; Ghanem, R.G. Reduced Wiener chaos representation of random fields via basis adaptation and projection. J. Comput.

Phys. 2017, 341, 102–120. [CrossRef]
11. Sa, G.; Liu, Z.; Qiu, C.; Peng, X.; Tan, J. Novel Performance-Oriented Tolerance Design Method Based on Locally Inferred

Sensitivity Analysis and Improved Polynomial Chaos Expansion. J. Mech. Des. 2021, 143, 022001. [CrossRef]
12. Pandita, P.; Bilionis, I.; Panchal, J.; Gautham, B.; Joshi, A.; Zagade, P. Stochastic multiobjective optimization on a budget:

Application to multipass wire drawing with quantified uncertainties. Int. J. Uncertain. Quantif. 2018, 8, 233–249. [CrossRef]
13. Pandita, P.; Bilionis, I.; Panchal, J. Bayesian optimal design of experiments for inferring the statistical expectation of expensive

black-box functions. J. Mech. Des. 2019, 141, 101404. [CrossRef]
14. Pandita, P.; Bilionis, I.; Panchal, J. Extending expected improvement for high-dimensional stochastic optimization of expensive

black-box functions. J. Mech. Des. 2016, 138, 111412. [CrossRef]
15. Tsilifis, P.; Huan, X.; Safta, C.; Sargsyan, K.; Lacaze, G.; Oefelein, J.C.; Najm, H.N.; Ghanem, R.G. Compressive sensing adaptation

for polynomial chaos expansions. J. Comput. Phys. 2019, 380, 29–47. [CrossRef]
16. Hu, Z.; Hu, C.; Mourelatos, Z.P.; Mahadevan, S. Model discrepancy quantification in simulation-based design of dynamical

systems. J. Mech. Des. 2019, 141, 011401. [CrossRef]
17. Peherstorfer, B.; Willcox, K.; Gunzburger, M. Survey of multifidelity methods in uncertainty propagation, inference, and

optimization. Siam Rev. 2018, 60, 550–591. [CrossRef]
18. Nobile, F.; Tesei, F. A Multi Level Monte Carlo method with control variate for elliptic PDEs with log-normal coefficients. Stoch.

Partial Differ. Equ. Anal. Comput. 2015, 3, 398–444. [CrossRef]
19. Benner, P.; Gugercin, S.; Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems.

SIAM Rev. 2015, 57, 483–531. [CrossRef]
20. Forrester, A.; Keane, A. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [CrossRef]
21. Forrester, A.; Sóbester, A.; Keane, A. Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A Math. Phys. Eng. Sci.

2007, 463, 3251–3269. [CrossRef]
22. Huan, X.; Safta, C.; Sargsyan, K.; Vane, Z.; Lacaze, G.; Oefelein, J.; Najm, H. Compressive sensing with cross-validation and

stop-sampling for sparse polynomial chaos expansions. SIAM/ASA J. Uncertain. Quantif. 2018, 6, 907–936. [CrossRef]
23. Tsilifis, P.; Pandita, P.; Ghosh, S.; Andreoli, V.; Vandeputte, T.; Wang, L. Bayesian learning of orthogonal embeddings for

multi-fidelity Gaussian Processes. Comput. Methods Appl. Mech. Eng. 2021, 386, 114147. [CrossRef]
24. Liu, H.; Ong, Y.S.; Shen, X.; Cai, J. When Gaussian process meets big data: A review of scalable GPs. IEEE Trans. Neural Netw.

Learn. Syst. 2020, 31, 4405–4423. [CrossRef]
25. Wang, K.; Pleiss, G.; Gardner, J.; Tyree, S.; Weinberger, K.Q.; Wilson, A.G. Exact Gaussian processes on a million data points. Adv.

Neural Inf. Process. Syst. 2019, 32, 14648–14659.
26. Berns, F.; Beecks, C. Towards Large-scale Gaussian Process Models for Efficient Bayesian Machine Learning. In Proceedings of

the 9th International Conference on Data Science, Technology and Applications—DATA, Paris, France, 7–9 July 2020; pp. 275–282.
[CrossRef]

27. Tran, A.; Eldred, M.; McCann, S.; Wang, Y. srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for
constrained design applications using an uncertain Pareto classifier. J. Mech. Des. 2022, 144, 031705. [CrossRef]

28. Ghosh, S.; Pandita, P.; Atkinson, S.; Subber, W.; Zhang, Y.; Kumar, N.C.; Chakrabarti, S.; Wang, L. Advances in bayesian
probabilistic modeling for industrial applications. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2020, 6, 030904.
[CrossRef]

29. Pandita, P.; Tsilifis, P.; Ghosh, S.; Wang, L. Scalable Fully Bayesian Gaussian Process Modeling and Calibration with Adaptive
Sequential Monte Carlo for Industrial Applications. J. Mech. Des. 2021, 143, 074502. [CrossRef]

30. Cui, T.; Law, K.J.; Marzouk, Y.M. Dimension-independent likelihood-informed MCMC. J. Comput. Phys. 2016, 304, 109–137.
[CrossRef]

31. Parno, M.D.; Marzouk, Y.M. Transport map accelerated markov chain monte carlo. SIAM/ASA J. Uncertain. Quantif. 2018,
6, 645–682. [CrossRef]

32. Peherstorfer, B.; Marzouk, Y. A transport-based multifidelity preconditioner for Markov chain Monte Carlo. Adv. Comput. Math.
2019, 45, 2321–2348. [CrossRef]

http://dx.doi.org/10.1115/1.2888303
http://dx.doi.org/10.1016/j.jcp.2017.04.009
http://dx.doi.org/10.1115/1.4047683
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2018021315
http://dx.doi.org/10.1115/1.4043930
http://dx.doi.org/10.1115/1.4034104
http://dx.doi.org/10.1016/j.jcp.2018.12.010
http://dx.doi.org/10.1115/1.4041483
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/10.1007/s40072-015-0055-9
http://dx.doi.org/10.1137/130932715
http://dx.doi.org/10.1016/j.paerosci.2008.11.001
http://dx.doi.org/10.1098/rspa.2007.1900
http://dx.doi.org/10.1137/17M1141096
http://dx.doi.org/10.1016/j.cma.2021.114147
http://dx.doi.org/10.1109/TNNLS.2019.2957109
http://dx.doi.org/10.5220/0009874702750282
http://dx.doi.org/10.1115/1.4052445
http://dx.doi.org/10.1115/1.4046747
http://dx.doi.org/10.1115/1.4050246
http://dx.doi.org/10.1016/j.jcp.2015.10.008
http://dx.doi.org/10.1137/17M1134640
http://dx.doi.org/10.1007/s10444-019-09711-y


Entropy 2022, 24, 1291 17 of 17

33. El Moselhy, T.A.; Marzouk, Y.M. Bayesian inference with optimal maps. J. Comput. Phys. 2012, 231, 7815–7850. [CrossRef]
34. Ranganath, R.; Gerrish, S.; Blei, D. Black box variational inference. In Proceedings of the Artificial Intelligence and Statistics,

Reykjavic, Iceland, 22–25 April 2014; pp. 814–822.
35. Blei, D.; Kucukelbir, A.; McAuliffe, J. Variational inference: A review for statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.

[CrossRef]
36. Titsias, M.; Lázaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In Proceedings of the Interna-

tional Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1971–1979.
37. Tsilifis, P.; Ghanem, R. Bayesian adaptation of chaos representations using variational inference and sampling on geodesics. Proc.

R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180285. [CrossRef]
38. Tsilifis, P.; Papaioannou, I.; Straub, D.; Nobile, F. Sparse Polynomial Chaos expansions using variational relevance vector machines.

J. Comput. Phys. 2020, 416, 109498. [CrossRef]
39. Tsilifis, P.; Bilionis, I.; Katsounaros, I.; Zabaras, N. Computationally efficient variational approximations for Bayesian inverse

problems. J. Verif. Valid. Uncertain. Quantif. 2016, 1, 031004. [CrossRef]
40. Graves, A. Practical variational inference for neural networks. Adv. Neural Inf. Process. Syst. 2011, 24, 2348–2356.
41. Paisley, J.; Blei, D.M.; Jordan, M.I. Variational Bayesian inference with stochastic search. In Proceedings of the 29th International

Coference on International Conference on Machine Learning, Edinburgh, UK, 26 June–1 July 2012; pp. 1363–1370.
42. Deshpande, S.; Purwar, A. Computational creativity via assisted variational synthesis of mechanisms using deep generative

models. J. Mech. Des. 2019, 141, 121402. [CrossRef]
43. Hoffman, M.; Blei, D.; Wang, C.; Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 2013, 14, 111401.
44. Salimbeni, H.; Deisenroth, M. Doubly stochastic variational inference for deep Gaussian processes. arXiv 2017, arXiv:1705.08933.
45. Hoang, T.; Hoang, Q.; Low, B. A unifying framework of anytime sparse Gaussian process regression models with stochastic

variational inference for big data. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July
2015; pp. 569–578.

46. Kennedy, M.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2001, 63, 425–464.
[CrossRef]

47. Kennedy, M.; O’Hagan, A. Predicting the output from a complex computer code when fast approximations are available.
Biometrika 2000, 87, 1–13. [CrossRef]

48. Le Gratiet, L.; Garnier, J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. Int. J.
Uncertain. Quantif. 2014, 4, 365–386. [CrossRef]

49. Le Gratiet, L. Bayesian analysis of hierarchical multifidelity codes. SIAM/ASA J. Uncertain. Quantif. 2013, 1, 244–269. [CrossRef]
50. Arendt, P.D.; Apley, D.W.; Chen, W.; Lamb, D.; Gorsich, D. Improving identifiability in model calibration using multiple responses.

J. Mech. Des. 2012, 134, 100909. [CrossRef]
51. Arendt, P.D.; Apley, D.W.; Chen, W. A preposterior analysis to predict identifiability in the experimental calibration of computer

models. IIE Trans. 2016, 48, 75–88. [CrossRef]
52. Tuo, R.; Jeff Wu, C. A theoretical framework for calibration in computer models: Parametrization, estimation and convergence

properties. SIAM/ASA J. Uncertain. Quantif. 2016, 4, 767–795. [CrossRef]
53. Hoffman, M.; Bach, F.; Blei, D. Online learning for latent Dirichlet allocation. In Proceedings of the Advances in Neural

Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010; pp. 856–864.
54. Wainwright, M.; Jordan, M. Graphical models, exponential families, and variational inference. Found. Trends® Mach. Learn. 2008,

1, 1–305. [CrossRef]
55. Wang, C.; Blei, D. Variational Inference in Nonconjugate Models. J. Mach. Learn. Res. 2013, 14, 1005–1031.
56. Amari, S. Natural gradient works efficiently in learning. Neural Comput. 1998, 10, 251–276. [CrossRef]
57. Martens, J. New insights and perspectives on the natural gradient method. J. Mach. Learn. Res. 2020, 21, 1–76.
58. Absil, P.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ,

USA, 2009.
59. Roy, S.; Harandi, M. Constrained stochastic gradient descent: The good practice. In Proceedings of the 2017 International

Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia, 29 November–1 December
2017; pp. 1–8.

60. Savva, F.; Anagnostopoulos, C.; Triantafillou, P. Explaining aggregates for exploratory analytics. In Proceedings of the 2018 IEEE
International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 478–487.

61. Anagnostopoulos, C.; Savva, F.; Triantafillou, P. Scalable aggregation predictive analytics. Appl. Intell. 2018, 48, 2546–2567.
[CrossRef]

62. GPy. GPy: A Gaussian Process Framework in Python. Since 2012. Available online: http://github.com/SheffieldML/GPy
(accessed on 1 January 2022).

http://dx.doi.org/10.1016/j.jcp.2012.07.022
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1098/rspa.2018.0285
http://dx.doi.org/10.1016/j.jcp.2020.109498
http://dx.doi.org/10.1115/1.4034102
http://dx.doi.org/10.1115/1.4044396
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1093/biomet/87.1.1
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914
http://dx.doi.org/10.1137/120884122
http://dx.doi.org/10.1115/1.4007573
http://dx.doi.org/10.1080/0740817X.2015.1064554
http://dx.doi.org/10.1137/151005841
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1162/089976698300017746
http://dx.doi.org/10.1007/s10489-017-1093-y
http://github.com/SheffieldML/GPy

	Introduction
	Multifidelity Gaussian Process Modeling and Calibration
	Autoregressive Gaussian Processes
	Posterior Distribution

	Variational Inference
	Stochastic Optimization
	Numerical Examples
	Academic Example
	Chicago Crimes Statistics Dataset
	Torsional Vibration Problem

	Conclusions
	References

