
����������
�������

Citation: Schwarz Schuler, J.P.; Also,

S.R.; Puig, D.; Rashwan, H.;

Abdel-Nasser, M. An Enhanced

Scheme for Reducing the Complexity

of Pointwise Convolutions in CNNs

for Image Classification Based on

Interleaved Grouped Filters without

Divisibility Constraints. Entropy 2022,

24, 1264. https://doi.org/10.3390/

e24091264

Academic Editors: Bin Fan and

Wenqi Ren

Received: 24 July 2022

Accepted: 5 September 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An Enhanced Scheme for Reducing the Complexity of Pointwise
Convolutions in CNNs for Image Classification Based on
Interleaved Grouped Filters without Divisibility Constraints
Joao Paulo Schwarz Schuler 1,* , Santiago Romani Also 1 , Domenec Puig 1 , Hatem Rashwan 1

and Mohamed Abdel-Nasser 1,2

1 Departament d’Enginyeria Informatica i Matemátiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
2 Electronics and Communication Engineering Section, Electrical Engineering Department, Aswan University,

Aswan 81528, Egypt
* Correspondence: joaopaulo.schwarz@estudiants.urv.cat

Abstract: In image classification with Deep Convolutional Neural Networks (DCNNs), the number of
parameters in pointwise convolutions rapidly grows due to the multiplication of the number of filters
by the number of input channels that come from the previous layer. Existing studies demonstrated
that a subnetwork can replace pointwise convolutional layers with significantly fewer parameters and
fewer floating-point computations, while maintaining the learning capacity. In this paper, we propose
an improved scheme for reducing the complexity of pointwise convolutions in DCNNs for image
classification based on interleaved grouped filters without divisibility constraints. The proposed
scheme utilizes grouped pointwise convolutions, in which each group processes a fraction of the
input channels. It requires a number of channels per group as a hyperparameter Ch. The subnetwork
of the proposed scheme contains two consecutive convolutional layers K and L, connected by an
interleaving layer in the middle, and summed at the end. The number of groups of filters and filters
per group for layers K and L is determined by exact divisions of the original number of input channels
and filters by Ch. If the divisions were not exact, the original layer could not be substituted. In this
paper, we refine the previous algorithm so that input channels are replicated and groups can have
different numbers of filters to cope with non exact divisibility situations. Thus, the proposed scheme
further reduces the number of floating-point computations (11%) and trainable parameters (10%)
achieved by the previous method. We tested our optimization on an EfficientNet-B0 as a baseline
architecture and made classification tests on the CIFAR-10, Colorectal Cancer Histology, and Malaria
datasets. For each dataset, our optimization achieves a saving of 76%, 89%, and 91% of the number of
trainable parameters of EfficientNet-B0, while keeping its test classification accuracy.

Keywords: EfficientNet; deep learning; computer vision; image classification; convolutional neural
network; DCNN; grouped convolution; pointwise convolution; data analysis; network optimization;
parameter reduction; parallel branches; channel interleaving

1. Introduction

In 2012, Krizhevsky et al. [1] reported a breakthrough in the ImageNet Large Scale
Visual Recognition Challenge [2] using their AlexNet architecture, which contains 5 con-
volutional layers and 3 dense layers. Since 2012, many other architectures have been
introduced, like ZFNet [3], VGG [4], GoogLeNet [5], ResNet [6] and DenseNet [7]. Since
the number of layers of proposed convolutional neural networks has increased from 5 to
more than 200, those models are usually referred to as “Deep Learning” or DCNN.

In 2013, Min Lin et al. introduced the Network in Network architecture (NiN) [8]. It has
3 spatial convolutional layers with 192 filters, separated by pairs of pointwise convolutional
layers. These pointwise convolutions enable the architecture to learn patterns without
the computational cost of a spatial convolution. In 2016, ResNet [6] was introduced.

Entropy 2022, 24, 1264. https://doi.org/10.3390/e24091264 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24091264
https://doi.org/10.3390/e24091264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7582-0711
https://orcid.org/0000-0001-6673-9615
https://orcid.org/0000-0002-0562-4205
https://orcid.org/0000-0001-5421-1637
https://orcid.org/0000-0002-1074-2441
https://doi.org/10.3390/e24091264
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24091264?type=check_update&version=2


Entropy 2022, 24, 1264 2 of 15

Following VGG [4], all ResNet spatial filters have 3 × 3 pixels. Their paper conjectures
that deeper CNNs have exponentially low convergence rates. To deal with this problem,
they introduced skip connections every 2 convolutional layers. In 2017, Ioannou et al. [9]
adapted the NiN architecture to use 2 to 16 convolutional groups per layer for classifying
the CIFAR-10 dataset.

A grouped convolution separates input channels and filters into groups. Each filter
processes only input channels entering its group. Each group of filters can be understood
as an independent (parallel) path for information flow. This aspect drastically reduces
the number of weights in each filter and, therefore, reduces the number of floating-point
computations. Grouping 3 × 3 and 5 × 5 spatial convolutions, Ioannou et al. were able
to decrease the number of parameters by more than 50% while keeping the NiN classifi-
cation accuracy. Ioannou et al. also adapted the Resnet-50, Resnet-200, and GoogleLeNet
architectures applying 2 to 64 groups per layer when classifying the ImageNet dataset,
obtaining parameter reduction while maintaining or improving the classification accu-
racy. Also in 2017, an improvement for the ResNet architecture called ResNeXt [10] was
introduced, replacing the spatial convolutions with parallel paths (groups), reducing the
number of parameters.

Several studies have also reported the creation of parameter-efficient architectures
with grouped convolutions [11–15]. In 2019, Mingxing Tan et al. [16] developed the
EfficientNet architecture. At that time, their EfficientNet-B7 variant was 8.4 times more
parameter-efficient and 6.1 times faster than the best existing architecture, achieving 84.3%
top-1 accuracy on ImageNet. More than 90% of the parameters of EfficientNets come from
standard pointwise convolutions. This aspect opens an opportunity for a huge reduction in
several parameters and floating-point operations, as we have exploited in the present paper.

Most parameters in DCNNs are redundant [17–21]. Pruning methods remove connec-
tions and neurons found to be irrelevant by different techniques. After training the original
network with the full set of connections, the removal is carried out [22–27]. Our method
differs from pruning as we reduce the number of connections before the training starts,
while pruning does after training. Therefore, our method can save computing resources
during training time.

In previous works [28,29], we proposed replacing standard pointwise convolutions
with a sub-architecture that contains two grouped pointwise convolutional layers (K and
L), an interleaving layer that mixes channels from layer K before feeding the layer L, and a
summation at the end that sums the results from both convolutional layers. Our original
method accepts a hyperparameter Ch, which denotes the number of input channels fed
to each group of filters. Then, our method computes the number of groups of filters and
filters per group according to the division of original input channels and filters by Ch. Our
original method avoided substituting the layers where the divisions were not exact.

In this paper, we propose an enhanced scheme to allow computing the number of
groups in a flexible manner, in the sense that the divisibility constraints do not have to be
considered anymore. By applying our method to all pointwise convolutional layers of an
EfficientNet-B0 architecture, we are able to reduce a huge amount of resources (trainable
parameters, floating-point computations) while maintaining the learning capacity.

This paper is structured as follows: Section 2 details our improved solution for group-
ing pointwise convolutions while skipping the constraints of divisibility found in our
previous method. Section 3 details the experiments carried out for testing our solution.
Section 4 summarizes the conclusions and limitations of our proposal.

2. Methodology
2.1. Mathematical Ground for Regular Pointwise Convolutions

Let Xi = {xi
1, xi

2, . . . , xi
Ici
} be a set of input feature maps (2D lattices) for a convolu-

tional layer i in a DCNN, where Ici denotes the number of input channels for this layer. Let
Wi = {wi

1, wi
2, . . . , wi

Fi
} be a set of filters containing the weights for convolutions, where

Fi denotes the number of filters at layer i, which is also the number of output channels of



Entropy 2022, 24, 1264 3 of 15

this layer. Following the notation proposed in [30], a regular DCNN convolution can be
mathematically expressed as in Equation (1):

Xi+1 = Wi ⊗ Xi

= {wi
1 ∗ Xi, wi

2 ∗ Xi, . . . , wi
Fi
∗ Xi}

(1)

where the
⊗

operator indicates that filters in Wi are convolved with feature maps in Xi,
using the ∗ operator to indicate a 3D tensor multiplication and shifting of a filter wi

j across
all patches of the size of the filter in all feature maps. For simplicity, we are ignoring the
bias terms. Consequently, Xi+1 will contain Fi feature maps that will feed the next layer
i + 1. The tensor shapes of involved elements are the following:

Xi ∈ RH×W×Ici

Wi ∈ RFi×S×S×Ici → wi
j ∈ RS×S×Ici

Xi+1 ∈ RH×W×Fi

(2)

where H×W is the size (height, width) of feature maps, and S × S is the size of a filter
(usually square). In this paper we work with S = 1 because we are focused on pointwise
convolutions. In this case, each filter wi

j carries Ici weights. The total number of weights Pi
in layer i is obtained with a simple multiplication:

Pi = Ici · Fi (3)

2.2. Definition of Grouped Pointwise Convolutions

For expressing a grouped pointwise convolution, let us split the input feature maps
and the set of filters in Gi groups, as Xi =

{
Xi

1, Xi
2, . . . , Xi

Gi

}
and Wi =

{
Wi

1, Wi
2, . . . , Wi

Gi

}
.

Assuming that both Ici and Fi are divisible by Gi, the elements in Xi and Wi can be evenly
distributed through all their subset Xi

j and Wi
j . Then, Equation (1) can be reformulated as

Equation (4):

Xi+1 =
{

Wi
1 ⊗ Xi

1, Wi
2 ⊗ Xi

2, . . . , Wi
Gi
⊗ Xi

Gi

}
(4)

The shapes of the subsets are the following:

Xi
m ∈ R

H×W× Ici
Gi

Wi
m ∈ R

Fgi×1×1× Ici
Gi → wi,m

j ∈ R
1×1× Ici

Gi

(5)

where Fgi is the number of filters per group, namely, Fgi = Fi/Gi. Since each filter wi,m
j only

convolves on a fraction of input channels (Ici/Gi), the total number of weights per subset
Wi

m is (Fi/Gi) · (Ici/Gi). Multiplying the last expression by the number of groups provides
the total number of weights Pi in a grouped pointwise convolutional layer i:

Pi = (Ici · Fi)/Gi (6)

Equation (6) shows that the number of trainable parameters is inversely proportional to
the number of groups. However, grouping has the evident drawback that it prevents the
filters to be connected with all input channel, which reduces the possible connections of
input channels for learning new patterns. As it may lead to a lower learning capacity of the
DCNN, one must be cautious with using such grouping technique.



Entropy 2022, 24, 1264 4 of 15

2.3. Improved Scheme for Reducing the Complexity of Pointwise Convolutions

Two major limitations of our previous method were inherited from constraints found
in most deep learning APIs:

• The number of input channels Ici must be multiple of the number of groups Gi.
• The number of filters Fi must be multiple of the number of groups Gi.

The present work circumvents the first limitation by replicating channels from the
input. The second limitation is circumvented by adding a second parallel path with another
pointwise grouped convolution when required. Figure 1 shows an example of our updated
architecture.

Details of this process are described below, which is applied to substitute each point-
wise convolutional layer i found in the original architecture. To explain the method, we
start detailing the construction of the layer K shown in Figure 1. For simplicity, we drop the
index i and use the index K to refer to the original hyperparameters, i.e., we use IcK instead
of Ici, FK instead of Fi. Also, we will use the indexes K1 and K2 to refer the parameters of
the two parallel paths that may exist in layer K.

First of all, we must manually specify the value of the hyperparameter Ch. In the
graphical example shown in Figure 1, we set Ch = 4. The rest of hyperparameters such
as number of groups in layers K and L are determined automatically by the rules of our
algorithm, according to the chosen value of Ch, the number of input channels IcK and the
number of filters FK. We do not have a procedure to find the optimal value of Ch, hence we
must apply ablation studies on a range of Ch values as shown in the results section. For the
example in Figure 1, we have chosen the value of Ch to obtain a full variety of situations
that must be tackled by our algorithm, i.e., non-divisibility conditions.

Figure 1. A schematic diagram of our pointwise convolution replacement. This example replaces a
pointwise convolution with 14 input channels and 10 filters. It contains two convolutional layers, K
and L, one interleaving, and one summation layer. Channels surrounded by a red border represent
replicated channels.

2.4. Definition of Layer K

The first step of the algorithm is to compute the number of groups in branch K1, as in
Equation (7):

GK1 =

⌈
IcK
Ch

⌉
(7)

Since the number of input channels IcK may not be divisible by Ch, we use the
ceiling operator on the division to obtain an integer number of groups. In the example,
GK1 = d14/4e = 4. Thus, the output of filters in branch K1 can be defined as in (8):



Entropy 2022, 24, 1264 5 of 15

K1 =
{

WK1
1 ⊗ XK

1 , WK1
2 ⊗ XK

2 , . . . , WK1
GK1
⊗ XK

GK1

}
(8)

The subsets XK
m are composed of input feature maps xj, collected in a sorted manner,

i.e., XK
1 = {x1, x2, . . . , xCh}, XK

2 = {xCh+1, xCh+2, . . . , x2Ch}, etc. Equation (9) provides a
general definition of which feature maps xj are included in any feature subset XK

m:

XK
m = {xa+1, xa+2, . . . , xa+Ch}, a = (m− 1) · Ch (9)

However, if IcK is not divisible by Ch, the last group m = GK1 would not have Ch
channels. In this case, the method will complete this last group replicating Ch− b initial
input channels, where b is computed as stated in Equation (10):

XK
GK1

= {xa+1, xa+2, . . . , xa+b, x1, x2, . . . , xCh−b},
a = (GK1 − 1) · Ch,

b = GK1 · Ch− IcK

(10)

It can be proved that b will always be less or equal than Ch, since b is the excess of the
integer division IcK/Ch, i.e., GK1 · Ch will always be above or equal to IcK, but less than
IcK + Ch, because otherwise GK1 would increase its value (as a quotient of IcK/Ch). In the
example, b = 2, hence XK1

4 = {x13, x14, x1, x2}.
Then, the method calculates the number of filters per group FgK1 as in (11):

FgK1 =

⌊
FK

GK1

⌋
(11)

To avoid divisibility conflicts, this time we have chosen the floor integer division. For
the first path K1, each of the filter subsets shown in (8) will contain the following filters:

WK1
m =

{
wK1,m

1 , wK1,m
2 , . . . , wK1,m

FgK1

}
wK1,m

j ∈ R1×1×Ch
(12)

For the first path of the example, the number of filters per group is FgK1 = b10/4c = 2.
So, the first path has 4 groups (GK1) of 2 filters (FgK1), each filter being connected to 4 input
channels (Ch).

If FK is not divisible by Ch, a second path K2 will provide as many groups as filters
not provided in K1, with one filter per group, to complete the total number of filters FK:

GK2 = FK − FgK1 · GK1

FgK2 = 1
(13)

In the example, GK2 = 2. The required input channels for the second path is Ch · GK2.
The method obtains those channels reusing the same subsets of input feature maps XK

m
shown in (9). Hence, the output of filters in path K2 can be defined as in (14):

K2 =
{

wK2
1 ∗ XK

1 , wK2
2 ∗ XK

2 , . . . , wK2
GK2
∗ XK

GK2

}
(14)

where wK2
j ∈ R

1×1×Ch. Therefore, each filter in K2 operates on exactly the same subset
of input channels than the corresponding subset of filters in K1. Hence, each filter in the
second path can be considered as belonging to one of the groups of the first path.

It must be noticed that GK2 will always be less than GK1. This is true because GK2 is
the reminder of the integer division FK/GK1, as can be deduced from (11) and (13). This
property warranties that there will be enough subsets XK

m for this second path.
After defining paths K1 and K2 in layer K, the output of this layer is the concatenation

of both paths:



Entropy 2022, 24, 1264 6 of 15

K = {K1, K2} (15)

The total number of channels after the concatenation is equal to FK = GK1 · FgK1 + GK2.

2.5. Interleaving Stage

As mentioned above, grouped convolutions inherently face a limitation: each parallel
group of filters computes its output from their own subset of input channels, preventing
combinations of channels connected to different groups. To alleviate this limitation, we
propose to interleave the output channels from the convolutional layer K.

The interleaving process simply consists in arranging the odd channels first and the
even channels last, as noted in Equation (16):

IK ={k1, k3, k5, . . . , k2c−1,

k2, k4, k6, . . . , k2c}
c =bFK/2c

(16)

Here we are assuming that FK is even. Otherwise, the list of odd channels will include
an extra channel k2c+1.

2.6. Definition of Layer L

The interleaved output feeds the grouped convolutions in layer L to process data
coming from more than one group from the preceding layer K.

To create layer L, we apply the same algorithm as for layer K, but now the number of
input channels is equal to FK instead of IcK.

The number of groups in path L1 is computed as:

GL1 =

⌈
FK
Ch

⌉
(17)

Note that GL1 may not be equal to GK1. In the example, GL1 = d10/4e = 3.
Then, the output of L1 is computed as in (18), where the input channel groups IK

m come
from the interleaving stage. Each group is composed of Ch channels, whose indexes are
generically defined in (19):

L1 =
{

WL1
1 ⊗ IK

1 , WL1
2 ⊗ IK

2 , . . . , WK1
GL1
⊗ IK

GL1

}
(18)

IK
m =

{
iK
a+1, iK

a+2, . . . , iK
a+Ch

}
,

a = (m− 1) · Ch
(19)

Again, the last group of indexes may not contain Ch channels due to a non-exact
division condition in (17). Similar to path K1, for path L1 the missing channels in the
last group will be supplied by replicating Ch− b initial interleaved channels, where b is
computed as stated in Equation (20):

IK
GL1

=
{

iK
a+1, iK

a+2, . . . , iK
a+b, iK

1 , iK
2 , . . . , iK

Ch−b

}
,

a = (GL1 − 1) · Ch,

b = GL1 · Ch − FK

(20)

The number of filters per group FgL1 is computed as in (21):

FgL1 =

⌊
FK

GL1

⌋
(21)



Entropy 2022, 24, 1264 7 of 15

In the example, FgL1 = b10/3c = 3. Each group of filters WL1
m shown in (18) can be

defined as in (22), each one containing FgL1 convolutional filters of Ch inputs:

WL1
m =

{
wL1,m

1 , wL1,m
2 , . . . , wL1,m

FgL1

}
wL1,m

j ∈ R1×1×Ch
(22)

It should be noted that if the division in (21) is not exact, the number of output channels
from layer L may not reach the required FK outputs. In this case, a second path L2 will be
added, with the following parameters:

GL2 = FK − FgL1 · GL1

FgL2 = 1
(23)

In the example, GL2 = 1. The output of path L2 is computed as in (24), defining one
extra convolutional filter for some initial groups of interleaved channels declared in (18)
and (19), taking into account that GL2 will always be less than GL1 according to the same
reasoning done for GK2 and GK1:

L2 =
{

wL2
1 ∗ IK

1 , wL2
2 ∗ IK

2 , . . . , wL2
GL2
∗ IK

GL2

}
(24)

The last step in defining the output of layer L is to join the outputs of paths L1 and L2:

L = {L1, L2} (25)

2.7. Joining of Layers

Finally, the output of both convolutional layers K and L are summed to create the
output of the original layer:

Xi+1 = K + L (26)

Compared to concatenation, summation has the advantage of allowing a residual
learning in the filters of layer L, because gradient can be backpropagated through L filters
or directly to K filters. In other words, residual layers provide more learning capacity
with low degree of downsides due to increasing the number of layers (i.e., overfitting,
longer training time, etc.) In the results section, we present an ablation study that contains
experiments done without the interleaving and the L layers (rows labeled with “no L”).
These experiments empirically prove that the interleaving mechanism and the secondary L
layer help in improving the sub-architecture accuracy, with low impact.

It is worth mentioning that we only add the layer L an the interleaving when the
number of input channels is bigger or equal to the number of filters in layer K.

2.8. Computing the Number of Parameters

We can compute the total number of parameters of our sub-architecture. First,
Equation (27) shows that the number of filters in layer K is equal to the number of filters in
layer L, which in turn is equal to the total number of filters in the original convolutional
layer Fi:

FgK1 · GK1 + GK2 = FgL1 · GL1 + GL2 = Fi (27)

Then, the total number of parameters Pi is twice the number of original filters multi-
plied by the number of input channels per filter:

Pi = 2(Fi · Ch) (28)

Therefore, comparing Equation (28) with (3), it is clear that Ch must be significantly
less than Ici/2 to reduce the number of parameters of a regular pointwise convolutional



Entropy 2022, 24, 1264 8 of 15

layer. Also, comparing Equation (28) with (6), our sub-architecture provides a parameter
reduction similar to a plain grouped convolutional layer when Ch is around Ici/2Gi,
although we cannot specify a general Gi term because of the complexity of our pair of
layers with possibly two paths per layer.

The requirement for a low value of Ch is also necessary to ensure that divisions in
Equations (7) and (17) provide quotients above one, otherwise our method will not create
grouping. Hence, Ch must be less or equal to Ici/2 and Fi/2. These are the only two
constraints that our method is restricted by.

As shown in Table 1, pointwise convolutional layers found in real networks such
as EfficientNet-B0 have significant Figures for Ici and Fi, either hundreds or thousands.
Therefore, values of Ch less or equal than 32 will ensure a good ratio of parameter reduction
for most of these pointwise convolutional layers.

EfficientNet is one of the most complex (but efficient) architectures that can be found in
the literature. To our method, the degree of complexity of a DCNN is mainly related to the
maximum number of input channels and output features in any pointwise convolutional
layer. Our method does not care about the number of layers, neither in depth nor in
parallel, because it works on each layer independently. Therefore, the degree of complexity
of EfficientNet-B0 can be considered significantly high, taking into account the values
shown in the last row of Table 1. Arguably, other versions of EfficientNet (B1, B2, etc.)
and other types of DCNN can exceed those values. In such cases, higher values of Ch
may be necessary, but we cannot provide any rule to forecast its optimum value for the
configuration of any pointwise convolutional layer.

Table 1. For a standard pointwise convolution with Ic input channels, F filters, P parameters and a
given number of channels per group Ch, this Table shows the calculated parameters for layers K and
L: the number of groups G<layer><path> and the number of filters per group Fg<layer><path>. The last
2 columns show the total number of parameters and its percentage with respect to the original layer.

Original Settings Layer K Layer L K+L Params

Ic F P Ch GK1 FgK1 GK2 GL1 FgL1 GL2 Total %

14 10 140 4 4 2 2 3 3 1 80 57.14%

160 3840 614,400 16 10 384 0 0 0 0 61,440 10.00%
32 5 768 0 0 0 0 122,880 20.00%

192 1152 221,184 16 12 96 0 0 0 0 18,432 8.33%
32 6 192 0 0 0 0 36,864 16.67%

1152 320 368,640 16 72 4 32 20 16 0 10,240 2.78%
32 36 8 32 10 32 0 20,480 5.56%

3840 640 2,457,600 16 240 2 160 40 16 0 20,480 0.83%
32 120 5 40 20 32 0 40,960 1.67%

2.9. Activation Function

In 2018, Prajit et al. [31] tested a number of activation functions. In their experi-
mentation, they found that the best performing one was the so-called “swish”, shown in
Equation (29).

f (x) = x · sigmoid(βx) (29)

In previous works [28,29], we used the ReLU activation function. In this work, we
use the swish activation function. This change gives us better results in our ablation
experiments shown on Table 5.



Entropy 2022, 24, 1264 9 of 15

2.10. Implementation Details

We tested our optimization by replacing original pointwise convolutions in the
EfficientNet-B0 and named it as “kEffNet-B0 V2”. With CIFAR-10, we tested an addi-
tional modification that skips the first 4 convolutional strides, allowing input images with
32 × 32 pixels instead of the original resolution of 224 × 224 pixels.

In all our experiments, we saved the trained network from the epoch that achieved the
lowest validation loss for testing with the test dataset. Convolutional layers are initialized
with Glorot’s method [32]. All experiments were trained with RMSProp optimizer, data
augmentation [33] and cyclical learning rate schedule [34]. We worked with various
configurations of hardware with NVIDIA video cards. Regarding software, we did our
experiments with K-CAI [35] and Keras [36] on the top of Tensorflow [37].

Our source code is publicly available at: https://github.com/joaopauloschuler/
kEffNetV2/, accessed on 1 September 2022.

2.11. Horizontal Flip

In some experiments, we run the model twice with the input image and its horizontally
flipped version. The output from the softmax from both runs is summed before class
prediction. In these experiments, the number of floating-point computations doubles,
although the number of trainable parameters remains the same.

3. Results and Discussion

In this section, we present and discuss the results of the proposed scheme with three
image classification datasets: CIFAR-10 dataset [38], Malaria dataset, and colorectal cancer
histology dataset [39,40].

3.1. Results on the CIFAR-10 Dataset

The CIFAR-10 dataset [38] is a subset of [41] and consists of 60k 32 × 32 images
belonging to 10 different classes: airplane, automobile, bird, cat, deer, dog, frog, horse ship
and truck. These images are taken from natural and uncontrolled lightning environment.
They contain only one prominent instance of the object to which the class refers to. The
object may be partially occluded or seen from an unusual viewpoint. This dataset has 50k
images for training and 10k images for test. We picked 5k images for validation and left the
training set with 45k images. We run experiments with 50 and 180 epochs.

On Table 2 we compare kEffNet-B0 V1 (our previous method) and V2 (our current
method), for two values of Ch. We can see that our V2 models has slightly more reduction
in both number of parameters and floating-point computations than the V1 counterpart
models, while achieving slightly higher accuracy. Specifically, V2 models save 10% of the
parameters (from 1,059,202 to 950,650) and 11% of the floating-point computations (from
138,410,206 to 123,209,110) of V1 models. All of our variants obtain similar accuracy to the
baseline with a remarkable reduction of resources (at least 26.3% of trainable parameters
and 35.5% of computations).

Table 2. Comparing EfficientNet-B0, kEffNet-B0 V1 and kEffNet-B0 V2 with CIFAR-10 dataset after
50 epochs.

Model Parameters % Computations % Test acc.

EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 93.33%
kEffNet-B0 V1 16ch 639,702 15.9% 84,833,890 21.8% 92.46%
kEffNet-B0 V2 16ch 623,226 15.5% 82,804,374 21.2% 92.61%
kEffNet-B0 V1 32ch 1,059,202 26.3% 138,410,206 35.5% 93.61%
kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 93.67%

As the scope of this work is limited to small datasets and small architectures, we only
experimented with the smallest EfficientNet variant (EfficientNet-B0) and our modified

https://github.com/joaopauloschuler/kEffNetV2/
https://github.com/joaopauloschuler/kEffNetV2/


Entropy 2022, 24, 1264 10 of 15

variant (kEffNet-B0). Nevertheless, Table 3 provides the number of trainable parameters of
the other EfficientNet variants (original and parameter-reduced). Equation (3) indicates
that the number of parameters grows with the number of filters and the number of input
channels. Equation (6) indicates that the number of parameters decreases with the number
of groups. As we create more groups when the number of input channels grows, we expect
to find bigger parameter savings on larger models. This saving can be seen on Table 3.

Table 3. Number of trainable parameters for EfficientNet, kEffNet V2 16ch and kEffNet V2 32ch with
a 10 classes dataset.

Variant EfficientNet kEffNet V2 16ch % kEffNet V2 32ch %

B0 4,020,358 623,226 15.50% 950,650 23.65%
B1 6,525,994 968,710 14.84% 1,389,062 21.29%
B2 7,715,084 983,198 12.74% 1,524,590 19.76%
B3 10,711,602 1,280,612 11.96% 2,001,430 18.68%
B4 17,566,546 1,858,440 10.58% 2,911,052 16.57%
B5 28,361,274 2,538,870 8.95% 4,011,626 14.14%
B6 40,758,754 3,324,654 8.16% 5,245,140 12.87%
B7 63,812,570 4,585,154 7.19% 7,254,626 11.37%

We also tested our kEffNet-B0 with 2, 4, 8, 16 and 32 channels per group for 50 epochs
as shown in Table 4. As expected, the test classification accuracy increases when allocating
more channels per group: from 84.26% for Ch = 2 to 93.67% for Ch = 32. Also, the resource
saving decreases as the number of channels per group increase: from 7.8% of parameters
and 11.4% of computations for Ch = 2 to 23.6% of parameters and 31.6% of computations
for Ch = 32 (compared to the baseline). For CIFAR-10, if we aim to achieve an accuracy
comparable to the baseline, we must choose at least 16 channels per group. If we add an
extra run per image sample with horizontal flipping when training kEffNet-B0 V2 32ch, the
classification accuracy increases from 93.67% to 94.01%.

Table 4. Ablation study done with the CIFAR-10 dataset for 50 epochs, comparing the effect of
varying the number of channels per group. It also includes the improvement achieved by double
training kEffNet-B0 V2 32ch with original images and horizontally flipped images.

Model Parameters % Computations % Test acc.

EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 93.33%
kEffNet-B0 V2 2ch 311,994 7.8% 44,523,286 11.4% 84.36%
kEffNet-B0 V2 4ch 354,818 8.8% 49,487,886 12.7% 87.66%
kEffNet-B0 V2 8ch 444,346 11.1% 60,313,526 15.5% 90.53%
kEffNet-B0 V2 16ch 623,226 15.5% 82,804,374 21.2% 92.61%
kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 93.67%
kEffNet-B0 V2 32ch + H Flip 950,650 23.6% 246,418,220 63.3% 94.01%

Table 5 replicates most of the results shown in Table 4, but comparing the effect of not
including layer L and interleaving, and also substituting the swish activation function with
the typical ReLU. As can be observed, disabling layer L has a noticeable degradation on test
accuracy when the values of Ch are smaller. For example, when Ch = 4, the performance
drops more than 5%. On the other hand, when Ch = 32 the drop is less than 0.5%. This
is logical taking into account that, the more channels are included per group, the more
chances are to combine input features in the filters. Therefore, a second layer and the
corresponding interleaving is not as crucial as when the filters of layer K are fed with
fewer channels.

In the comparison of activation functions, the same effect can be appreciated: the
swish function works better than the ReLU function, but provides less improvement for



Entropy 2022, 24, 1264 11 of 15

larger number of channels per group. Nevertheless, the gain in the least difference case
(32 ch) is still profitable, with more than 1.5% of extra test accuracy when using the swish
activation function.

Table 5. Extra experiments made for kEffNet-B0 V2 4ch, 8ch, 16ch and 32ch variants. Rows labeled
with “no L” indicate experiments done using only layer K, i.e., disabling layer L and the interleaving.
Rows labeled with “ReLU” replace the swish activation function by ReLU.

Model Parameters % Computations % Test acc.

EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 93.33%

kEffNet-B0 V2 4ch 354,818 8.8% 49,487,886 12.7% 87.66%
kEffNet-B0 V2 4ch no L 342,070 8.5% 48,064,098 12.3% 82.44%
kEffNet-B0 V2 4ch ReLU 354,818 8.8% 47,595,914 12.2% 85.34%

kEffNet-B0 V2 8ch 444,346 11.1% 60,313,526 15.5% 90.53%
kEffNet-B0 V2 8ch no L 422,886 10.5% 57,466,370 14.7% 89.27%
kEffNet-B0 V2 8ch ReLU 444,346 11.1% 58,421,554 15.0% 88.82%

kEffNet-B0 V2 16ch 623,226 15.5% 82,804,374 21.2% 92.61%
kEffNet-B0 V2 16ch no L 584,934 14.6% 77,356,802 19.8% 91.52%
kEffNet-B0 V2 16ch ReLU 623,226 15.5% 80,912,406 20.8% 91.16%

kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 93.67%
kEffNet-B0 V2 32ch no L 879,750 21.9% 112,684,706 28.9% 93.21%
kEffNet-B0 V2 32ch ReLU 950,650 23.7% 121,317,142 31.1% 92.00%

Table 6 shows the effect in accuracy when classifying the CIFAR-10 dataset with
EfficientNet-B0 and our kEffNet-B0 V2 32ch variant for 180 epochs instead of 50 epochs.
The additional training epochs assign slightly higher test accuracy to the baseline than to
our core variant. When adding horizontal flipping, our variant has slightly surpassed the
baseline results. Nevertheless, all three results can be considered similar to each other, but
our variant offers a significant saving in parameters and computations. Although the H
flipping doubles the computational cost of our core variant, it still remains only a fraction
(63.3%) of the baseline computational cost.

Table 6. Results obtained with the CIFAR-10 dataset after 180 epochs.

Model Parameters % Computations % Test acc.

EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 94.86%
kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 94.45%
kEffNet-B0 V2 32ch + H Flip 950,650 23.6% 246,418,220 63.3% 94.95%

3.2. Results on the Malaria Dataset

The Malaria dataset [40] has 27,558 cell images from infected and healthy cells sep-
arated into 2 classes. There is the same number of images for healthy and infected cells.
From the original 27,558 images set, we separated 10% of the images (2756 images) for
validation and another 10% for testing. On all training, validation, and test subsets, there
are 50% of healthy cell images. We quadruplicated the number of validation images by
flipping these images horizontally and vertically, resulting in 11,024 images for validation.

On this dataset, we tested our kEffNet-B0 with 2, 4, 8, 12, 16, and 32 channels per
group, as well as the baseline architecture, as shown in Table 7. Our variants have from
7.5% to 23.5% of the trainable parameters and from 15.7% to 42.2% of the computations
allocated by the baseline architecture. Although the worst classification accuracy was found
with the smallest variant (2ch), its classification accuracy is less than 1% inferior to the
best performing variant (16ch) and only 0.69% below the baseline performance. With only
8 channels per group, our method equals the baseline accuracy with a small portion of



Entropy 2022, 24, 1264 12 of 15

the parameters (10.8%) and computations (22.5%) required by the baseline architecture.
Curiously, our 32ch variant is slightly worse than the 16ch variant, but still better than the
baseline. It is an example that a rather low complexity of the input images may require less
channels per filter (and more parallel groups of filters), to optimally capture the relevant
features of images.

Table 7. Results obtained with the Malaria dataset after 75 epochs.

Model Parameters % Computations % Test acc.

EfficientNet-B0 baseline 4,010,110 100.0% 389,958,834 100.0% 97.39%
kEffNet-B0 V2 2ch 301,746 7.5% 61,196,070 15.7% 96.70%
kEffNet-B0 V2 4ch 344,570 8.6% 69,691,358 17.9% 96.95%
kEffNet-B0 V2 8ch 434,098 10.8% 87,725,254 22.5% 97.39%
kEffNet-B0 V2 12ch 524,026 13.1% 106,199,566 27.2% 97.31%
kEffNet-B0 V2 16ch 612,978 15.3% 124,672,934 32.0% 97.61%
kEffNet-B0 V2 32ch 940,402 23.5% 164,422,950 42.2% 97.57%

3.3. Results on the Colorectal Cancer Histology Dataset

The collection of samples in colorectal cancer histology dataset [39] contains 5000
150 × 150 images separated into 8 classes: adipose, complex, debris, empty, lympho, mu-
cosa, stroma, and tumor. Similar to what we did with the Malaria dataset, we separated
10% of the images for validation and another 10% for testing. We also quadruplicated the
number of validation images by flipping these images horizontally and vertically.

On this dataset, we tested our kEffNet-B0 with 2, 4, 8, 12, and 16 channels per group, as
well as the baseline architecture, as shown in Table 8. Similar to the Malaria dataset, higher
values of channels per group do not lead to better performance. In this case, the variants
with the highest classification accuracy are 4ch and 8ch, achieving 98.02% of classification
accuracy, outperforming the baseline accuracy in 0.41%. The 16ch variant has obtained the
same accuracy than the 2ch variant, but doubling the required resources. Again, it indicates
that the complexity of the images plays a role in the selection of the optimal number of
channels per group. In other words, simpler images may require less channels per group.
Unfortunately, the only method we know to find out this optimal value is performing
theses scanning experiments.

Table 8. Results obtained with the colorectal cancer dataset after 1000 epochs.

Model Parameters % Computations % Test acc.

EfficientNet-B0 baseline 4,017,796 100.0% 389,966,532 100.0% 97.61%
kEffNet-B0 V2 2ch 355,064 8.8% 61,203,768 15.7% 97.62%
kEffNet-B0 V2 4ch 397,888 9.9% 69,699,056 17.9% 98.02%
kEffNet-B0 V2 8ch 487,416 12.1% 87,732,952 22.5% 98.02%
kEffNet-B0 V2 12ch 531,712 13.2% 106,207,264 27.2% 97.22%
kEffNet-B0 V2 16ch 620,664 15.4% 124,680,632 32.0% 97.62%

4. Conclusions and Future Work

This paper presented an efficient scheme for decreasing the complexity of pointwise
convolutions in DCNNs for image classification based on interleaved grouped filters with
no divisibility constraints. From our experiments, we can conclude that connecting all input
channels from the previous layer to all filters is unnecessary: grouped convolutional filters
can achieve the same learning power with a small fraction of resources (1/3 of floating-
point computations, 1/4 of parameters). Our enhanced scheme avoids the divisibility
contraints, furter reducing the required resources (up to 10% less) while maintaining or
slightly surpassing the accuracy of our previous method.



Entropy 2022, 24, 1264 13 of 15

We have made ablation studies to obtain the optimal number of channels per group
for each dataset. For colorectal cancer dataset, this number is surprisingly low (4 channels
per group). On the other side, for CIFAR-10 the best results require at least 16 channels
per group. This fact indicates that the complexity of the input images affects the optimal
configuration of our sub-architecture.

As the main limitation of our method, it cannot determine the optimal number of chan-
nels per group automatically, according to the complexity of each pointwise convolutional
layer to be substituted and the complexity of input images. A second limitation is that
the same number of channels per group is applied to all pointwise convolutional layers of
the target architecture, regardless of the specific complexity of each layer. This limitation
could be easily tackled by setting Ch as a fraction of the total number of parameters of each
layer. This is a straightforward task for future research. Besides, we will apply our method
to different problems, such as instance and semantic image segmentation, developing an
efficient deep learning-based seismic acoustic impedance inversion method [42], object
detection, and forecasting.

Author Contributions: Conceptualization, J.P.S.S. and S.R.A.; methodology, J.P.S.S. and S.R.A.;
software, J.P.S.S.; validation, S.R.A.; formal analysis, S.R.A.; investigation, J.P.S.S.; resources, D.P.;
data curation, J.P.S.S.; writing—original draft preparation, J.P.S.S. and S.R.A.; writing—review and
editing, J.P.S.S., S.R.A. and M.A.-N.; visualization, J.P.S.S.; supervision, S.R.A., M.A.-N., H.R. and
D.P.; project administration, D.P.; funding acquisition, D.P. All authors have read and agreed to the
published version of the manuscript.

Funding: The Spanish Government partly supported this research through Project PID2019-105789RB-I00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used in this study are publicly available: CIFAR-10 [38], Col-
orectal cancer histology [39] and Malaria [40]. Software APIs are also publicly available: K-CAI [35] and
Keras [36]. Our source code and raw experiment results are publicly available: https://github.com/
joaopauloschuler/kEffNetV2, accessed on 1 September 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
DCNN Deep Convolutional Neural Network
NiN Network in Network

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in

Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red
Hook, NY, USA, 2012; pp. 1097–1105.

2. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [CrossRef]

3. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision— ECCV 2014; Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 818–833.

4. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings;
Bengio, Y., LeCun, Y., Eds.; 2015.

5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; IEEE Computer Society: Los Alamitos, CA, USA, 2015; pp. 1–9. [CrossRef]

https://www.cs.toronto.edu/~kriz/cifar.html
https://zenodo.org/record/53169
https://zenodo.org/record/53169
https://www.tensorflow.org/datasets/catalog/malaria
https://github.com/joaopauloschuler/k-neural-api
https://keras.io/
https://github.com/joaopauloschuler/kEffNetV2
https://github.com/joaopauloschuler/kEffNetV2
http://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/CVPR.2015.7298594


Entropy 2022, 24, 1264 14 of 15

6. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Los Alamitos,
CA, USA, 2016; pp. 770–778. [CrossRef]

7. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [CrossRef]

8. Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2014, arXiv:cs.NE/1312.4400.
9. Ioannou, Y.; Robertson, D.P.; Cipolla, R.; Criminisi, A. Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 5977–5986. [CrossRef]

10. Xie, S.; Girshick, R.B.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995.

11. Zhang, T.; Qi, G.; Xiao, B.; Wang, J. Interleaved Group Convolutions for Deep Neural Networks. arXiv 2017, arXiv:1707.02725.
12. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 6848–6856. [CrossRef]

13. Sun, K.; Li, M.; Liu, D.; Wang, J. IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks. In
Proceedings of the BMVC, Newcastle, UK, 3–6 September 2018.

14. Huang, G.; Liu, S.; Maaten, L.v.d.; Weinberger, K.Q. CondenseNet: An Efficient DenseNet Using Learned Group Convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp.
2752–2761. [CrossRef]

15. Yu, C.; Xiao, B.; Gao, C.; Yuan, L.; Zhang, L.; Sang, N.; Wang, J. Lite-HRNet: A Lightweight High-Resolution Network. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25
June 2021; pp. 10435–10445. [CrossRef]

16. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Int. Conf. Mach. Learn. 2019.
97, 6105–6114.

17. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; de Freitas, N. Predicting Parameters in Deep Learning. In NIPS’13, Proceedings of
the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, CA, USA, 5–10 December 2013; Curran
Associates Inc.: Red Hook, NY, USA, 2013; Volume 2; pp. 2148–2156.

18. Cheng, Y.; Yu, F.X.; Feris, R.S.; Kumar, S.; Choudhary, A.N.; Chang, S. An Exploration of Parameter Redundancy in Deep
Networks with Circulant Projections. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 2857–2865. [CrossRef]

19. Yang, W.; Jin, L.; Sile, W.; Cui, Z.; Chen, X.; Chen, L. Thinning of Convolutional Neural Network with Mixed Pruning. IET Image
Process. 2019, 13, 779–784. [CrossRef]

20. Kahatapitiya, K.; Rodrigo, R. Exploiting the Redundancy in Convolutional Filters for Parameter Reduction. In Proceedings of the
2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 1409–1419.
[CrossRef]

21. Liebenwein, L.; Baykal, C.; Carter, B.; Gifford, D.; Rus, D. Lost in Pruning: The Effects of Pruning Neural Networks beyond Test
Accuracy. Proc. Mach. Learn. Syst. 2021 , 3, 93–138.

22. LeCun, Y.; Denker, J.; Solla, S. Optimal Brain Damage. In Advances in Neural Information Processing Systems; Touretzky, D., Ed.;
Morgan-Kaufmann: Burlington, MA, USA, 1989; Volume 2.

23. Reed, R. Pruning algorithms-a survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef] [PubMed]
24. Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.; Huang, J.; Zhu, J. Discrimination-aware Channel Pruning for Deep

Neural Networks. In Advances in Neural Information Processing Systems 31; Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; pp. 881–892.

25. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4
May 2016.

26. Baykal, C.; Liebenwein, L.; Gilitschenski, I.; Feldman, D.; Rus, D. Data-Dependent Coresets for Compressing Neural Networks
with Applications to Generalization Bounds. In Proceedings of the International Conference on Learning Representations, New
Orleans, LA, USA, 6–9 May 2019.

27. Liebenwein, L.; Baykal, C.; Lang, H.; Feldman, D.; Rus, D. Provable Filter Pruning for Efficient Neural Networks. In Proceedings
of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

28. Schuler, J.; Romaní, S.; Abdel-nasser, M.; Rashwan, H.; Puig, D. Grouped Pointwise Convolutions Significantly Reduces Parameters in
EfficientNet; IOS Press: Amsterdam, The Netherlands, 2021 ; pp. 383–391. [CrossRef]

29. Schwarz Schuler, J.P.; Romani, S.; Abdel-Nasser, M.; Rashwan, H.; Puig, D. Grouped Pointwise Convolutions Reduce Parameters
in Convolutional Neural Networks. MENDEL 2022, 28, 23–31. [CrossRef]

30. Wang, X.; Kan, M.; Shan, S.; Chen, X. Fully Learnable Group Convolution for Acceleration of Deep Neural Networks. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; IEEE Computer Society: Los Alamitos, CA, USA, 2019; pp. 9041–9050. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.633
http://dx.doi.org/10.1109/CVPR.2018.00716
http://dx.doi.org/10.1109/CVPR.2018.00291
http://dx.doi.org/10.1109/CVPR46437.2021.01030
http://dx.doi.org/10.1109/ICCV.2015.327
http://dx.doi.org/10.1049/iet-ipr.2018.6191
http://dx.doi.org/10.1109/WACV48630.2021.00145
http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504
http://dx.doi.org/10.3233/FAIA210158
http://dx.doi.org/10.13164/mendel.2022.1.023
http://dx.doi.org/10.1109/CVPR.2019.00926


Entropy 2022, 24, 1264 15 of 15

31. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941.
32. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. JMLR Workshop Conf. Proc.

2010, 9, 249–256.
33. Shorten, C.; Khoshgoftaar, T. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 1–48. [CrossRef]
34. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [CrossRef]
35. Schuler, J.P.S. K-CAI NEURAL API. 2021. Available online: https://zenodo.org/record/5810093#.YxnEvbRBxPY (accessed on 4

September 2022)
36. Chollet, F. Keras. 2015 Available online: https://keras.io (accessed on 1 January 2022 ).
37. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. Software. 2015. Available online: tensorflow.org (accessed on 1
January 2022 ).

38. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON,
Canada, 2009.

39. Kather, J.N.; Zöllner, F.G.; Bianconi, F.; Melchers, S.M.; Schad, L.R.; Gaiser, T.; Marx, A.; Weis, C.A. Collection of Textures in Colorec-
tal Cancer Histology. 2016. Available online: https://zenodo.org/record/53169#.YxnFTLRBxPY (accessed on 1 January 2022).

40. Rajaraman, S.; Antani, S.; Poostchi, M.; Silamut, K.; Hossain, M.; Maude, R.; Jaeger, S.; Thoma, G. Pre-trained convolutional
neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 2018, 6,
e4568. [CrossRef] [PubMed]

41. Torralba, A.; Fergus, R.; Freeman, W.T. 80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1958–1970. [CrossRef] [PubMed]

42. Shahbazi, A.; Monfared, M.S.; Thiruchelvam, V.; Fei, T.K.; Babasafari, A.A. Integration of knowledge-based seismic inversion and
sedimentological investigations for heterogeneous reservoir. J. Asian Earth Sci. 2020, 202, 104541. [CrossRef]

http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/WACV.2017.58
https://zenodo.org/record/5810093#.YxnEvbRBxPY
https://keras.io
tensorflow.org
https://zenodo.org/record/53169#.YxnFTLRBxPY
http://dx.doi.org/10.7717/peerj.4568
http://www.ncbi.nlm.nih.gov/pubmed/29682411
http://dx.doi.org/10.1109/TPAMI.2008.128
http://www.ncbi.nlm.nih.gov/pubmed/18787244
http://dx.doi.org/10.1016/j.jseaes.2020.104541

	Introduction
	Methodology
	Mathematical Ground for Regular Pointwise Convolutions
	Definition of Grouped Pointwise Convolutions
	Improved Scheme for Reducing the Complexity of Pointwise Convolutions
	Definition of Layer K
	Interleaving Stage
	Definition of Layer L
	Joining of Layers
	Computing the Number of Parameters
	Activation Function
	Implementation Details
	Horizontal Flip

	Results and Discussion
	Results on the CIFAR-10 Dataset
	Results on the Malaria Dataset
	Results on the Colorectal Cancer Histology Dataset

	Conclusions and Future Work
	References

