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Abstract: Type 2 diabetes mellitus (T2DM) is a metabolic disease caused by multiple etiologies, the
development of which can be divided into three states: normal state, critical state/pre-disease state,
and disease state. To avoid irreversible development, it is important to detect the early warning
signals before the onset of T2DM. However, detecting critical states of complex diseases based on
high-throughput and strongly noisy data remains a challenging task. In this study, we developed
a new method, i.e., degree matrix network entropy (DMNE), to detect the critical states of T2DM
based on a sample-specific network (SSN). By applying the method to the datasets of three different
tissues for experiments involving T2DM in rats, the critical states were detected, and the dynamic
network biomarkers (DNBs) were successfully identified. Specifically, for liver and muscle, the critical
transitions occur at 4 and 16 weeks. For adipose, the critical transition is at 8 weeks. In addition,
we found some “dark genes” that did not exhibit differential expression but displayed sensitivity in
terms of their DMNE score, which is closely related to the progression of T2DM. The information
uncovered in our study not only provides further evidence regarding the molecular mechanisms of
T2DM but may also assist in the development of strategies to prevent this disease.

Keywords: Type 2 diabetes mellitus (T2DM); dynamic network biomarker (DNB); critical state;
sample specific network (SSN); network entropy; dark genes

1. Introduction

The development of many diseases, including T2DM, can be regarded as a nonlinear
dynamic process which is generally divided into three states: normal state, pre-disease
state/critical state, and disease state. The normal state is stable, characterized by stability
and robustness, whereby any changes occur slowly. The disease state is a new stable state
that represents a phase of deterioration in which more obvious signs and symptoms of the
disease appear and many patients begin to receive treatment, but it is difficult to return
to the normal state [1]. The pre-disease state/critical state corresponds to a critical point
before the system transitions to an irreversible disease state and is accompanied by a drastic
change in system dynamics [2]. In this state, the system is usually reversible, and reversion
to the normal state is possible if there is appropriate treatment. Many diseases, including
T2DM, are diagnosed upon reaching the disease stage. Therefore, it is important to identify
the pre-disease state/critical state. However, this is a difficult task because there may be
little difference between the normal and the pre-disease state/critical state to permit their
clear distinction [3].

Traditional biomarkers can be used to distinguish disease states from normal states
mainly based on the differential expression of individual molecules or a group of molecules,
but such biomarkers cannot be used to detect the pre-disease state/critical state owing to
their static nature [2]. In order to solve the challenge of detecting critical points, a new
concept, called dynamic network biomarker (DNB), was proposed [3]. The expression
of DNBs reflects the presence or severity of the disease state, and they are required to
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have constant values that are different in the respective disease and normal states such
that they can be used as a signal for detection in the early stages of development of a
complex disease. When a biological system in a normal state approaches the critical state,
there are three statistical conditions that allow detection of a critical point based on DNBs:
correlations between any two members of a DNB group rapidly increase, correlations
between one member of a DNB group and any other non-DNB molecule rapidly decrease,
and standard deviations of the variables in the DNB group drastically increase [4]. Based
on these three necessary conditions, the DNB method can be used to identify a critical
state. At present, research on combining the DNB method and information theory to detect
the critical state of complex diseases is attracting attention. Based on the hidden Markov
model (HMM), an inconsistent index algorithm was proposed to identify the critical state
before disease deterioration [5]. Single-cell graph entropy (SGE) can explore the gene–
gene associations among cell populations based on single-cell RNA sequencing data [6].
The single-sample-based Jensen–Shannon divergence (sJSD) method is used to detect the
early-warning signals of complex diseases before critical transitions based on individual
single-sample data [7]. The temporal network flow entropy (TNFE) method, which is based
on network fluctuation of molecules, can detect the critical states of complex diseases on
the basis of each individual [8].

In this study, we propose a new method, i.e., the degree matrix network entropy
(DMNE) algorithm, based on sample-specific network (SSN) and network entropy. Dai
et al. presented a new method to construct a cell-specific network (CSN) for each single
cell, which transforms the data from “unstable” gene expression form to “stable” gene
association form on a single-cell basis. This can also be directly applied to construct
an individual network of each single sample [9]. Therefore, we applied this method to
construct an SSN for the sample data and propose a method combining DMNE with
network entropy that does not use single-cell data. Firstly, SSNs of reference samples and
perturbed samples are constructed, respectively, and the network degree matrix (NDM) and
local network are obtained. Then, the difference between the DMNE of the reference sample
and the perturbed sample is calculated to quantify the differential network information flow.
Finally, the DMNE score is calculated to characterize the molecular collective fluctuation
or network fluctuation caused by case samples. By transforming floating gene expression
datasets into stable network entropy, the DMNE method provides a new method to detect
the critical state based on the SSN, which has the following advantages: (i) By calculating
the DMNE score based on the difference of the network entropy at each stage, the DMNE
method exhibits the differential changes in diseases at the network level. (ii) Based on
the DMNE method, the critical states can be successfully detected, and the DNBs of the
critical state can be effectively identified. (iii) Based on the DMNE method, “dark genes”
are found, which play important roles during the development of T2DM, and drug targets
against these are obtained.

2. Materials and Methods
2.1. Data Progression and Functional Analysis

The DMNE method was applied to detect the critical transitions during T2DM
development and progression accompanying insulin resistance in adipose tissue, gas-
trocnemius muscle, and liver for rats (diabetes rats: Goto–Kakizaki (GK) rats; control
rats: Wistar–Kyoto (WKY) rats). The high-throughput experimental datasets were down-
loaded from the NCBI GEO database (access ID: GSE13268, GSE13269, and GSE13270)
(www.ncbi.nlm.nih.gov/geo (accessed on 1 October 2021)), comprising time-course gene
expression data obtained from age-specific rats corresponding to well-designed time series
(five samples each from 4, 8, 12, 16, and 20 weeks). These experimental datasets were
provided by Almon et al. [10]. All of the GEO samples we used are provided in Table A1. In
addition, pancreatic adenocarcinoma (PAAD) survival data and the gene expression values
in different samples were downloaded from the cancer genome atlas (TCGA) database
(https://cancergenome.nih.gov/ (accessed on 1 March 2022)).

www.ncbi.nlm.nih.gov/geo
https://cancergenome.nih.gov/
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The enrichment analysis of DNBs is based on Gene Ontology Consortium [11] (GOC, ht
tp://geneontology.org (accessed on 1 February 2022)), DAVID Bioinformatics Resources [12]
(https://david.ncifcrf.gov/ (accessed on 1 February 2022)), and Circos [13] (http://ww
w.circos.ca/ (accessed on 20 February 2022)). Protein–protein interaction (PPI) networks
were drawn by STRING (https://string-db.org/ (accessed on 20 February 2022)) and the
client software Cytoscape (https://cytoscape.org/ (accessed on 25 February 2022)). The
drug targets were downloaded from DrugBank [14] (https://go.drugbank.com/ (accessed
on 20 January 2022)), Therapeutic Target Database [15] (TTD, http://db.idrblab.net/ttd/
(accessed on 20 January 2022)), and Pharmacogenomics Knowledgebase [16] (PharmGKB,
https://www.pharmgkb.org/ (accessed on 20 January 2022)).

2.2. Theoretical Background

DNBs form an observable subnetwork or molecular group in a disease system or
disease network. They can be used to identify the critical state/pre-disease state before the
sudden deterioration of complex diseases [17]. When the system approaches the critical
state from the normal state, DNB molecules (i.e., genes or proteins) have the following
three statistical properties [8]:

1. The correlation between any two members of a DNB group rapidly increases;
2. The correlation between one member in a DNB group and any other non-DNB

molecule sharply decreases;
3. The standard deviation for any member in the DNB group drastically increases.

These theoretical results have allowed many achievements in detecting critical points
and in discussing related biological processes. According to these three properties, DNBs
can be reliably identified, and significant early warning signals can be extracted.

The CSN method [9] provides a promising strategy for analyzing genes and gene
associations at the single-cell level. This can also be applied to non-single-cell datasets for
constructing an individual network of each single sample in a similar way [9]. We thus
applied CSN to each sample to construct an SSN of reference samples (the healthy control
samples) and perturbed samples (the diabetic samples), respectively. Therefore, network
fluctuations can be quantified based on the differences. We propose a network entropy
algorithm based on SSN to predict the critical state during the development of T2DM.

2.3. Data Preprocessing

We analyzed three preprocessed gene expression datasets measured in adipose, gas-
trocnemius muscle, and liver from diabetic rats (GK) and control rats (WKY) provided the
same normal diet. The datasets were downloaded from the NCBI GEO database (access ID:
GSE13268, GSE13269, and GSE13270). The three datasets were not raw data, and they were
provided by Almon et al. [10]. The datasets comprised 31,099 probes, measured using the
Affymetrix Microarray Suite 5.0 (Affymetrix), for 25 WKY controls and 25 spontaneously
diabetic GK rats at 4, 8, 12, 16, and 20 weeks of age [10].

Then, we transformed the downloaded matrixes into required gene expression ma-
trixes (GEMs) through ID conversion and the deletion of duplicate genes and null values.
In the case of multiple probes corresponding to the same gene, the values were individually
averaged for each to obtain three GEMs containing 15,246, 15,343, and 15,246 genes. Finally,
the logarithm log(1 + x) was applied to normalize the three GEMs.

2.4. Algorithm to Detect the Tipping Point and Identify DNBs of T2DM Based on DMNE

After extracting some reference samples (samples from a normal cohort that are
regarded as the background that represents the healthy or control individuals), we then
developed and applied the following algorithm to detect the tipping point using the data
of the diabetic case samples and healthy control samples. The algorithm flow is shown in
Figure 1.

http://geneontology.org
http://geneontology.org
https://david.ncifcrf.gov/
http://www.circos.ca/
http://www.circos.ca/
https://string-db.org/
https://cytoscape.org/
https://go.drugbank.com/
http://db.idrblab.net/ttd/
https://www.pharmgkb.org/
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Figure 1. Schematic illustration of the degree matrix network entropy (DMNE) algorithm. (i) Con-
struct the SSN of reference samples (the healthy control samples) and perturbed samples (the diabetic
samples), respectively. (ii) Extract degree matrix and local network. (iii) Calculate the node probabil-
ity for every gene by fitting a Gaussian distribution. (iv) Calculate the network entropy of reference
samples and perturbed samples. (v) Calculate the differential network entropy based on the degree
matrix to obtain DMNE score.

The steps of the degree matrix network entropy (DMNE) algorithm are specified as
follows:

[Step 1] Construct the SSN of reference samples and perturbed samples, respectively.
Based on n reference samples {S1, S2, . . . , Sn}, the RSSN (the SSN of reference sample)

is constructed as follows.
Firstly, we normalize the initial gene expression matrix with m rows/genes and n

columns/samples and average the expression for the same gene in n samples. Secondly,
we plot scatter diagrams for every two genes in a rectangular coordinate system, where
the horizontal axis and the vertical axis are the expression value Ei of gene gi and the
expression value Ej of gene gj, respectively, and these two genes constitute a gene pair
(gi, gj). m genes lead to m(m − 1)/2 scatter diagrams. Then, we draw two boxes near Ei
and Ej. According to the research of Dai et al. [9], the influence of box size and p value
in different datasets on the clustering effect is tested from the viewpoint of clustering. It
is indicated that the optimum box size is about 0.1, and the optimum p value is about
0.01 on average, which are set as the default parameters of the CSN method. The specific
test results are given in Supplementary Materials Section A. We choose 0.1 n, which is
proportional to the number of samples n, and we can adjust the parameters according to
specific needs. The boxes are drawn according to a predetermined integer, and the two
boxes overlap to obtain the third box. The value is obtained by calculating the number of
points (samples) in the third box. Whether there is an edge between the two genes in the
scatter diagram of genes gi and gj is determined by the following statistical dependence
index:

ri,j =
n(Ei, Ej)

n
− n(Ei)

n
n(Ej)

n
(1)

where n(Ei), n(Ej) and n(Ei, Ej) represent the number of points (samples) in the vertical
box, horizontal box, and overlapping box, respectively. If the statistical dependency index
is greater than zero, there is an edge between gi and gj; otherwise, there is no edge. That is,
the RSSN is constructed based on the specific network of the reference samples.
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Similarly, the case samples at different time points t = T are added to the reference
samples to obtain the disturbed samples {S1, S2, . . . , Sn, ScaseT}, and the PSSNT (the SSN
of the perturbed samples at time point T) can be constructed.

[Step 2] Extract degree matrix and local network.
The NDM of reference samples and disturbed samples can be obtained from RSSN

and PSSNT , respectively.
Extract each reference local network RLNd(d = 1, . . . , l) from RSSN. RLNd is com-

posed of genes gd
i (i = 1, 2, . . . , Md) (the central gene is gd

1 , and the rest are neighborhood
genes).

As the genes in the reference sample and the perturbed sample are the same, simi-
larly, the perturbed local networks PLNT

d(d = 1, . . . , l) are extracted from PSSNT . The
PLNT

d is composed of genes gd
i (i = 1, 2, . . . , Md) (the central gene is gd

1 , and the rest are
neighborhood genes).

[Step 3] Calculate the node probability for every gene by fitting a Gaussian distribution.
Based on the NDM of reference samples, the Gaussian distributions of each gene

gd
i (i = 1, 2, . . . , Md) in local network RLNd are fitted. Node probabilities pre f erence(xi

d) of
gene gd

i are calculated as follows:

pre f erence(xi
d) =

1
σ
√

2π

∫ xi
d

−∞ e
−(u−µir

d)
2

2(σir
d)

2
du

Md

∑
i=1

1
σ
√

2π

∫ xi
d

−∞ e
−(u−µir

d)
2

2(σir
d)

2
du

, (2)

where xi
d is the degree value from NDM of gene gd

i in the reference sample, and µir
d and

σir
d are the mean value and standard deviation of degree value for gene gd

i in the reference
samples, respectively.

Similarly, based on the NDM of perturbed samples, node probabilities pperturbed(xiT
d)

of gene gd
i are, respectively, calculated as follows:

pperturbed(xiT
d) =

1
σ
√

2π

∫ xiT
d

−∞ e

−(u−µip
d)

2

2(σip
d)

2
du

Md

∑
i=1

1
σ
√

2π

∫ xiT
d

−∞ e

−(u−µip
d)

2

2(σip
d)

2
du

, (3)

where xiT
d is the degree value from NDM of gene gd

i in the perturbed sample at time point
t = T, and µip

d and σip
d are the mean value and standard deviation of the degree value for

gene gd
i in perturbed samples at time t = T, respectively.

[Step 4] Calculate the network entropy of RSSN and PSSNT .
Firstly, the network entropy of RLNd(d = 1, . . . , l) is calculated as follows:

Hn(xi
d) =

−∑Md

i=1 xi
d pre f erence(xi

d) log(xi
d pre f erence(xi

d))

Md . (4)

Then, the network entropy of the global network of RSSN can be calculated as

Hn =
∑l

d=1 Hn(xi
d)

l
. (5)

The network entropy of PLNT
d(d = 1, . . . , l) is
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HT
n+1(xiT

d) =
−∑Md

i=1 xiT
d pperturbed(xiT

d) log(xiT
d pperturbed(xiT

d))

Md . (6)

Then, the network entropy of the global network of PSSNT is

HT
n+1 =

∑l
d=1 Hn(xiT

d)

l
. (7)

[Step 5] Calculate the DMNE score to quantify the network differences caused by the
perturbed sample.

The DMNE of reference samples and perturbed samples is calculated as follows:

∆HT =
∣∣∣HT

n+1 − Hn
∣∣∣ (8)

where the ∆HT score reflects the global perturbation caused by the case samples at each
time point t = T. The higher the score, the greater the difference between the case samples
and the reference samples. The sudden increase in ∆HT can be considered as an early
warning signal of important changes in the process of disease progression.

3. Results
3.1. Detecting the Critical State of T2DM

Here, we apply the DMNE method to detect the critical transitions during T2DM
development and progression accompanying insulin resistance in rat adipose, gastrocne-
mius muscle, and liver corresponding to the GSE13268, GSE13269, and GSE13270 datasets,
respectively, which each contain 25 reference and 25 case samples. In the case samples,
there are five samples at each stage. At each stage, the DMNE score is calculated. The top
200 genes (1.5% of all expressed genes) with the highest DMNE score at the critical state
are regarded as DNBs.

3.1.1. The Critical State of GSE13268

As shown in Figure 2a, the dramatic increase in the DMNE score for GK rat adipose
appeared at 8 weeks, which indicates the upcoming critical transition. To show the DMNE
scores in a local view, the landscape of the DMNE scores of DNBs is illustrated in Figure 2d.
It can be seen that around 8 weeks, there is a group of genes whose DMNE scores abruptly
increase. This critical phenomenon results from the drastic increase in the correlations be-
tween molecules in this group when the system approaches the tipping point. In Figure 2g,
we illustrate the evolution of the top DMNE gene group/module, i.e., the protein–protein
interaction (PPI) network of DNBs. This figure shows that a significant change in the
network structure occurs at 8 weeks, signaling the critical transition into disease state from
the molecular network level. The DNBs are given in Supplementary Materials Table S1.
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Figure 2. Identification of the critical states of T2DM. (a) DMNE score curve of GSE13268, for rat
adipose tissue, during T2DM, which shows the critical state around 8 weeks. (b) DMNE score curve
of GSE13269, for rat gastrocnemius muscle tissue, during T2DM, which shows the critical states
around 4 and 16 weeks. (c) DMNE score curve of GSE13270, for rat liver tissue, during T2DM, which
shows the critical states around 4 and 16 weeks. (d–f) The dynamic changes in degree matrix network
entropy (DMNE) scores demonstrate the landscape of network entropy. (g–i) Dynamic evolution
of dynamic network biomarkers (DNBs) of three tissues for T2DM, where the red nodes represent
DNBs and the blue nodes represent non-DNBs. In (h), it can be seen that the DNBs are more active
and the network structure undergoes significant changes at 4 and 16 weeks. By using the DMNE
approach, the early warning signals before the critical transition into disease state can be detected by
taking a network perspective.
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3.1.2. The Critical State of GSE13269

As shown in Figure 2b, two critical transitions are detected for muscle tissue during
T2DM. The dramatic increases in the DMNE score for GK rats appeared at 4 and 16 weeks,
which indicate the upcoming critical transitions. To show the DMNE scores in a local view,
the DMNE scores of DNBs are illustrated in Figure 2e. This figure shows that around
4 and 16 weeks, there is a group of genes whose DMNE scores abruptly increase. This
critical phenomenon results from the drastic increase in the correlations between molecules
in this group when the system approaches the tipping point. In Figure 2h, we illustrate
the evolution of the top DMNE gene group/module, i.e., protein–protein interaction
(PPI) network of DNBs. This figure shows that the significant changes in the network
structure occur at 4 and 16 weeks, signaling the critical transitions into disease state from
the molecular network level. The DNBs are given in Supplementary Materials Table S1.

3.1.3. The Critical State of GSE13270

As shown in Figure 2c, there are also two critical transitions during T2DM consistent
with GSE13269. The dramatic increases in the DMNE score for GK rat livers appeared at 4
and 16 weeks, which indicate the upcoming critical transitions. To show the DMNE scores
in a local view, the DMNE scores of DNBs are illustrated in Figure 2f. It can be seen that
around 4 and 16 weeks, there is a group of genes whose DMNE scores abruptly increase.
This critical phenomenon results from the drastic increase in the correlations between
molecules in this group when the system approaches the tipping point. In Figure 2i, we
illustrate the evolution of the top DMNE gene group/module, i.e., the protein–protein
interaction (PPI) network of DNBs. This figure shows that the significant changes in the
network structure occur at 4 and 16 weeks, signaling the critical transitions into disease
state from the molecular network level. The DNBs are given in Supplementary Materials
Table S1.

3.2. Tissue-Specific Analysis

To confirm the significant relation between tissue-specific DNBs and T2DM progres-
sion, the GO analysis and KEGG enrichments of DNBs are conducted for each DNB to
categorize the genes participating in different biological functions or pathways, as shown
in Tables 1–3 and Figure 3. In addition, “housekeeping” genes are continuously highly
expressed, so their role in any disease is negligible. We found some “housekeeping” genes
contained in the DNBs we obtained, such as GADPH, Ldha, and Arhgdia [18]. These genes
are not considered in the subsequent analysis [18].

Table 1. Enrichment results for DNBs based on all genes of the species in GSE13268 (adipose tissue).

Tissue Case Term p-Value Term Name

Adipose Adipose
8 weeks

GO:0033993 3.37 × 10−9 Response to lipid
GO:0050896 1.33 × 10−8 Response to stimulus
GO:0048583 2.51 × 10−5 Regulation of response to stimulus
GO:0006629 0.0238 Lipid metabolic process
GO:0050796 0.0238 Regulation of insulin secretion

GO:0001932 0.0049 Regulation of protein
phosphorylation

GO:0043434 0.0124 Response to peptide hormone
GO:0070372 0.0159 Regulation of erk1 and erk2 cascade
GO:0006874 0.0235 Cellular calcium ion homeostasis
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Table 2. Enrichment results for DNBs based on the genes that passed the previous filtering steps in
GSE13268 (adipose tissue).

Tissue Case Term p-Value Term Name

Adipose Adipose
8 weeks

GO:0032496 0.004939298 Response to lipopolysaccharide
GO:0019901 0.008557741 Protein kinase binding
GO:0004175 0.012946747 Endopeptidase activity
GO:0055114 0.013323312 Oxidation–reduction process
GO:0032868 0.016048825 Response to insulin
GO:0033700 0.01966288 Phospholipid efflux
GO:0051384 0.020031683 Response to glucocorticoid
GO:0048545 0.031308927 Response to steroid hormone
GO:0006954 0.031444423 Inflammatory response

GO:0008203 0.035288946 Positive regulation of B cell receptor
signaling pathway

GO:0055088 0.03504665 Lipid homeostasis

GO:0050729 0.038857846 Positive regulation of inflammatory
response

GO:0008203 0.047115437 Cholesterol metabolic process

Table 3. Enrichment results for DNBs of GSE13269 (gastrocnemius muscle tissue) and GSE13270
(liver tissue) datasets.

Tissue Case Term p-Value Term Name

Muscle

Muscle
4 weeks

GO:0006936 0.001436732 Muscle contraction
GO:0006096 0.005358956 Glycolytic process
GO:0016504 0.011881481 Peptidase activator activity
GO:0009749 0.013277291 Response to glucose
GO:0031295 0.019842374 T cell co-stimulation
GO:0071333 0.03156758 Cellular response to glucose stimulus
GO:0042593 0.048961141 Glucose homeostasis

rno00190 0.019507611 PI3K-Akt signaling pathway

Muscle
16 weeks

GO:0052547 0.019261847 Regulation of peptidase activity
GO:0042326 0.021460151 Negative regulation of phosphorylation
GO:0005975 0.017537912 Carbohydrate metabolic process
GO:0006096 0.000947641 Glycolytic process
GO:0031295 0.02116544 T cell co-stimulation
GO:0042176 0.037110591 Regulation of protein catabolic process

rno04066 0.007510911 HIF-1 signaling pathway
rno04151 0.006275621 PI3K-Akt signaling pathway

Liver

Liver
4 weeks

GO:0006954 0.001396509 Inflammatory response
GO:0009725 0.002627081 Response to hormone
GO:0016491 0.002701852 Oxidoreductase activity
GO:0003824 0.013755671 Catalytic activity
GO:0070555 0.014842206 Response to interleukin-1
GO:0033993 0.027356508 Response to lipid

rno00980 0.017258367 Metabolism of xenobiotics by cytochrome
P450

rno04933 0.027963125 AGE-RAGE signaling pathway in diabetic
complications

Liver
16 weeks

GO:0001889 0.00703339 Liver development
GO:0008289 0.00291932 Lipid binding
GO:0050777 0.005409903 Negative regulation of immune response
GO:0035693 0.014337447 NOS2-CD74 complex
GO:0006776 0.028470377 Vitamin A metabolic process

rno03320 0.003125368 PPAR signaling pathway

rno04933 0.006912547 AGE-RAGE signaling pathway in diabetic
complications

rno00982 0.008912531 Drug metabolism—cytochrome P450



Entropy 2022, 24, 1249 11 of 23Entropy 2022, 24, x FOR PEER REVIEW 11 of 23 
 

 

 

Figure 3. Cont.



Entropy 2022, 24, 1249 12 of 23Entropy 2022, 24, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 3. The dynamic network biomarkers (DNBs) of GSE13268, involving rat adipose tissue, are
involved in important biological processes of T2DM. (a) All Rattus norvegicus genes as background.
(b) The genes that passed the previous filtering steps as background. The left side of the outer ring
represents the detected DNB members, and the right side represents detailed biological processes
in which these genes are involved. In the inner ring, the color and width of links indicate diverse
enrichment pathways and significant levels of gene functions, respectively.
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For every dataset, we use two kinds of GO backgrounds for analysis, one of which
includes all Rattus norvegicus genes, and the other is only the genes that pass the previous
filtering steps (the genes in the NDM). We show the two results of GSE13268 in Tables 1
and 2, which are analyzed separately. For the GSE13269 and GSE13270 datasets, we only
show the results for genes that passed the previous filtering steps as background in Table 3.
The results for all genes in GSE13269 and GSE13270 are in Supplementary Materials Table
S5 and Section S6.

3.2.1. Analysis of GSE13268

For GK rat adipose, the enrichment results of DNBs based on all genes of the species
are provided in Table 1. The biological processes at 8 weeks mainly include response to
lipid, stimulation, and insulin secretion regulation. Insulin resistance and inflammation are
linked with T2DM and related diseases. Abnormal insulin secretion causes hyperglycemia,
which will stimulate the development of hyperinsulinemia, reduce the number of insulin
receptors, and aggravate insulin resistance [19]. Moreover, insulin resistance in T2DM is
accompanied by the dysfunction of glucose and lipid metabolism as well as protein biosyn-
thesis. Therefore, the related biological processes of DNB genes on T2DM also include the
regulation of protein phosphorylation and the response to peptide hormones. For cellular
calcium ion homeostasis, calcium ion participates as an activator of lipid metabolism [2].
For regulation of the erk1 and erk2 cascade, the increase in DPP-4 content in diabetic
mice specifically activates the ERK1/2 and NF-κB signaling pathways and promotes the
calcification of their aortic vessels [20]. Renal artery calcification can enhance progressive
renal damage in rats with T2DM nephropathy, further leading to hyperlipidemia [21,22].

For some DNB genes, NOS3 polymorphisms are associated with the progression
of kidney and cardiovascular disease in Type 2 diabetic patients. FABP1 regulates the
absorption and transportation of fatty acids in the liver by promoting the transportation,
storage, and utilization of fatty acids and their acyl-CoA derivatives. The overexpression
of FABP1 can disrupt the clearance function in autophagy by inhibiting lysosome functions
(including lysosomal protein decomposition and lysosomal acidification maintenance),
which promotes liver steatosis [23]. The enzyme subunit expressed by the mitochondrial
ND3 gene is an important part of respiratory chain complex I. Deficiency of the ND3 gene
in β cells will lead to decreased respiratory chain complex I activity, which will result in
islet β cell dysfunction and allow for the possibility of developing diabetes [24].

The enrichment results for DNBs based on the genes that pass the previous filtering
steps as background are presented in Table 2. The enrichment pathways represented by
DNBs mainly include response to lipopolysaccharide, protein kinase binding, endopepti-
dase activity, oxidation–reduction process, and response to insulin. Statistically significant
enrichment is observed in all cases, with p values less than 0.05. The relationship between
abnormal insulin secretion and T2DM has been explained in previous analyses. Here, the
results for response to lipopolysaccharide and protein kinase binding are the same as in the
above analysis [19]. In addition, we also obtained new pathways, such as inflammatory
response. Either in tissue-specific analysis or in cross-tissue analysis, lipid metabolism that
appears to be abnormal or inflammatory is a common functional cascade associated with
T2DM [2].

Comparing the analysis results against two different backgrounds, it can be seen that
although there are some differences in the pathways identified through enrichment, the
types of pathways are basically the same. The DNBs of adipose tissue are sensitive to
metabolic processes and lipid responses.

By setting two different backgrounds for analysis, both demonstrate that the DNBs
obtained by DMNE are closely related to the development of T2DM.

3.2.2. Analysis of GSE13269

For GK rat muscle, the related biological processes at 4 weeks mainly include muscle
contraction, glycolytic process, peptidase activator activity, response to glucose, T cell co-
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stimulation, cellular response to glucose stimulus, glucose homeostasis, and the PI3K/Akt
signaling pathway, which are provided in Table 3. The biological processes at 16 weeks
mainly include regulation of peptidase activity, negative regulation of phosphorylation, car-
bohydrate metabolic process, glycolytic process, T cell co-stimulation, regulation of protein
catabolic process, the HIF-1 signaling pathway, and the PI3K/Akt signaling pathway, which
are also provided in Table 3. B/T cells actively participate in the inflammatory response
in the first critical period for muscle tissues [25,26]. For the PI3K/Akt signaling pathway,
the gene Sirt1 participates in diabetic myocardial injury and the occurrence and develop-
ment of early diabetic cardiomyopathy by negatively regulating the PI3K/Akt/MTOR
signaling pathway [27]. Through cell transfection and other experiments, previous studies
have shown that the HIF-1α/KIM1 signaling pathway can participate in the process of
renal fibrosis in diabetic nephropathy by regulating the KIM1 expression in renal tubular
epithelial cells under a high-glucose environment. HIF-1α is the key transcription factor of
oxygen homeostasis regulation, which can make the body adapt to the external environ-
ment oxygen by regulating the expression of target genes. The expression levels of HIF-1α,
KIM1, and COL-1mRNA and protein controlled by them in the kidneys of diabetic rats are
significantly increased, suggesting that the diabetic nephropathy model is accompanied
by changes in the HIF-1α/KIM1 pathway in kidneys [28]. For some DNB genes, PRDX2
has been found to participate in the oxidative stress process through a variety of signaling
pathways. The environment of hypoxia that it induces leads to an increase in reactive
oxygen species. In order to survive in a high level of reactive oxygen species, cells need to
increase antioxidant levels, so the expression of related factors, including PRDX2 protein,
is altered. Previous studies suggest that PRDX2 overexpression can prevent pancreatic
cell apoptosis induced by oxidative stress and reduce the risk of developing diabetes [29].
Some studies [30,31] have suggested that SPARC is an autocrine and/or paracrine factor of
adipose tissue that can inhibit fat formation. Other studies [32] have shown that insulin
can increase the expression of SPARC, which can increase the phosphorylation of AKT and
PI3-K, indicating that SPARC may be involved in insulin signaling pathways [33].

3.2.3. Analysis of GSE13270

For GK rat liver, the biological processes at 4 weeks mainly include inflammatory
response, response to hormone, oxidoreductase activity, catalytic activity, response to
interleukin-1, response to lipid, and metabolism of xenobiotics by cytochrome P450 and the
AGE/RAGE signaling pathway in diabetic complications, which are provided in Table 3.
The biological processes at 16 weeks mainly include liver development, lipid binding,
negative regulation of immune response, the NOS2-CD74 complex, vitamin A metabolic
process, the PPAR signaling pathway, and the AGE/RAGE signaling pathway in diabetic
complications, which are also provided in Table 3. In the first critical state, the metabolism
of xenobiotics by the cytochrome P450 pathway plays an important role in the oxidation
of organic substances, whose involved enzymes in liver could generally act as metabolic
intermediates, e.g., lipids and steroid hormones [34,35]. Vitamin A and its metabolites can
inhibit the expression of resting and activated pancreatic stellate cells α-SMA [36]. The
peroxisome proliferator-activated receptors (PPARs) modulate several biological processes
that are perturbed in obesity, including inflammation, lipid and glucose metabolism, and
overall energy homeostasis. PPARs regulate the functions of adipose tissues, such as
adipogenesis, lipid storage, and adaptive thermogenesis [37]. For the AGE/RAGE signaling
pathway, moderate-intensity aerobic exercise inhibits the AGE/RAGE axis and the NF-κB
pathway, which may decrease oxidative stress and inflammation and thus reduce tissue
injury for the prevention and treatment of T2DM complications [38]. For some DNB
genes, CD74 receptor and other mechanisms are stimulated by multi-effect cytokine MIF
to promote inflammatory response in glomerular podocytes. MIF can activate CD74 on
the surface of local glomerular podocytes, resulting in the phosphorylation of extracellular
signal-regulated kinase 1/2 (ERK1/2) and p38MAPK [39]. SPARC is an autocrine and
paracrine factor of adipose tissue that can inhibit adipogenesis. Insulin can increase SPARC
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expression, while SPARC can increase Akt and PI3-K phosphorylation, indicating that
SPARC may be involved in insulin signaling pathways [40]. PRDX2 overexpression can
prevent pancreatic β cell apoptosis induced by oxidative stress and reduce the risk of
developing diabetes. The changes in oxidative stress in diabetic kidney disease and other
pathological processes are related to the expression of PRDX2 and related pathways. For
example, PRDX2 can participate in the regulation of tumor development and oxidative
stress in treatment through the PI3/AKT-resistant pathway. PRDX2 can regulate the
oxidative stress of colon cancer cells through the Wnt/B-catenin signaling pathway and
influence the oxidative stress of tumor by regulating some microRNAs [29].

3.3. Cross-Tissue Analysis

From the above enrichment analysis, we observe the critical point of tissue specificity.
There are different degrees of differences in the ways DNBs participate in T2DM, but there
is also relative consistency. We can infer that the phenotypic changes in GK rats share a
cross-organizational functional relationship during the development of T2DM.

In the pre-disease period, the high blood glucose is observed in GK rats fed with the
same food in the healthy control WKY rats, although the insulin secretion level in GK rats
is similar to the level in WKY rats. Hence, it can be inferred that the insulin receptors in GK
rats could not correctly respond to the insulin regulation, such that the glucose cannot be
transported successfully in cells. In the preceding analysis, we find that there are abnormal
responses to lipids in the early warning stage of lipid tissue and the first early warning
stage of liver tissue, and abnormal responses of the PPAR signaling pathway are found
in the fourth early warning stage of liver tissue. This pathway is activated by upstream
FABP family proteins and is then involved in fatty acid transport. This may explain the
remarkable abnormal lipid metabolism in the early stage of the disease due to a lack of
glucose intake.

In the pre-transition period, hyperglycemia remains comparatively stable, but the
concentration of plasma insulin decreases. The ability to absorb and utilize glucose is
reduced. Consequently, other metabolic processes in tissues, such as lipid metabolism and
protein metabolism, are activated. Many genes related to lipid transport are dysfunctional
in the liver, where disorders in protein digestion and absorption can first be detected. The
occurrence of β cell failure at 20 weeks may result from the increasingly serious lack of
glucose uptake. The abundance of enrichment pathways in various tissues indicates that
with the further development of the disease, complications will increase, and functional
proteins will encounter obvious obstacles in their operation, such as in the examples of
negative regulation of proteoglycan and regulation of phosphorylation in cancer. Drug
metabolism and vitamin metabolism are also abnormal. In the above analysis, it can also be
found that the response to stimulation appears throughout the entire development process
of T2DM.

3.4. DMNE Reveals Non-Differential “Dark Genes”

In clinical practice and scientific research, differentially expressed genes draw much
attention in the early diagnosis of disease, screening drug targets, treating diseases, and
developing new drugs. However, some non-differentially expressed genes in the coding
region of DNA are called “dark genes” [41]. Based on the DMNE method, we found some
“dark genes” that did not exhibit differential expression but whose DMNE scores were
especially sensitive. Such genes are usually ignored in traditional analyses.

Many epidemiological studies have found that T2DM is positively associated with
an increased risk of PAAD. Long-term Type 2 diabetes increases the risk of PAAD by
1.5 to 2 times. Thirty to forty percent of pancreatic cancer patients have diabetes, and
eighty percent have abnormal glucose tolerance [42]. Therefore, some “dark genes” re-
lated to the prognosis of PAAD may play important roles in the development of T2DM,
such as COL1A1, which is the most significant gene in the extracellular matrix receptor
interaction pathway and is linked to hypoglycemic activity [43], which may affect blood
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glucose fluctuations, T2DM prognosis, and the occurrence and development of chronic
complications [44].

To further confirm the effectiveness of the “dark genes”, we subjected them to GO
and KEGG enrichments analyses. BCKDHA exists in liver tissue and encodes the BCKDC
component. In the study of [45], it was found that knocking out the BCKDK gene, which
regulates BCKDC kinase, can significantly reduce the concentration of branched-chain
amino acid (BCAA) in blood. BCAA can stimulate mammalian targets of rapamycin and
S6 kinase. It can also phosphorylate insulin receptor substrate on serine residues, thus
damaging insulin signaling pathways. The decrease in BCAA catabolism will lead to
insulin resistance and glucose intolerance, eventually leading to T2DM. Therefore, the
increase in BCKDHA expression will cause a decrease in plasma BCAA concentration,
subsequently affecting the progression of T2DM, which can explain why the low BCKDHA
expression is associated with favorable prognosis [43]. COL1A1 contributes to T2DM via
the ECM–receptor interaction pathway. ECM–receptor interactions are microenvironmental
regulators of the structure and function of cells and tissues. ECM synthesis is closely linked
to the PI3K/Akt pathway and the regulation of T2DM [46,47]. The enrichment analysis
of these “dark genes” also showed that their associated pathways provided in Figure 4
are related to T2DM. Figure 4 shows the enrichment pathways of “dark genes” and the
number of involved genes.
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As pancreatic adenocarcinoma (PAAD) and T2DM are interrelated, and this association
could inform our understanding of the mechanisms of both diseases, this relationship has
become a topic of interest receiving considerable attention in the literature [42,48–50].
At present, due to the lack of corresponding prognostic data in the study of T2DM, the
prognostic analysis of T2DM cannot be directly performed. Therefore, we used the PAAD
data to analyze the prognosis of T2DM, as detailed in Supplementary Materials Section S2,
representing an attempt to reveal the mechanism of T2DM development from another
approach.

3.5. Drug Targets

Identifying drug targets is a key task in drug discovery and chemical genomics. In
this study, we collected information on the targets and anticancer drugs for T2DM from the
online service web pages Drug Bank, Therapeutic Target Database, and Pharmacogenomics
Knowledgebase. The number of drug targets in the first, second, third, fourth, and fifth
stages of the data of GSE13268 is 20, 29, 21, 23, and 19, respectively. The number of drug
targets in the first, second, third, fourth, and fifth stages of the data of GSE13269 is 17, 20, 19,
20, and 15, respectively. The number of drug targets in the first, second, third, fourth, and
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fifth stages of the data of GSE13270 is 20, 35, 33, 37, and 29, respectively. We integrated the
drug target information for critical states (phase 2 of GSE13268, phases 1 and 4 of GSE13269,
and phases 1 and 4 of GSE13270).

The critical state of GSE13268 is the second stage, the critical states of GSE13269 are
the first and fourth stages, and the critical states of GSE13270 are the first and fourth stages.
Figure 5 shows the drug target analysis for the critical states of GSE13270. The drug target
analyses [51–55] of GSE13268 and GSE13269 are provided in Supplementary Materials
Sections S3 and S4.
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In Figure 5, the red circle is the abbreviation of Type 2 diabetes, the blue circle is the
drug target of the corresponding stage in the three sets of data of Type 2 diabetes, the
green circle is the corresponding target protein, and the yellow circle is the corresponding
anticancer drug of the protein that has been approved by the FDA or used in experiments.
Infographics of drug targets for other stages of GSE13270 are provided in Supplementary
Materials Section S5.

In the first stage of GSE13270, according to the analysis of MaoA and MaoB protein
expression in the islets of Type 2 diabetes mellitus in mice and humans, it can be found that
the amount of MaoB in β cells of Type 2 diabetes mellitus is significantly reduced, which
shows that the loss of Mao causes dysfunction of β cells, resulting in Type 2 diabetes [56]. In
other studies, a relationship between LGALS2 and glucose and fasting insulin has also been
found. It is this relationship that supports the idea that LTA plays a role in determining the



Entropy 2022, 24, 1249 19 of 23

insulin–glucose spectrum. LGALS2 genotypes and LTA pathways may play other roles in
insulin metabolism which require further research and exploration [57]. In the fourth stage
of GSE13270 (liver tissue), FABP2, the intestinal fatty-acid-binding protein, is considered
a candidate gene for diabetes. The reason is that, in the process of the absorption and
metabolism of fatty acids (FA), FABP2 is involved in encoding proteins. Therefore, FABP2
may affect insulin sensitivity and glucose metabolism [58]. The gene-encoding alpha2
Heremans Schmid glycoprotein (AHSG) is a candidate for Type 2 diabetes and metabolic
syndrome, and variants have been successfully demonstrated in previous attempts to be
associated with Type 2 diabetes and obesity when examining Swedish patients, as well as
Caucasian patients in France [59].

4. Discussion

In this study, we propose a new method, the DMNE algorithm, to detect the critical
state and identify DNBs of T2DM. By applying this method to three rat gene expression
datasets involving adipose tissue, gastrocnemius muscle, and liver tissue in healthy control
vs. Type 2 diabetes conditions, the early warning signals of T2DM were successfully
detected and DNBs were effectively identified. Specifically, for the three tissues, the DMNE
method can not only detect the critical state via the DNBs but also identify drug targets.
We used two kinds of GO backgrounds for analysis, and both demonstrated that the DNBs
obtained by DMNE are closely linked to the development of T2DM. In addition, we mined
“dark genes” that are associated with T2DM. In contrast to the information of differential
expression used in traditional biomarkers to diagnose disease, DMNE is based on molecular
network fluctuation and is able to predict disease.

We detected the critical state by exploiting the high-dimensional information of time
series data. Firstly, by constructing the SSN, we converted floating gene expression into a
stable SSN. Then, we calculated the local degree matrix network entropy and degree matrix
network entropy according to the information of the differential network. The DMNE
method reliably quantifies network fluctuation, i.e., collective fluctuation of molecules
caused by a perturbed sample against a group of given reference samples, so as to reduce
the noise and thus enhance the robustness and effectiveness by exploring dynamical and
high-dimensional information of omics data. Based on the DMNE method, we can detect
the critical states before the disease occurs and identify the DNBs. Furthermore, based on
the DMNE method, “dark genes” related to disease progression can be identified. Although
those “dark genes” are not differentially expressed genes, they are associated with disease
progression in T2DM patients and were validated by the functional analysis.

Furthermore, it is noteworthy that the degree matrix network entropy (DMNE) is
based on the dynamical network biomarker (DNB), and it can detect the critical states by
calculating the score of each stage and using the difference in scores to show the changes in
the development of diseases. Therefore, it can be directly applied to stage-course disease
datasets in theory, such as stage-course tumor datasets and diabetes datasets, only requiring
the modification of corresponding parameters based on sample data and the number of
genes when constructing the network. However, it may not be possible to detect the
critical states for the disease with fewer than three stages, such as the datasets divided into
reference and control only but not staged, because DNB theory for early-warning is not
applicable to diseases with fewer than three stages. If a dataset includes fewer than three
stages, no valid score comparisons can be made.

In summary, we proposed a robust and effective algorithm that can be used not only
to detect critical states of T2DM development and identify DNBs by using stage-course
data but also to identify the important “dark genes” and pinpoint drug targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24091249/s1, Figure S1: Comparison of different parameters
of CSN; Figure S2: The identification of “dark genes” for T2DM with PAAD data; Figure S3: Drug
target analysis for GSE13268: rat adipose tissue; Figure S4: Drug target analysis for GSE13269: rat
gastrocnemius muscle tissue; Figure S5: Drug target analysis for GSE13270: rat liver tissue; Figure
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S6: The DNBs of GSE13269, involving rat muscle tissue, and GSE13270, involving rat liver tissue,
are involved in important biological processes of T2DM. (a) GSE13269. (b) GSE13270; Table S1: The
DNBs of critical states of T2DM; Table S2: The degree matrix and local network for GSE13268 (rat
adipose tissue); Table S3: The degree matrix and local network for GSE13269 (rat gastrocnemius
muscle tissue); Table S4: The degree matrix and local network for GSE13270 (rat liver tissue); Table S5:
The function enrichment of DNBs from GSE13268 (rat adipose tissue), GSE13269 (rat gastrocnemius
muscle tissue), and GSE13270 (rat liver tissue); Table S6: The “dark genes”, which involve Type 2
diabetes, in rat adipose, gastrocnemius muscle, and liver tissue; Table S7: Enrichment results for
DNBs of GSE13269 (rat gastrocnemius muscle tissue) and GSE13270 (rat liver tissue) datasets.
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Appendix A

Table A1. The GEO datasets used are as follows.

GEO Datasets List

Access ID Tissue Rat Species Condition GEO Samples

GSE13268 Adipose

Wistar–Kyoto
(WKY) rats Control

GSM334860-GSM334864
GSM334880-GSM334884
GSM334900-GSM334904
GSM334920-GSM334924
GSM334940-GSM334944

Goto–Kakizaki
(GK) rats Diabetic

GSM334850-GSM334854
GSM334870-GSM334874
GSM334890-GSM334894
GSM334910-GSM334914
GSM334930-GSM334934

www.ncbi.nlm.nih
https://cancerge
https://go.drugbank.com/
http://db.idrblab.net/ttd/
https://www.pharmgkb.org/
https://github.com/yyk124/DMNE-main.git
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Table A1. Cont.

GEO Datasets List

Access ID Tissue Rat Species Condition GEO Samples

GSE13269 Gastrocnemius
muscle

Wistar–Kyoto
(WKY) rats Control

GSM334961-GSM334965
GSM334981-GSM334985
GSM335001-GSM335005
GSM335021-GSM335025
GSM335041-GSM335045

Goto–Kakizaki
(GK) rats Diabetic

GSM334951-GSM334955
GSM334971-GSM334975
GSM334991-GSM334995
GSM335011-GSM335015
GSM335031-GSM335035

GSE13270 Liver

Wistar–Kyoto
(WKY) rats Control

GSM335062-GSM335066
GSM335082-GSM335086
GSM335102-GSM335106
GSM335122-GSM335126
GSM335142-GSM335146

Goto–Kakizaki
(GK) rats Diabetic

GSM335052-GSM335056
GSM335072-GSM335076
GSM335092-GSM335096
GSM335112-GSM335116
GSM335132-GSM335136
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