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Abstract: We investigate the effects of external and autonomous global interaction fields on an
adaptive network of social agents with an opinion formation dynamics based on a simple imitation
rule. We study the competition between global fields and adaptive rewiring on the space of parameters
of the system. The model represents an adaptive society subject to global mass media such as a
directed opinion influence or feedback of endogenous cultural trends. We show that, in both situations,
global mass media contribute to consensus and to prevent the fragmentation of the social network
induced by the coevolutionary dynamics. We present a discussion of these results in the context of
dynamical systems and opinion formation dynamics.
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1. Introduction

Many physical, chemical, biological, social, and economic systems are subject to global
interactions. A global interaction in a system occurs when all its constituents share a
common influence or source of information [1]. The origin of a global interaction can be
either external, as in a forcing field; or autonomous, such as a mean field or a feedback
coupling function that depends on the elements of the system [2,3]. Global interactions
appear, for example, in parallel electric circuits, coupled oscillators [4,5], Josephson junction
arrays [6], charge density waves [7], multimode lasers [8], neural networks, evolution
models, ecological systems [9], social networks [10], economic exchange [11], mass media
influence [12–14], and cultural globalization [15]. A complete graph or fully connected
network, where any node can interact each each other, can be seen as a global interaction.
Diverse collective behaviors can emerge in globally coupled oscillators, such as complete
and generalized chaos synchronization, dynamical clustering, nontrivial collective behav-
ior, chaotic itinerancy, quorum sensing, and chimera states [16–25]. Systems possessing
coexisting global and local interactions have also been studied [26].

Most of the research on the effects of global interaction fields has been conducted
considering the evolution of the states of the nodes on a fixed network. However, many
complex systems observed in nature can be described as dynamical networks of inter-
acting elements where the states of the elements and their connections influence each
other and evolve simultaneously [27–31]. The terms coevolutionary dynamical system
and adaptive network [29,30] have been employed for systems exhibiting this coupling
between the network topology and node state dynamics. Coevolution models have been
studied in spatiotemporal dynamical systems, such as neural networks [32,33], coupled
map lattices [34,35], motile elements [36], synchronization in networks [37], as well as in
spin dynamics [38], epidemic propagation [39–41], game theory [27,29,42], and also in the
context of social dynamics, such as opinion formation and cultural polarization [43–50].
Coevolutionary systems usually exhibit a transition between two network configurations:
a large connected graph where most nodes share the same state, and a fragmented network
of small disconnected components, each composed by nodes in a common state [43–50].
This network fragmentation transition is related to the difference in time scales of the
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processes that characterize the two dynamics: the state of the nodes and the network of
interactions [43].

In this article we investigate the effects of global interaction fields on coevolutionary
dynamics. We study the competition between adaptive rewiring and global interactions
in a network. We consider external global fields or autonomous global fields acting on an
adaptive network of social agents with an opinion formation dynamics based on a simple
imitation rule. In the context of social phenomena, our system can be considered as a model
for a society subject to global mass media that represent a directed opinion influence or
a feedback of endogenous cultural trends. We show that, in both situations, global mass
media contribute to consensus and to inhibit the fragmentation of the social network. We
present a discussion of these results.

2. Materials and Methods

We considered a population of N social agents represented as nodes on an initially
random network of the Erdos–Renyi type with an average degree 〈k〉, i.e., 〈k〉 is the
average number of edges per node [51]. We denoted by νi the set of ki neighbors of node i
(i = 1, 2, . . . , N). We let gi be the state variable or the opinion of agent i, where gi can take
any of the G equivalent options in the set {1, 2, . . . , G}; i.e., we assumed that the states of
the nodes were discrete.

We introduced a global field Φ that could interact with all the elements in the system
and that had a state gΦ ∈ {1, 2, . . . , G}. The global field could be interpreted as an additional
neighbor shared by each node i with whom an interaction was possible. Then, the network
subject to the global field Φ corresponded to a dynamical system possessing both local and
global interactions.

We considered two types of global fields Φ:
(i) An external global field whose value gΦ was chosen from the set {1, . . . , G} and

remained fixed during the evolution of the system. The external field corresponded to a
constant spatially uniform influence acting on the system. A constant external field can
be interpreted as a specific state (such as an opinion, a message, or advertisement) being
transmitted by mass media over all the elements of a social system.

(ii) An autonomous global field whose value gΦ depended on the state variables of the
elements in the system. Here, we defined gΦ as the statistical mode of the distribution of state
variables of the agents in the system at a given time, denoted as gΦ = mode{g1, g2, g3, . . . , gN}.
That is, we assigned gΦ as the most abundant value exhibited by states of all the nodes
in the system at a given time. If the maximally abundant value was not unique, one of
the possibilities was chosen at random with equal probability. The autonomous field was
spatially uniform, but its value may change as the system evolves. In the context of opinion
or cultural models, this field may represent an endogenous global mass media influence
that transmits the predominant opinion, cultural trend, or fashionable behavior present in
a society.

We characterized the intensity of a global field by a parameter B ∈ [0, 1] that expresses
the probability of interaction of any agent with the field. Then, the probability of inter-
action between two agents is proportional to (1− B). On the other hand, the rewiring
process in the network took place with a probability Pr, and we assumed that the node
dynamics occurred with probability 1− Pr. Thus, the node dynamics were coupled to the
rewiring dynamics giving rise to a coevolutionary system. For the node state dynamics, we
implemented a voter-like model that has been employed in coevolution of opinions and
networks [43] and in various situations [44–49].

We built the initial random network with parameter values N = 1000 and 〈k〉 = 4.
Then, the states gi were assigned to the nodes at random with a uniform distribution.
Therefore there were, on average, N/G agents in each state in the initial network. Here, we
fixed the number of options at the value G = 100.

Then, the coevolution dynamics of the system subject to a global field Φ, either external
or autonomous, were defined by the following iterative algorithm:
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1. Choose at random an agent i such that ki > 0.
2. With probability Pr, select at random an agent j ∈ νi and another agent l /∈ νi such

that gi = gl ; remove the edge (i, j) and set the edge (i, l).
3. With probability (1− Pr)B, set gi = gΦ.
4. With probability (1− Pr)(1− B), select at random an agent m ∈ νi and set gi = gm.
5. If Φ is autonomous, update the value gΦ = mode{gi; i = 1, 2, . . . , N}

Step 2 specifies the rewiring process that modifies the network connectivity; new
connections occur between agents with similar states. This rewiring decreased the number
of links connecting nodes in different states, called active links. Links were rewired until
a statistically stationary state, where the number of active links in the network dropped
to zero, was reached. Steps 3 and 4 comprise the node imitation dynamics of the voter
model: step 3 expresses the agent–field interaction, while step 4 describes the agent–agent
interaction. In the case of an autonomous global field Φ, step 5 characterizes the time scale
for the updating of state of the field gΦ. We verified that the collective behavior of this
system was statistically similar if the steps of the node dynamics were performed before
the rewiring process.

3. Results

In the absence of a global field (B = 0), the imitation dynamics of the nodes increases
the number of connected agents with equal states, while the rewiring process favors
the segregation and fragmentation of the network [43]. Therefore, the evolution of the
system eventually leads to the formation of a set of separate components, or subgraphs,
disconnected from each other, with all members of a subgraph sharing the same state. Such
subgraphs are called domains.

To characterize the collective behavior of the coevolutionary system subject to a global
field, we used, as an order parameter, the normalized size of the largest domain in the
system, averaged over several realizations of random initial conditions, denoted by Smax.
Figure 1 shows the quantity Smax as a function of the rewiring probability Pr for different
values of the intensity of the global field B. When no global fields were present (B = 0,
squares), our model reduced to the coevolution model of Holme and Newman [43] where,
as Pr increased, Smax exhibited a transition at the critical value P∗r = 0.458, from a regime
having a large domain whose size was comparable to the system size, characterized by val-
ues Smax → 1, to a fragmented state consisting of small domains, for which Smax → 0 [43].

Figure 1. Smax as a function of Pr for the coevolutionary system subject to a global interaction field,
for different values of the intensity B. The curves correspond to B = 0 (squares); autonomous field
with B = 0.003 (triangles); external field with B = 0.003 (circles). The parameters are G = 100,
N = 1000, and 〈k〉 = 4. The error bars indicate standard error obtained over 100 realizations of
random initial conditions for each value of Pr.
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Figure 1 indicates that, when a global field either external or autonomous was applied
to the system, the fragmentation transition persisted, but the critical value of Pr for which
the transition took place increased as B incremented. The one-large domain phase consisted
of agents sharing the state gF of the global field. For B > 0, the critical value of Pr in the
presence of the external field was greater than the corresponding value for the autonomous
field. As B→ 1, the fragmentation transition occurred at the value Pr = 1 for either field.
Thus, the presence of an external or an autonomous global field contributed to inhibit the
fragmentation of the network.

In Figure 2, we show Smax as a function of the intensity B, for both types of fields, with
a fixed value of the rewiring probability Pr = 0.6 > P∗r . For this value of Pr, the system
reached a fragmented state when B = 0. In Figure 2, we started from a fragmented state as
the initial condition for each value of B. For small values of B, the system was fragmented
in small domains, characterized by Smax → 0. As the intensity B increased above some
critical value, both the external and the autonomous fields produced a recombination of
the network: the small domains possessing multiple states became united into one large
domain whose elements shared the state gΦ of the field. Thus, global interaction fields can
have cohesive and homogenizing effects on a coevolutionary network.

Figure 2. Smax as a function of B (log scale) with fixed Pr = 0.6 > P∗r . The curves correspond to an
autonomous field (open circles) and to an external field (open squares). The parameters are G = 100,
N = 1000, and 〈k〉 = 4. The error bars indicate standard errors obtained over 100 realizations of the
initial conditions for each value of B.

The critical values of B and Pr for the fragmentation transitions in Figures 1 and 2 were
determined by using finite size scaling analysis, following the same approach proposed
by Holme and Newman in [43]. Figure 3 displays the collective behavior on the space of
parameters (B, Pr) for the coevolutionary system subject to an external global field and
to an autonomous global field. In each case, a critical boundary separated two phases:
(I) an ordered phase characterized by Smax → 1, where the network evolved to one large
connected subgraph with all agents sharing the opinion of the field (above the curve); and
(II) a fragmented phase for which Smax → 0, where the system consisted of many small
subgraphs with different opinions. An external global field appears a little more efficient
than an autonomous field in preventing fragmentation in the coevolutionary system.
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Figure 3. Critical boundaries for the fragmentation transition on the space of parameters (B, Pr) for
the adaptive system subject to an external global field (continuous line), or to an autonomous global
field (dashed line). We calculate Smax on the (Pr, B) plane with resolutions of 10−2 for Pr and 10−3

for B and determine the critical values of Pr and B by using finite size scaling analysis [43]. In each
case, the boundary separates two phases: (I) a phase with one-large domain sharing the state of the
global field; and (II) a fragmented phase with many small domains.

4. Discussion

We investigated the effects of the global interaction fields, external or autonomous,
on an adaptive network of social agents with an opinion formation dynamics. The phase
diagram in Figure 3 shows that the effects of both global fields on the collective behavior
of the coevolutionary system were similar. The two phases arose from the competition
between the homogenizing effect of the global field and the fragmentation of the network
favored by the rewiring process. The similarity in the collective behaviors emerging in
coevolutionary systems with external or autonomous global interaction fields signalled
that the nature of the field, either external or endogenous, was qualitatively irrelevant. At
the local level, the field acted effectively as an additional influential neighbor for every
agent with the same node dynamics in each case.

In the context of dynamical systems, it has been shown that an analogy between
an autonomous globally coupled system and a system subject to a global external drive
can be established, because all the elements in each of these systems are affected by the
corresponding global field in the same way at a given time [2]. Then, at the local level in
either system, each element can be described as a drive–response dynamical system that
can synchronize, and which eventually manifests as a collective state of synchronization.
In social dynamics, a state of consensus can be interpreted as synchronization. In particular,
for the coevolutionary opinion formation model considered, either external mass media or
endogenous mass media trends induce consensus about their respective state. Our results
suggest that the analogy between dynamical systems possessing external or autonomous
global interaction fields can be extended to coevolutionary systems subject to global fields.

The opinion dynamics based on the simple imitation employed in this model led to
the imposition of the states of the global mass media fields on the system. The imitation
rule of voter dynamics has been applied to model elections, language competition, and
clustering processes. We have found that a global field, either external or autonomous, can
induce the recombination of a network broken in small domains into one large domain.
In a social context, external mass media as well as the feedback of endogenous cultural
trends can play a major role in preventing fragmentation and favoring cohesion in a society
that possesses coevolution dynamics. Global mass media may contribute to control voters
polarization and segregation in adaptive social networks. On the other hand, even under
the influence of mass media, the existence of adaptive rewiring may counter the expected
consensus and cohesion, as phase II on the phase diagram in Figure 3 shows.
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Global mass media acting on systems possessing non-interacting states in their dy-
namics, such as in Axelrod’s model for cultural dissemination [52] or Deffuant’s bounded
confidence model [53], can produce nontrivial effects other than imposing consensus, such
as inducing disorder [12], alternative ordering [13], the emergence of chimera states [14],
and promoting minority growth and polarization [15]. Future interesting extensions to
be investigated include the influence of different node dynamics, such as those with non-
interacting states, on the collective behavior of coevolutionary systems subject to global
fields, general coevolution models [49], and the characterization of the topological proper-
ties of adaptive networks driven by global fields.
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