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Abstract: Measurement-device-independent quantum key distribution (MDI-QKD) is innately im-
mune to all detection-side attacks. Due to the limitations of technology, most MDI-QKD protocols
use weak coherent photon sources (WCPs), which may suffer from a photon-number splitting (PNS)
attack from eavesdroppers. Therefore, the existing MDI-QKD protocols also need the decoy-state
method, which can resist PNS attacks very well. However, the existing decoy-state methods do
not attend to the existence of PNS attacks, and the secure keys are only generated by single-photon
components. In fact, multiphoton pulses can also form secure keys if we can confirm that there
is no PNS attack. For simplicity, we only analyze the weaker version of a PNS attack in which a
legitimate user’s pulse count rate changes significantly after the attack. In this paper, under the null
hypothesis of no PNS attack, we first determine whether there is an attack or not by retrieving the
missing information of the existing decoy-state MDI-QKD protocols via statistical hypothesis testing,
extract a normal distribution statistic, and provide a detection method and the corresponding Type
I error probability. If the result is judged to be an attack, we use the existing decoy-state method
to estimate the secure key rate. Otherwise, all pulses with the same basis leading to successful Bell
state measurement (BSM) events including both single-photon pulses and multiphoton pulses can
be used to generate secure keys, and we give the formula of the secure key rate in this case. Finally,
based on actual experimental data from other literature, the associated experimental results (e.g., the
significance level is 5%) show the correctness of our method.

Keywords: decoy state; measurement-device independent; quantum key distribution; photon number
splitting attack; statistical hypothesis testing

1. Introduction

Quantum key distribution (QKD) [1–6] is a technique that allows two remote parties
(Alice and Bob), to share unconditional secure keys. The unconditional security of the keys
are guaranteed by the laws of quantum mechanics [7–10]. The first ideal QKD protocol is
BB84-QKD created by Bennett and Brassard [1], which needs a perfect single-photon source
and detectors. However, there is always a large gap between ideal and reality. Due to the
imperfection of equipment, the implementation of the QKD suffers double attacks from the
source side and detection side. On the one hand, at present, perfect single-photon sources
are not available, and weak coherent photon sources (WCPs) after phase randomization are
often utilized to replace the single-photon sources. While the photon number of the pulses
emitted by WCPs may be more than one, an eavesdropper Eve can launch a photon-number
splitting (PNS) attack [11–15]. Specially, a weaker version of a PNS attack is one in which
Alice’s or Bob’s pulse count rate changes significantly after the attack [11–14], and the
stronger PNS attack means that both Alice’s and Bob’s pulse count rates remain unchanged
after the attack [15]. The difference between these two attacks is the effect on Alice’s and
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Bob’s pulse count rates. Fortunately, the decoy-state method [16–18] proposed later can
resist PNS attacks very well.

On the other hand, due to the low detection efficiency of the detectors, Eve can launch
attacks against the detectors. Compared with source attacks, there are more attacks from the
detection side, such as the detector blinding attack [19,20], dead time attack [21], faked state
attack [22,23], and time shift attack [24].People have proposed device-independent quantum
key distribution (DI-QKD) [25,26], which can resist all attacks from devices. However,
this protocol is highly impractical because it needs close to unity detection efficiency. In
2012, Lo et al. [27] proposed measurement-device-independent quantum key distribution
(MDI-QKD), which is also known as the time-inversion version of EPR protocol [28]. In
MDI-QKD, Alice and Bob do not need to perform measurement operations, so it can be
innately immune to all detection attacks. MDI-QKD combined with the decoy-state method
can resist both source attacks and detection attacks; thus, decoy-state MDI-QKD [29–31] is
one of the most promising QKD protocols, which can provide unconditional secure keys in
practical applications.

However, the secure key rate of the existing decoy-state MDI-QKD is not high [32,33].
The decoy-state method defeats the PNS attack through providing a more accurate method
to determine the secure key rate. More specifically, the existing decoy-state method can
more closely estimate the lower bound of gain and the upper bound of quantum bit error
rate (QBER) of single-photon signals, and then the secure key rate can be calculated by
the GLLP formula [34]. In essence, the existing decoy-state method does not care about
the existence of a PNS attack, and the secure keys are only generated by single-photon
components [35]. However, if we can determine that there is no PNS attack on the channel,
multiphoton pulses can also generate secure keys. For simplicity, we only analyze the
weaker version of PNS attack in which the legitimate user’s pulse count rate changes
significantly after the attack. In this case, there is no doubt that using the existing methods
to estimate the secure key rate will waste the underlying keys generated from multiphoton
pulses and reduce the efficiency.

In this work, under the null hypothesis of no PNS attack H0, we first retrieve the lost
information in the existing decoy-state MDI-QKD, extract a normal distribution statistic,
and provide a new method to determine whether there is a PNS attack or not through
statistical hypothesis testing. If the result is judged to be an attack, the keys can only
be generated from single-photon pulses, and the secure key rate will be estimated by
the existing decoy-state method. Otherwise, all pulses with the same basis leading to a
successful Bell state measurement (BSM) event including both single-photon pulses and
multiphoton pulses can be used to generate keys, and we give the formula of the secure
key rate in this case. Furthermore, we use the real experimental data in [36] to verify our
method, and the analytical results show that our method is credible (e.g., a significance
level of 5%).

The structure of this paper is organized as follows. In Section 2, we briefly review the
typical decoy-state MDI-QKD and related notations. In Section 3, we describe our method
for detecting the PNS attack in the decoy-state MDI-QKD via statistical hypothesis testing
in detail. In Section 4, the correctness of our method is verified with the real experimental
data from the existing literature. Finally, we discuss and draw conclusions in Section 5.

2. Three-Intensity Decoy-State MDI-QKD

In this paper, we adopt a typical decoy-state MDI-QKD with polarization encoding [36],
which mainly consists of three steps.

(i) Alice generates phase-randomized pulses from WCPs and randomly selects the
basis W ∈ {Z, X}. That is, PZ = PX = 1/2, where PZ and PX are the probabilities of
choosing the Z basis and X basis, respectively. Then Alice uses an intensity modulator
to modulate the pulses with three different intensities and sends them to Charlie located
in the middle. This three intensities are the intensity of signal state µ2, the intensity
of decoy state µ1, and the intensity of vacuum state µ0, respectively. Furthermore, the
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corresponding percentages being emitted are Pµ2 , Pµ1 , and Pµ0 , respectively. Obviously,
Pµ2 + Pµ1 + Pµ0 = 1. At the same time, Bob performs the same procedures as Alice, and the
intensities of Bob’s pulses are noted as ν2, ν1, and ν0 for the signal state, decoy state, and
vacuum state, respectively. Similarly, the corresponding percentages being emitted are Pν2 ,
Pν1 , and Pν0 , respectively, where Pν2 + Pν1 + Pν0 = 1.

(ii) The pulses from Alice and Bob interfere when they reach Charlie. Then Charlie
performs a Bell state measurement (BSM) on the interference outcomes and announces the
measurement results to Alice and Bob.

(iii) Alice and Bob compare their bases, and determine the secure keys through Char-
lie’s measurement results. Specifically, if Alice and Bob choose the same basis and Charlie
has a successful BSM event at the same time, then this part of the pulses can generate keys.
It is important to emphasize that the secure keys are only generated from the signal state
with Z basis, and the others are used for parameter estimation.

The secure key rate of the decoy-state MDI-QKD [27,36] is given by

R ≥ q{Pµ2ν2
11 YZ

11[1− H(eX
11)]−QZ

µ2ν2
fe H(EZ

µ2ν2
)}. (1)

In the above equation, q = P2
ZPµ2 Pν2 is the probability that Alice and Bob both select the Z

basis and both modulate the pulse as signal state. Pµ2ν2
11 = µ2ν2e−µ2−ν2 is the probability

that the pulses from Alice’s signal state and Bob’s signal state are both single-photon pulses.
YZ

11 and eX
11 are the yield of single-photon state with Z basis and the quantum bit error

rate (QBER) of single-photon state with X basis. H(x) = −x log2(x)− (1− x) log2 (1− x)
is the binary Shannon entropy function. QZ

µ2ν2
and EZ

µ2ν2
are the overall gain and overall

QBER of signal state with Z basis, respectively. fe > 1 is the error correction efficiency.
According to [37,38], the overall gain QW

µkνl
(W ∈ {X, Z}) and the overall QBER EW

µkνl
(W ∈ {X, Z}) can be obtained by the following equations,

QX
µkνl

= 2y2[1 + 2y2 − 4yI0(x) + I0(2x)],

EX
µkνl

QX
µkνl

= e0QX
µkνl
− 2(e0 − ed)y2[I0(2x)− 1],

QZ
µkνl

= QC + QE,

EZ
µkνl

QZ
µkνl

= edQC + (1− ed)QE.

(2)

where

QC = 2(1− pd)
2e−µ′/2[1− (1− pd)e−ηaµk/2]× [1− (1− pd)e−ηbνl /2],

QE = 2pd(1− pd)
2e−µ′/2[I0(2x)− (1− pd)e−µ′/2].

(3)

In the above equations, µk and νl , k, l ∈ {0, 1, 2}, are the intensities of pulses emitted by
Alice and Bob, respectively. I0(x) is the modified Bessel function of the first kind. e0 is the
error rate of background. ed is the misalignment-error probability. pd is the dark count rate.
ηa and ηb are the transmission efficiencies of Alice and Bob, respectively. In addition,

x =
√

ηaµkηbνl/2,

y = (1− pd)e−µ′/4,

µ′ = ηaµk + ηbνl ,

ηa = ηd10−
δLac+θ

10 ,

ηb = ηd10−
δLbc+θ

10 ,

(4)

where ηd is the quantum efficiency of detectors, δ is the loss coefficient measured in dB/km,
Lac (Lbc) is the distance in km from Alice (Bob) to Charlie, and θ is the insertion loss in
Charlie’s measurement setup in dB. Without Eve’s intervention, based on Equations (2)–(4),
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the yield and the QBER of single-photon pulses when Alice and Bob select the same basis
X or Z are, respectively, given by

YX
11 = YZ

11 = (1− pd)
2[

ηaηb
2

+ (2ηa + 2ηb − 3ηaηb)pd + 4(1− ηa)(1− ηb)p2
d],

eX
11YX

11 = e0YX
11 − (e0 − ed)(1− pd)

2 ηaηb
2

,

eZ
11YZ

11 = e0YZ
11 − (e0 − ed)(1− pd)

2(1− pd)
ηaηb

2
.

(5)

3. Statistical Hypothesis Testing

In this section, we introduce a new method to detect the PNS attack in the decoy-state
MDI-QKD via statistical hypothesis testing. It is important to emphasize that the PNS
attacks mentioned here and below refer to the weaker version of PNS attack. Then we
analyze the Type I error of the test; that is, mistaking no PNS attack when there is a PNS
attack. Generally speaking, our method first puts forward a null hypothesis and alternative
hypothesis based on the theory of statistical hypothesis testing. Then, the test statistic
is constructed according to the null hypothesis and other conditions. Furthermore, the
specific values of the statistics can be obtained by using the parameters and experimental
data. After the significance level is given, we can infer whether there is PNS attack in the
channel with a certain probability. The details are as follows.

(i) Identify null and alternative hypothesis. Let us consider the hypothesis testing
problem of the null hypothesis H0: there is no PNS attack on the channel and the alternative
hypothesis H1: there is a PNS attack on the channel.

(ii) Construct the test statistic. We need a test statistic to conduct the hypothesis testing.
In what follows, the distribution of the test statistic is derived under the null hypothesis
H0. Let us further consider Alice’s and Bob’s pulses emission process and Charlie’s BSM
event. When Alice and Bob send pulses with the same basis, the BSM event outcomes
at Charlie only include two cases, successful or failed. Therefore, the above process can
be regarded as a Bernoulli trial. Note that QW

µkνl
is the probability that Charlie obtains a

successful BSM event provided that Alice and Bob emit pulses with the intensities µk and
νl and select the basis W. Suppose the total number of pulses emitted by Alice (Bob) is
Ndata, then the number of pulses is P2

W Pµkνl Ndata when Alice’s and Bob’s intensities with
W basis are µk and νl , respectively. In the above equation, PW is the probability that Alice
(Bob) chooses the W ∈ {X, Z} basis, Pµkνl = Pµk Pνl is the probability that Alice and Bob
choose the intensities µk and νl , respectively. At this point, the number of successful BSM
events that Charlie obtained is denoted as nW

µkνl
. Then, nW

µkνl
has the binomial distribution

with parameters (P2
W Pµkνl Ndata, QW

µkνl
), for short,

nW
µkνl
∼ B(P2

W Pµkνl Ndata, QW
µkνl

). (6)

According to [36], we find Ndata is so large (typically 1010 ∼ 1011), QW
µkνl

is close to
10−8 ∼ 10−5. Generally, the selections of basis and intensity are random. In other words,
PZ = PX = 1/2, Pµk = Pνl = 1/3 where k, l ∈ {0, 1, 2}. Thus, we have P2

W Pµkνl NdataQW
µkνl

>

P2
W Pµkνl Ndata(1− QW

µkνl
) ≥ 5. By the law of large numbers and the central limit theorem,

when P2
W Pµkνl NdataQW

µkνl
≥ 5 and P2

W Pµkνl Ndata(1− QW
µkνl

) ≥ 5, the binomial distribution
with parameters (P2

W Pµkνl Ndata, QW
µkνl

) can be approximately regarded as the normal distri-
bution with mean P2

W Pµkνl NdataQW
µkνl

and variance P2
W Pµkνl Ndata(1−QW

µkνl
), given by

nW
µkνl
∼ N(P2

W Pµkνl NdataQW
µkνl

, P2
W Pµkνl Ndata(1−QW

µkνl
)). (7)
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After standardization, we obtain a random variable UW
µkνl

, which obeys the standard
normal distribution; that is,

UW
µkνl

=
nW

µkνl
− P2

W Pµkνl NdataQW
µkνl√

P2
W Pµkνl Ndata(1−QW

µkνl
)
∼ N(0, 1). (8)

Considering the additivity of normal distribution, we obtain a random variable involv-
ing all possibilities of UW

µkνl
where W ∈ {X, Z}, k, l ∈ {0, 1, 2}, which also obeys the normal

distribution. There are eighteen cases of UW
µkνl

considering that the pair of intensity is nine
cases and the selection of basis is two cases. Note that we only consider the same basis for
Alice and Bob, that is, both Z basis or both X basis. After standardization, we obtain a new
random variable V that obeys the standard normal distribution, which can be written as

V =
1√
18

∑
W∈{Z,X}, k, l∈{0,1,2}

nW
µkνl
− P2

W Pµkνl NdataQW
µkνl√

P2
W Pµkνl Ndata(1−QW

µkνl
)
∼ N(0, 1). (9)

Furthermore, Φ(v) is the distribution function of V, given by

Φ(v) =
1√
2π

∫ v

−∞
e−

t2
2 dt, −∞ < vs. < ∞, (10)

where v is the value of V and is just the test statistic that we find.
(iii) Find the value of the test statistic. We set the parameters Ndata, ed, e0, pd, Lac, Lbc,

δ, θ, PZ, PX , µk, νl , Pµk , and Pνl , where k, l ∈ {0, 1, 2}, and we calculate the theoretical value
of QW

µkνl
according to Equations (2)–(4). We record nW

µkνl
where k, l ∈ {0, 1, 2}, W ∈ {X, Z}.

We substitute the above data into Equation (9) and obtain the value of the test statistic v.
(iv) Choose a significance level. We need to determine a significance level α (typically

0.05) for the test. In terms of the null hypothesis H0 of the test, we deduce that the test is a
two-tailed hypothesis testing. Given α, the rejection region is |vs.| > v[1−α/2] where v[1−α/2]
can be obtained by Equation (10). More precisely, the variables −v[1−α/2] and v[1−α/2] refer
to the boundary values between the rejection region and the acceptance region for the
test. Let the left side of Equation (10) be equal to α/2; the upper limit of the integral will
be −v[1−α/2]. According to the symmetry of the probability density function of normal
distribution, v[1−α/2] can be obtained.

(v) Make a decision. Compare the test statistic v with the critical values v[1−α/2] and
−v[1−α/2]. If v > v[1−α/2] or v < −v[1−α/2], we will reject H0 and accept H1. This means
that we believe there is a PNS attack on the channel. Otherwise, we fail to reject H0. That is
to say, we consider there is no PNS attack on the channel. Note that the significance level of
the test α is just the Type I error probability of the test, namely, the probability of mistaking
no PNS attack for having a PNS attack. Let β denote the Type II error probability of the test,
to be precise, the probability of mistaking having a PNS attack for no PNS attack. Note that
β is usually difficult to solve in most situations. Furthermore, determining the value of β
requires more information about the aggression behavior.

If the result is judged to be a PNS attack, the secure key rate in this case can be
estimated by Equation (1). Otherwise, all pulses with the Z basis leading to a successful
BSM event including both single-photon pulses and multiphoton pulses can be used to
generate the keys. Furthermore, the secure key rate formula Equation (1) becomes

R ≥ qQZ
µ2ν2

[1− feH(EZ
µ2ν2

)− H(EZ
µ2ν2

)]. (11)

By comparing Equation (11) with Equation (1), we can easily find the secure key rate has
been highly improved when the judgment result is no PNS attack. This is mainly due to
the contribution of multiphoton components.
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4. Results and Analysis

In the preceding section, we showed the details of our detection method. Now, we
move forward to the corresponding experiments based on the aforementioned method
and analyze the experimental results. Generally speaking, the real experimental data were
substituted into the formulas in Section 3 to verify the correctness of our method. The
experimental parameters were from real experiments [36]. Specially, the experimenters
in [36] adopted a symmetric scheme; that is, all parameters of Alice and Bob were identical
and optimized. The relevant experimental parameters used in [36] and this paper are
shown in Table 1.

Table 1. Experimental parameters used in this paper. Data from Phys. Rev. Lett. 2014, 112, 190503.

µ2(ν2) µ1(ν1) µ0(ν0) Pµ2(Pν2) Pµ1(Pν1) Pµ0(Pν0) PZ(PX)

0.3 0.1 0.01 0.2 0.45 0.35 0.5

Ndata ed e0 pd Lac(Lbc) δ θ

1.69× 1011 0.01 0.5 5× 10−5 5 0.2 0.8

Based on the above parameters, we can obtain the values of QW
µkνl

, as shown in Table 2.
Note that Table 2 in this paper is exactly the same as Table I in the Supplementary Materials
of [36]. We record the values of nW

µkνl
, as shown in Table 3. Note that the data in Table 3

can be deduced from Table I in the Main Text of [36]. According to the above data and
Equation (8), all values of UW

µkνl
can be obtained, as shown in Table 4.

Table 2. The values of QW
µkνl

(×10−4) with intensities µk ∈ {µ2, µ1, µ0} and νl ∈ {ν2, ν1, ν0} based on
W ∈ {X, Z}. Reprinted/adapted with permission from Ref. [36], 2014, American Physical Society.

Z X

νl
µk µ2 µ1 µ0 µ2 µ1 µ0

ν2 0.4643 0.1596 0.0215 0.9086 0.4074 0.2449

ν1 0.1596 0.0539 0.0066 0.4074 0.1039 0.0319

ν0 0.0215 0.0066 0.0007 0.2449 0.0319 0.0012

Table 3. The values of nW
µkνl

(×104) with intensities µk ∈ {µ2, µ1, µ0} and νl ∈ {ν2, ν1, ν0} based on
W ∈ {X, Z}.

Z X

νl
µk µ2 µ1 µ0 µ2 µ1 µ0

ν2 787.5 270.4 38.03 1526 692.9 429.3

ν1 262.0 89.74 11.83 670.9 172.4 52.73

ν0 36.17 11.32 1.521 415.7 53.57 2.366

Table 4. The values of UW
µkνl

with intensities µk ∈ {µ2, µ1, µ0} and νl ∈ {ν2, ν1, ν0} based on
W ∈ {X, Z}.

Z X

νl
µk µ2 µ1 µ0 µ2 µ1 µ0

ν2 1.026 0.6174 3.709 2.415 2.512 10.00

ν1 −7.100 −3.187 4.016 −10.05 −5.452 −3.197

ν0 −0.3709 1.004 5.438 1.209 −0.9135 4.154

The schematic diagram of statistical hypothesis testing is illustrated in Figure 1. After
calculation, we obtained the value of the test statistic v = 0.236. Given the significance
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level of the test α = 0.05, the critical values were v[1−α/2] = 1.96 and −v[1−α/2] = −1.96.
Since −1.96 < 0.236 < 1.96, the test statistic did not fall inside the rejection region, and we
failed to reject H0. In other words, we inferred that there was no PNS attack on the channel,
and the corresponding Type I error probability was less than 5%. According to [36], there
was indeed no PNS attack in the experiment, which verifies the correctness of our method.
Thus, both single-photon and multiphoton components can be used to generate keys in
this case. At this time, the secure key rate can be estimated through Equation (11).

0.4

0.3

0.2

0.1

0.0

X

D
en

si
ty

-1.960

0.025

1.960

0.025

0 0.236

Distribution Plot
Normal, Mean=0, StDev=1

Critical Value
Critical Vaule

Test Statistic

Figure 1. The schematic diagram of statistical hypothesis testing. The value of the test statistic v is
0.236. Given the significance level of the test α = 0.05, the critical values are v[1−α/2] = 1.96 and
−v[1−α/2] = −1.96.

5. Conclusions and Discussion

In summary, we first recovered the lost information of the existing decoy-state method
when detecting the weaker version of a PNS attack in the decoy-state MDI-QKD and
extracted a normal distribution statistic via statistical hypothesis testing. Based on this
information, we proposed a new method to detect the weaker version of a PNS attack. Most
importantly, the error probability of detection was precisely calculated by our method, and
we also gave the calculation. Finally, according to the judgment result, the corresponding
secure key rate was provided. In particular, compared with the existing decoy-state MDI-
QKD protocols, the secure key rate with our method has been highly improved if the
judgment result is no weak PNS attack. Meanwhile, the associated experimental results
also verified the correctness of our method.

Nevertheless, all judgment results in this paper were obtained under the condition that
the null hypothesis was no weak version of a PNS attack. In other words, we assume that
the gain of signal or decoy state will change significantly after the PNS attack. However,
we can do nothing about the stronger PNS attack, which retains the gain of signal and
decoy state, such as a partial PNS attack [15], because the premise of the derivation no
longer holds, and the Type II error probability of our method in this case will be poor even
close to unity. For this reason, compared with the existing decoy-state method [29–31] to
directly estimate the secure key rate, our method is not ready for practical application now;
however, we provide a new direction to improve the secure key rate and efficiency.
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