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Abstract: Resolution is an intuitive assessment for the visual quality of images, which is limited
by physical devices. Recently, image super-resolution (SR) models based on deep convolutional
neural networks (CNNs) have made significant progress. However, most existing SR models require
high computational costs with network depth, hindering practical application. In addition, these
models treat intermediate features equally and rarely explore the discriminative capacity hidden in
their abundant features. To tackle these issues, we propose an attention network with information
distillation(AIDN) for efficient and accurate image super-resolution, which adaptively modulates
the feature responses by modeling the interactions between channel dimension and spatial features.
Specifically, gated channel transformation (GCT) is introduced to gather global contextual information
among different channels to modulate intermediate high-level features. Moreover, a recalibrated
attention module (RAM) is proposed to rescale these feature responses, and RAM concentrates the
essential contents around spatial locations. Benefiting from the gated channel transformation and
spatial information masks working jointly, our proposed AIDN can obtain a more powerful ability to
identify information. It effectively improves computational efficiency while improving reconstruction
accuracy. Comprehensive quantitative and qualitative evaluations demonstrate that our AIDN
outperforms state-of-the-art models in terms of reconstruction performance and visual quality.

Keywords: image super-resolution; distillation structure; attention mechanism

1. Introduction

The resolution of an image is restricted by the sensor imaging device, hindering
its development. Single-image super-resolution (SISR) is a typical low-level problem in
computer vision, which aims to restore an accurate high-resolution (HR) image from a
degraded low-resolution (LR) observation. It has been widely used in various important
fields involving the development of multimedia technology [1], such as remote-sensing
imaging, live video [2], and monitoring devices. However, image super-resolution is still a
challenging topic because multiple HR images may be reconstructed from any LR image.
To tackle this difficulty, plenty of approaches based on deep convolutional neural networks
(CNNs) have been proposed to establish LR–HR image mappings, which have achieved
excellent performance [3,4].

SRCNN [5] was the pioneering work in deep learning for image super-resolution recon-
struction, directly modeling an end-to-end mapping through only a three-layer convolutional
network, which achieved better results than traditional algorithms. Subsequently, deep
CNN-based SR models have become the mainstream. Kim et al. presented a very deep
convolutional network (VDSR) [6] and DRCN [7], pushing the model depth to 20 layers by
equipping the residual structure [8], which led to a remarkable performance gain (e.g.,
VDSR obtained a PSNR of 37.53 vs. SRCNN’s PSNR of 36.66 on Set5 ×2; PSNR is defined
in Section 4.1). These methods take the interpolated LR image as the input to the network,
undoubtedly increasing the computational burden and time overhead. FSRCNN [9], using
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transposed convolution, and ESPCN [10], adopting sub-pixel convolution, have been pro-
posed to accelerate the inference and reduce the computational burden by changing the
up-scaled position of the input low-resolution (LR) image. Thanks to effective sub-pixel
convolution, Lim et al. [11] explored a broad and deep EDSR network without the batch nor-
malization module, dramatically improving the SR perfromance (e.g., EDSR PSNR = 38.11
vs. SRCNN PSNR = 37.53 on Set5 ×2). Since then, researchers have attempted to design
more complex networks to enhance network accuracy.

To obtain more abundant information, hierarchical features and multi-scale features
can be used. Wang et al. [12] introduced an adaptive weighted multi-scale (AWMS)
module residual structure to realize a lightweight network. SRDenseNet [13], based on
DenseNet [14], used the concatenated features of all layers to enhance feature propagation
and maintain continuous feature transmission. Furthermore, Song et al. [15] leveraged
NAS [16] to find an efficient structure based on a residual dense module for accurate
super-resolution. However, most SR models do not distinguish these intermediate fea-
tures and lack flexibility in processing different information types, thus preventing better
performance. RCAN [17] developed a channel attention module to model the channel
interdependencies, in order to obtain discriminative information, and achieved a PSNR of
38.27 on Set5 ×2; however, it has more than 16M parameters, which is not conducive to
deployment on resource-limited devices. Later, Hui et al. [18] constructed an information
multi-distillation structure with the splitting operation, greatly reducing the number of
channels. Lan et al. [19] introduced channel attention into the residual multi-scale module
to enhance the feature representation capability (MADNet), and generated a PSNR of 37.85
on Set5 ×2 with 878 K parameters .

Motivated by the above, we propose an attention network with an information dis-
tillation structure (AIDN) for efficient SISR, using several stacked attention information
distillation blocks (AIDB). Inspired by IDN, we carefully develop an attention information
distillation block (AIDB) to asymptotically learn more intermediate feature representations,
mainly employing multiple splitting operations combined with gate channel transforma-
tion (GCT). Specifically, the splitting strategy divides the previously extracted features
into two parts, where one is retained while the other is further processed by GCT. The
normalization method and attention mechanism are combined to gain precise contextual
information. GCT can learn the importance of different channels adaptively and takes
weighted feature maps as the input to the next layer. Meanwhile, GCT encourages coopera-
tion at shallow layers and competition at deeper layers. Moreover, all distilled features are
aggregated through the recalibrated attention module (RAM), which further refines these
high-frequency features and revises the importance of features in the channel dimension.
In general, the main contributions of our work can be summarized as follows:

• We propose an attention network with an information distillation structure (AIDN) for
efficient and accurate image super-resolution, which extracts the valuable intermediate
features step by step using the distillation structures;

• We introduce gate channel transformation (GCT) into SISR and use it in one distilla-
tion branch;

• We propose a recalibrated attention module (RAM) to re-highlight the contributions
of features and strengthen the expressive ability of the network. Comprehensive
experimental results demonstrate that the proposed method strikes a good balance
between performance and model size.

2. Related Work
2.1. Deep CNN-Based Super-Resolution Methods

In recent years, methods based on deep convolutional neural networks (CNNs) have
been successfully applied to various tasks, showing excellent performance.

Dong et al. [5] first explored the use of three convolutional layers for single-image
super-resolution (SISR), and obtained better reconstruction results than by using the tra-
ditional methods. Subsequently, with the successful application of the residual network
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architecture [8] in computer vision tasks, more and more residual-learning-variant algo-
rithms have been used to reconstruct SR images, including LapSRN [20], WMRN [21],
CFSRCNN [22], and RFANet [23]. Dense connections have also been introduced for image
super-resolution through the information flow of hierarchical features. RDN [24] combined
the residual structure with dense connections to form a residual dense network with a con-
tinuous memory. Zhang et al. [25] developed GLADSR through the use of the global–local
adjustment of dense connections to increase the network capacity.

Although these methods have achieved good performance, the parameters increase dra-
matically with the network depth, making them unsuitable for mobile platforms. DRCN [7]
leveraged recursive learning to decrease the parameters of the network. CARN [26] de-
veloped a cascading architecture in the residual structure, forming a lightweight model
suitable for practical applications. CBPN [27] struck a good balance between efficiency and
performance by learning mixed residual features. Song et al. [28] devised AdderNets to
resolve the defects of adder neural networks. It provided a better visual effect with lower
energy consumption without changing the original structures. More recently, some NAS-
based SR models have been proposed to automatically search for optimal architectures.
Chu et al. [29] presented an automatic search algorithm, FALSR, based on NAS, to achieve
a fast and lightweight SR model. DRSDN [30] explored diverse plug-and-play network
architectures for efficient single-image super-resolution.

2.2. Attention Mechanism

Attention mechanism is a data processing method in machine learning, which is
used to improve the performance of convolutional neural networks (CNN) in computer
vision tasks. Attention mechanism aims to enable a network to automatically learn more
focused areas by using masks (new weights). SENet [31] can be regarded as the first model
of attention mechanism, which improved the representational capability of the network
by modeling the relationship between channels. Wang et al. [32] presented a non-local
block to calculate the response of a location to the information of all positions. CBAM [33]
connected channel attention and spatial attention in a series to obtain a 3D attention map
to form a lightweight, universal module. GCT [34] combined a normalization module
with attention mechanism using lightweight variables to learn the interrelationships be-
tween channel-wise information. ECA-Net [35] developed a local cross-channel interaction
scheme without dimension reduction, which proved to be an efficient and lightweight
channel attention structure.

In addition, attention-based works have been proposed to further improve super-
resolution performance. Zhang et al. [23] introduced enhanced spatial attention (ESA)
into the residual-in-residual (RIR) structure to build a residual feature aggregation block,
thus forming a lightweight and effective model. Dai et al. [36] designed a second-order
attention network (SAN), which employed second-order feature statistics to learn more
discriminative feature expressions. DRLN [37] developed a novel Laplacian attention with
dense connections on the cascaded residual structure to study the inter- and intra-layer
dependencies that achieved deep supervision. Hu et al. [38] explored channel-wise and
spatial attention residual blocks (CSAR) to modulate hierarchical features in both global
and local manners, achieving prominent performance. CSNLN [39] proposed a non-local
attention with a different scale, which thoroughly explored all possible priors through
non-local calculations of the feature-wise similarities between patches in cross-scales.

3. Proposed Method
3.1. Network Architecture

In this section, we introduce the entire framework of our proposed attention net-
work with information distillation (AIDN), as shown in Figure 1. Our AIDN architecture
comprises three parts: a low-level feature extraction module (LFE), stacked attention
information distillation blocks (AIDBs), and a image reconstruction module. Here, ILR
represents the original low-resolution (LR) input image, while ISR denotes its output super-
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resolution (SR) image. Specifically, a convolutional layer is first leveraged to extract the
shallow features from the given LR input. This procedure can be expressed as

X0 = FLFE(ILR) (1)

where FLFE(·) denotes a convolutional layer with a kernel size of 3 × 3, and X0 is the
extracted shallow features. Then, X0 is sent to the next part, which consists of multiple at-
tention information distillation blocks (AIDBs) in a chain, which gradually refines multiple
hierarchical features. This process can be denoted as

Xn = Fn
AIDB(Xn−1) = Fn

AIDB(Fn−1
AIDB(· · · F

0
AIDB(X0) · · · )) (2)

where Fn
AIDB indicates the n-th AIDB function, and Xn−1 and Xn denote the input and

output feature maps of the n-th AIDB, respectively.

Figure 1. Overview of our AIDN architecture.

Then, the deep features generated by this sequence of AIDBs are further concatenated
together through global feature fusion. After fusing, the deep features are processed by
two convolution layers to the reconstruction module, which can be formulated as

Xaggregate = Faggregate(Concat(X1, · · · , Xn)) (3)

where Concat represents the concatenation operation, and Faggregate denotes a composite
function of a convolution layer with a kernel size of 1× 1 following a convolution layer
with a kernel size of 3× 3.

In addition, the deep-aggregated feature Xaggregate is added to the shallow feature X0
through global residual learning. Finally, the super-resolving output images are produced
through the reconstruction function, as follows

ISR = Frec(Xaggregate + X0) (4)

where Frec(·) represents the reconstruction module function and ISR is the output super-
resolution image of the network. The reconstruction module consists of a 3× 3 convolu-
tional layer and a pixel-shuffle layer.

Different loss functions have been introduced to optimize SR networks. For fair
comparison with the most advanced methods, our model is optimized using the L1 loss
function, as in previous works [18,21]. Given a training set {Ii

LR, Ii
HR}N

i=1, N denotes
the number of LR–HR image patches. Hence, the loss function of our AIDN can be
represented as

L(Θ) =
1
N

N

∑
i=1
||HAIDN(Ii

LR)− Ii
HR||1 (5)

where Θ indicates the learnable parameters of our AIDN model and HAIDN(·) denotes the
function of our model. Our goal is to minimize the L1 loss function between the recon-
structed image ISR and the corresponding ground-truth high-resolution (HR) image IHR.
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3.2. Attention Information Distillation Block

This section mainly introduces the key parts of the proposed AIDB. As shown in
Figure 2, the proposed attention information distillation block (AIDB) mainly contains the
feature refinement module (FRM) and the recalibrated attention module (RAM). Specifically,
the FRM module gradually extracts the multi-layer features by employing information
diffluence to obtain a discriminative learning ability. A few features are also aggregated
according to their contributions. Moreover, the RAM module re-highlights the informative-
ness of the features and enhances the expression capability of the network.

Figure 2. Attention information distillation block (AIDB).

3.3. Feature Refinement Module

The feature refinement module (FRM) exploits the distillation network and attention
mechanism to separate and process features by connection or convolution. Specifically, a
3× 3 convolution layer is first exploited to extract input features for multiple succeeding
distillation steps in the FRM. For each step, the channel split operation is performed on the
previous features, resulting in two-part features. Both parts require further processing. One
part is reserved, while the other part is used as input to the gate channel transformation
(GCT) module [34]. Assuming the input features are denoted by Xin, this procedure can be
formulated as

Xretain1 , Xcoarse1 = Split1(Fconv1(Xin))

Xretain2 , Xcoarse2 = Split2(Fconv2(FGCT1(Xcoarse1))

Xretain3 , Xcoarse3 = Split3(Fconv3(FGCT2(Xcoarse2))

Xretain4 = Fconv4(Xcoarse3) (6)

where Fconvi indicates the i-th 3× 3 convolution operation followed by the Leaky ReLU(LReLU)
activation function, FGCTi denotes the channel transformation operation (detailed in the
following section), Splitj represents the j-th channel split operation, Xretaini denotes the i-th
retained features, and Xcoarsej represents the j-th coarse features, which are further fed to
the subsequent layers. Afterward, all the features retained in each step are concatenated
along the channel dimension, which can be denoted as

XFRM = Concat(Fdistilled1 , Fdistilled2 , Fdistilled3 , Fdistilled4) (7)

where Concat indicates the concatenation operation and XFRM denotes the output of the
feature refinement module (FRM).

3.4. Gate Channel Transformation

Gate channel transformation (GCT) [34] is an attention mechanism. Moreover, GCT is
a simple and effective channel-relationship-modeling architecture, combining a normal-
ization module and gating mechanism. As shown in Figure 3, the overall structure of the
GCT module consists three parts: global context embedding, channel normalization, and
a gating mechanism. First, we employ L2-norm to capture global contextual information
from the input feature. Given the input feature X = {x1, x2, . . . , xk}, X ∈ RC×H×W , it can
be written mathematically as [34]
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sc = αc||xc||2 = αc{[
H

∑
i=1

W

∑
j=1

(xi,j
c )2] + ε}

1
2 (8)

where S = {S1, S2, . . . , Sc}, S ∈ RC×1×1 is the gathered global-context-embedding infor-
mation along each channel dimension, ε represents a very small constant to avoid the
derivation problem at zero point, and αc denotes the trainable parameter, namely the
embedding weight. Furthermore, αc can control the different weights of each channel.
In particular, when αc approaches 0, the channel will not participate in the subsequent
normalization module. Accordingly, it enables the network to recognize when one channel
is independent of the others. Then, we adopt the normalization operation to reduce the
number of parameters and improve the computational efficiency. Furthermore, normaliza-
tion approaches [40] have been shown to establish competitive relations between different
neurons (or channels) in neural networks, which stabilize the training process. This allows
for larger values with larger channel responses and restrains the other channels with less
feedback. The channel normalization function can be expressed as

ŝc =

√
Csc

||s||2
=

√
Csc

[(∑C
c=1 s2

c ) + ε]
1
2

(9)

where C is the number of channels. Finally, the gating mechanism is introduced to control
the activation of the gate channel. The gating function is defined as follows

x̂c = xc[1 + tanh(γc ŝc + βc)] (10)

where γ = [γ1, . . . , γC] denotes gating weights, β = [β1, . . . , βC] represents gating biases,
and xc, x̂c are the input and output features of the gating mechanism module, respectively.
The weights and biases determine the behavior of GCT in each channel. When the gating
weight γC is activated actively, GCT enhances this channel to compete with the others.
When the gating weight is activated passively, GCT pushes the channel to cooperate with
the others. In other words, low-level features are primarily learned in the shallow layers
of the network. Thus, cooperation between channels is required to more widely extract
features. In the deeper layers, high-level features are mainly learned, and their differences
are often large. Therefore, competition between channels is needed to obtain more valuable
feature information.

Figure 3. Gate channel transformation module (GCT).

In addition, when the gating weight and bias are zeros, the original features are
allowed to pass to the next layer, which can be formulated as

x̂c = xc (11)

This can establish an identity mapping and solve the degradation problem of deep networks.
Hence, during GCT module initialization, α is initialized with 1, and γ and β are initialized
with 0. The initial steps will be improved the robustness of the training process, and the
final GCT results will be more accurate.
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3.5. Recalibrated Attention Module

To recalibrate informative features, the output features of FRM are further fed into
the recalibrated attention module (RAM), where the informative features are selectively
emphasized and useless features are inhibited according to their importance. As shown
in Figure 4, the overall structure of the RAM is a bottleneck architecture. Here, XFRM
and XRAM are defined as the input and output of the RAM, respectively. Specifically, the
concatenated features are first passed to a 1× 1 convolution layer to decrease channel
dimensions; then, they are divided into two branches. One branch preserves the original
information with a 1× 1 convolution to produce X1, while the other processes the spatial
information to search for the areas with the highest contribution. In addition, this branch is
equipped with two 3× 3 convolutions, a max-pooling layer, and a bilinear interpolation
operator to generate X2. The max-pooling operation not only enhances the receptive
field but also captures high-frequency details. The bilinear interpolation layer maps the
intermediate features to the original feature space to keep the identical size of the input
and output. Finally, X1 and X2 are concatenated and fed into a 1× 1 convolution followed
by a sigmoid function. This 1× 1 convolution is adopted to restore the channel dimensions.
Hence, the recalibrated attention can be expressed as

XRAM = FRAM(XFRM) · XFRM (12)

where FRAM(·) is the recalibrated attention module function.

Figure 4. Recalibrated attention module (RAM).

Therefore, the final output of the attention information distillation block (AIDB) can
be formulated as

XBn = XBn−1 + Fconv(XRAM) (13)

where Fconv is a 3× 3 convolutional layer, and XBn and XBn−1 denote the input and output
of the n-th AIDB, respectively. Furthermore, the GCT module considers the channel-wise
statistics, while the recalibrated attention module (RAM) encodes multi-scale features,
focusing on the context around the spatial locations. Therefore, AIDB can modulate more
informative features to obtain a more powerful feature representation capability, which is
conducive to improving SR performance.

4. Experiments Section

In this section, we first describe our experimental conditions regarding the implemen-
tation details and training settings. Then, we study the validity of the proposed modules
in our model. Finally, we systematically compare the proposed network with plenty of
state-of-the-art models.

4.1. Datasets and Metrics

In our experiments, following previous works [18,21], we employed the DIV2K
dataset [41] to train our model. It includes 800 high-quality training images. In the testing
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phase, we adopted five public benchmark datasets—Set5 [42], Set14 [43], BSD100 [44],
Urban100 [45], and Manga109 [46]—to comprehensively validate the effectiveness of our
model. In addition, we leveraged the peak signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [47] as quantitative evaluation metrics for the performance of the
final reconstructed super-resolution images. We computed the PSNR and SSIM values on
the luminance channel of the YCbCr color space. We also compared parameter amounts
with other leading models. Given a ground-truth image IHR and a super-resolved image
ISR, we defined the PSNR as:

PSNR(IHR, ISR) = 10log10(
Max2

I
MSE

) (14)

where

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(IHR(i, j)− ISR(i, j))2 (15)

MaxI is the maximum pixel value of an image, and H and W are the height and width,
respectively. We formulated SSIM as:

SSIM(IHR, ISR) = l(IHR, ISR)c(IHR, ISR)s(IHR, ISR) (16)

where 
l(IHR, ISR) =

2µIHR µISR+C1

µ2
IHR+µ2

ISR+C1

c(IHR, ISR) =
2σIHR σISR+C2

σ2
IHR+σ2

ISR+C2

s(IHR, ISR) =
2σIHR ISR+C3
σIHR σISR+C3

(17)

µIHR , σIHR , and σIHR ISR are the mean, standard deviation, and covariance of an image,
respectively, and C1, C2, and C3 are positive constants.

4.2. Implementation Details
4.2.1. Training Settings

We obtained the input low-resolution (LR) images from the corresponding HR images
by bicubic down-sampling in the training stage. Then, we set 16 LR patches as each
training mini-batch, and extracted with a size of 48× 48 from the LR images. Moreover,
we randomly rotated the image in the training dataset by 90◦, 180◦, and 270◦, and flipped
it horizontally for data augmentation. We utilized Adam optimizer [48] to optimize our
model with settings of β1 = 0.9 and β2 = 0.999. We fixed the initial learning rate to
2× 10−4, and decreased by half every 200 epochs. We performed the proposed model on
the PyTorch framework with an NVIDIA GTX 1080Ti GPU. More setting details of our
experiments are listed in Table 1.

Table 1. Setting parameters for our AIDN.

Batch size 48 ×48
Patch size 16

The numbers of information distillation blocks 6
Initial learning rate 2× 10−4

Channels 64
Channels—reserved (split) 16

Optimizer (Adam) β1 = 0.9 , β2 = 0.999

4.2.2. Model Details

Our model includes six attention information distillation blocks (AIDBs), and we set
the number of feature channels to 64. Among them, we reserved the channels=16 and
further processed the other parts. We set the activation functions in the feature refinement
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module (FRM) as LReLU, while we applied ReLU to the other parts [49]. Additionally, in
the recalibrated attention module (RAM), we deployed the first 3× 3 convolution layer
with a stride = 2, the other 3× 3 convolution layer with stride = 1, and used the max-pooling
operation with a 7× 7 convolution with stride = 3.

4.3. Study of GCT and RAM

To study the contributions of the different modules in the proposed model, we con-
ducted ablation experiments. All the models are trained from scratch for 1000 epochs, and
are executed under similar settings. Each time we removed one module, we directly tested
the model performance without adding other operations. Table 2 shows the experimental
results at a scale factor of 2 on multiple datasets. Without gate channel transformation
(GCT) and the recalibrated attention module (RAM) in the information distillation block
(AIDB), the PSNR values of all datasets are relatively lower. The performance of the second
row with GCT module is better than that of the first row with only 1 K more parameters.
Similarly, RAM in the third row also improves the performance, especially on Urban100
and Manga109 datasets. Therefore, both the GCT module and RAM can independently
obtain better reconstruction accuracy. This can be attributed to the multi-layer features
being discriminatively treated, and different weights being allocated according to the
characteristics of features to screen out high-value information features, improving the
efficiency and accuracy of the network. Furthermore, the best reconstruction results are
provided when integrating GCT and RAM into the AIDB with few additional parameters,
as shown in the last row of Table 2. Thus, the proposed AIDB can capture spatial and
global contextual information in each channel, benefiting image restoration. The above
quantitative results effectively prove the effectiveness of the network structure with the
introduced GCT and RAM, and their integration.

Table 2. Investigations of GCT module and RAM unit on five benchmark datasets at scaling factors
of ×2. PSNR/SSIM represent the two values. Params: kernel*kernel*channel-input*channel-output.
The best and second-best performances are highlighted in red and blue.

Scale GCT RAM
Params Set5 Set14 BSD100 Urban100 Manga109

(K) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 × × 690 37.63/0.9584 31.30/0.9146 31.94/0.8966 31.31/0.9199 37.79/0.9744
×2 X × 691 37.81/0.9591 33.41/0.9157 32.07/0.8980 31.75/0.9241 38.27/0.9754
×2 × X 733 37.85/0.9592 33.51/0.9167 32.10/0.8982 31.94/0.9260 38.44/0.9758
×2 X X 734 37.95/0.9596 33.57/0.9169 32.16/0.8989 32.16/0.9278 38.68/0.9763

4.4. Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of our proposed architecture, we compared recently
proposed competitive works, including SRCNN [5], VDSR [6], DRCN [7], LapSRN [20],
IDN [18], CARN [26], MoreMNAS-A [50], FALSR-A [29], ESRN-V [15], WMRN [21],
MADNet-L1 [19], MSICF [51], and CFSRCNN [22], with the proposed network. These
works are almost all lightweight networks with less than 2.0M parameters. The quantitative
results with scale factors of ×2 , ×3, and ×4 on five benchmark datasets are provided in
Table 3. It can be seen that our proposed model is superior to the other leading algorithms
across different datasets and scaling factors. Specifically, compared with several automatic
search SR architectures based on NAS (FALSR-A, MoreMNAS, and ESRN-V), our AIDN
network gets higher PSNR values with fewer parameters (FLOPs) on five datasets for ×2
up-scaling.
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Table 3. Quantitative results of several state-of-the-art SR models at scaling factors of ×2, ×3 and ×4
(average PSNR/SSIM). The best performance is highlighted in red, while the second-best performance
is highlighted in blue.

Method Scale
Params Set5 Set10 BSD100 Urban100 Manga109

(K) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [5] ×2 57 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.60/0.9663
VDSR [6] ×2 665 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729

LapSRN [20] ×2 813 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740
IDN [18] ×2 590 37.83/0.9600 33.30/0.9148 32.08/0.8950 31.27/0.9196 -

CARN-M [26] ×2 412 37.53/0.9583 33.26/0.9141 31.92/0.8960 30.83/0.9233 -
AWSRN-S [12] ×2 397 37.75/0.9596 33.31/0.9151 32.00/0.8974 31.39/0.9207 37.90/0.9755
ESRN-V [15] ×2 324 37.85/0.9600 33.42/0.9161 32.10/0.8987 31.79/0.9248 -
WMRN [21] ×2 452 37.83/0.9599 33.41/0.9162 32.08/0.8984 31.68/0.9241 38.27/0.9763

MADNet-L1 [19] ×2 878 37.85/0.9600 33.38/0.9161 32.04/0.8979 31.62/0.9233 -
MoreMNAS-A [50] ×2 1039 37.63/0.9584 33.23/0.9138 31.95/0.8961 31.24/0.9187 -

MSICF [51] ×2 1900 37.89/0.9605 33.41/0.9153 32.15/0.8992 31.47/0.9220 -
FALSR-A [29] ×2 1021 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 -

CFSRCNN [22] ×2 1310 37.79/0.9591 33.51/0.9165 32.11/0.8988 32.07/0.9273 -
AIDN(ours) ×2 734 37.95/0.9603 33.57/0.9169 32.16/0.8993 32.16/0.9278 38.68/0.9782

SRCNN [5] ×3 57 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107
VDSR [6] ×3 665 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310
IDN [18] ×3 590 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 -

CARN-M [26] ×3 412 33.99/0.9236 30.08/0.8367 28.91/0.8000 26.86/0.8263 -
AWSRN-S [12] ×3 447 34.02/0.9240 30.09/0.8376 28.92/0.8009 27.57/0.8391 32.82/0.9393
ESRN-V [15] ×3 324 34.23/0.9262 30.27/0.8400 29.03/0.8039 27.95/0.8481 -
WMRN [21] ×3 556 34.11/0.9251 30.17/0.8390 28.98/0.8021 27.80/0.8448 33.07/0.9413

MADNet-L1 [19] ×3 930 34.16/0.9253 30.21/0.8398 28.98/0.8023 27.77/0.8439 -
MSICF [51] ×3 1900 34.24/0.9266 30.09/0.8371 29.01/0.8024 27.69/0.8411 -

CFSRCNN [22] ×3 1495 34.24/0.9256 30.27/0.8410 29.03/0.8035 28.04/0.8496 -
AIDN(ours) ×3 742 34.35/0.9259 30.35/0.8413 29.07/0.8039 28.13/0.8512 33.50/0.9433

SRCNN [5] ×4 57 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
VDSR [6] ×4 665 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809

LapSRN [20] ×4 813 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
IDN [18] ×4 590 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 -

CARN-M [26] ×4 412 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.63/0.7688 -
AWSRN-S [12] ×4 588 31.77/0.8893 28.35/0.7761 27.41/0.7304 25.56/0.7678 29.74/0.8982
ESRN-V [15] ×4 324 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782 -
WMRN [21] ×4 536 32.00/0.8925 28.47/0.7786 27.49/0.7328 25.89/0.7789 30.11/0.9040

MADNet-L1 [19] ×4 1002 31.95/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746 -
MSICF [51] ×4 1900 31.91/0.8923 28.35/0.7751 27.46/0.7308 25.64/0.7692 -

CFSRCNN [22] ×4 1458 32.06/0.8920 28.57/0.7800 27.53/0.7333 26.03/0.7824 -
AIDN(ours) ×4 754 32.17/0.8939 28.61/0.7806 27.55/0.7344 26.04/0.7833 30.42/0.9065

Although WMRN has slightly fewer parameters than the proposed network, its recon-
struction results are far worse. For example, with a scale factor of 3 on Set5, our network
obtains a significant performance gain of 0.24 dB. Moreover, our AIDN performs well com-
pared to MADNet-L1, which has a similar number of parameters. MADNet also applied
an attention mechanism with a residual multi-scale module. For a scale factor of 4 on
four datasets, CFSRCNN achieves the second-best performance with nearly twice as many
parameters as our method. From Table 3, it can be seen that the number of parameters of
SRCNN and VDSR do not change across scaling factors, as the input image is interpolated
and then sent into the network. Other models have varying parameters due to different
up-sampling approaches. As our model has relatively few parameters, it can be considered
a lightweight model. Consequently, our method has better reconstruction performance
than the most advanced methods, with fewer parameters.
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In addition, we also compared the visual quality with other methods at the ×4 scale,
as shown in Figure 5. For “148026” from BSD100, most methods restored the blurred edges,
while CARN even produced wrong textures; furthermore, the image generated by our
method was closer to the original image. For “img_042” from Urban100, other methods
suffered from severe artifacts, and the lines produced are curved. Only the image refined by
our method outputted horizontal lines correctly. For “img_037” from Urban100, LapSRN
could not recover grids, and VDSR rebuilt several redundant white vertical lines at the
upper right of the image. Our AIDN reconstructed accurate grids with better visual effects.

“148026” from BSD100 dataset

HR
(PSNR/SSIM)

Bicubic
(29.20/0.4315)

SRCNN
(29.50/0.5830)

VDSR
(29.63/0.6257)

DRCN
(29.56/0.5928)

LapSRN
(29.86/0.6625)

CARN-M
(29.92/0.6917)

AIDN (ours)
(30.02/0.7561)

“img_042” from Urban100 dataset

HR
(PSNR/SSIM)

Bicubic
(29.46/0.6039)

SRCNN
(30.08/0.7372)

VDSR
(30.24/0.7822)

DRCN
(30.25/0.8163)

LapSRN
(30.18/0.7737)

CARN-M
(30.36/0.8093)

AIDN (ours)
(30.47/0.8598)

“img_073” from Urban100 dataset

HR
(PSNR/SSIM)

Bicubic
(27.58/0.2594)

SRCNN
(27.79/0.3651)

VDSR
(27.85/0.4472)

DRCN
(27.85/0.4476)

LapSRN
(27.86/0.4470)

CARN-M
(27.91/0.4566)

AIDN (ours)
(28.12/0.5683)

“img_076” from Urban100 dataset

HR
(PSNR/SSIM)

Bicubic
(27.72/0.3434)

SRCNN
(28.11/0.4817)

VDSR
(28.02/0.5370)

DRCN
(28.20/0.6412)

LapSRN
(28.08/0.5389)

CARN-M
(28.56/0.6061)

AIDN (ours)
(28.67/0.7895)

Figure 5. Visual comparison results of our AIDN with SRCNN [5], VDSR [6], DRCN [7], LapSRN [20]
and CARN-M [26] for×4 SR images on BSD100 and Urban100 dataset. The best results are highlighted
by red.

4.5. Heatmaps of the Proposed AIDN

This section describes the heatmaps of the proposed AIDN at stages with the Urban100
dataset (×2). In Figure 6, the top row shows heatmaps of the shallow features before passing
into AIDBs, while the next two rows are heatmaps of the refined high-level features. The
results show that our method has different weights in different states. The rows represent
the states of different channels at the same time, and the columns represent the states of the
same channel at different times. Yellow is heavily weighted, blue is lightly weighted, and
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green is centered. It can be seen that our method has the function of modulating features,
which is conducive to image reconstruction.

Figure 6. Heatmaps of our AIDN at different stages from Urban100 dataset.

4.6. Model Size Analysis

In addition, to further illustrate the superiority of the proposed network, we compared
its number of parameters and performance with other leading works. The number of
parameters is especially important when building a lightweight network, especially for
resource-constrained mobile devices. The experimental results on Urban100 with a scale
factor of ×2 are shown in Figure 7. Compared with other methods, our AIDN model
obtained comparable or higher PSNR values with fewer parameters, while other methods
either had a larger number of parameters or lower performance. These analyses indicate
that the proposed AIDN strikes a better balance between parameters and performance.

Figure 7. Our AIDN compared with other models in terms of parameters and performance. Results
are evaluated on Urban100 with a scale factor of 2.

4.7. Visualization on Historical Images

To further illustrate the robustness and effect of our model, we evaluated our attention
network with information distillation (AIDN) on historical images. The degradation process
of these low-resolution images is unknown, and no corresponding high-quality images
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are available. Figure 8 shows the visual results on scale factor ×4. For “img006”, the
characters produced by our model were clearer and more independent. For “img007”, our
AIDN could reconstruct finer details, and the refined images showed lower blurring. In
short, the images generated by our method have better perceptual quality than those of
other methods.

“img006” from Historical “bicubic” SRCNN

VDSR CARN-M AIDN (ours)

“img007” from Historica “bicubic” SRCNN

VDSR CARN-M AIDN (ours)

Figure 8. Visual comparisons for a scale factor of ×4 SR on historical images.

5. Conclusions

In this paper, we proposed an attention network with information distillation (AIDN)
for image super-resolution. Specifically, global contextual information embedding among
different channels is employed to modulate multiple features in a step-by-step manner,
forming the distillation structure. Moreover, a recalibrated attention module (RAM) is
adopted to re-highlight these features, concentrating on the vital contents around spatial
locations. Benefiting from the gated channel transformation and spatial information unit
masks working jointly, the proposed AIDN possesses a more powerful information identi-
fying capability, effectively improving the computational efficiency while enhancing the
reconstruction accuracy. Comprehensive quantitative and qualitative evaluations effec-
tively demonstrate that our AIDN outperforms state-of-the-art models in terms of both
reconstruction performance and visual quality. In future work, we will extend our AIDN
to other complex tasks (e.g., images with noise, blurring, etc.).
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