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Abstract: Properties of data distributions can be assessed at both global and local scales. At a
highly localized scale, a fundamental measure is the local intrinsic dimensionality (LID), which
assesses growth rates of the cumulative distribution function within a restricted neighborhood and
characterizes properties of the geometry of a local neighborhood. In this paper, we explore the
connection of LID to other well known measures for complexity assessment and comparison, namely,
entropy and statistical distances or divergences. In an asymptotic context, we develop analytical
new expressions for these quantities in terms of LID. This reveals the fundamental nature of LID
as a building block for characterizing and comparing data distributions, opening the door to new
methods for distributional analysis at a local scale.

Keywords: entropy; tail entropy; cumulative entropy; entropy power; intrinsic dimensionality; local
intrinsic dimension; statistical divergences; statistical distances

1. Introduction

Fundamental activities for analyzing data include both an ability to characterize
data complexity and an ability to make comparisons between distributions. Widely used
measures for these activities include entropy (for assessing uncertainty) and statistical
divergences or distances (to compare distributions) [1]. Such analysis can be performed at
either a global scale across the entire data distribution or at a local scale, in the vicinity of a
given location in the distribution.

An important measure of global complexity is intrinsic dimensionality, which captures
the effective number of degrees of freedom needed to describe the entire dataset. On the
other hand, local intrinsic dimensionality (LID) [2] is capable of characterizing the complexity
of the data distribution around a specified query location, thus capturing the number of
degrees of freedom present at a local scale. LID is a unitless quantity that can also be inter-
preted as a relative growth rate of probability measure within an expanding neighborhood
around the specified query location, or the intrinsic dimension of the space immediately
around the query point.

Our focus in this paper is to characterize entropy and statistical divergences at a
highly local scale, for an asymptotically small vicinity around a specified location. We
show that it is possible to leverage properties that arise from LID based characterizations
of lower tail distributions [3], to develop analytical expressions for a wide selection of
entropy variants and statistical divergences, in both univariate and multivariate settings.
This yields expressions for tail entropies and tail divergences.

Analytical characterizations for tail divergences and tail entropies are appealing from
a number of perspectives. These are as follows:

• For univariate scenarios, if working with the tail of a distribution that has a single
variable, we can conduct:
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– Temporal analysis: when a distribution models some property varying over time
(e.g., survival analysis), we can analyze the entropy of a univariate distribution
within an asymptotically short window of time, or the divergence between two
univariate distributions within an asymptotically short window of time.

– Distance-based analysis: when a distribution models distances from a query
location to its nearest neighbors and the distances are induced by a global data
distribution. Here, our results can be used for analysis of tail entropy or diver-
gence between distributions within an asymptotically small distance interval.
In the case of the latter, this can provide insight into multivariate properties,
since under minimal assumptions the divergences between univariate distance
distributions provide lower bounds for distances between multivariate distribu-
tions [4,5]. This is applicable for models such as generative adversarial networks
(GANs), where it is important to test correspondence between synthetic and true
distributions at a local level [6].

• For multivariate scenarios where we are analyzing distributions with multiple vari-
ables:

– If an assumption of locally spherical symmetry of the distribution holds, then we
can directly compute the tail entropy of a distribution or the divergence between
two tail distributions in the vicinity of a single point. Such an assumption is
suitable for analyzing data distributions for many types of physical systems such
as fluids, glasses, metals and polymers, where local isotropy holds.

A key challenge in developing analytical characterizations for tail entropies and tail
divergences is how to avoid or minimize assumptions about the form of the local dis-
tribution in the vicinity of the query (for example, assumptions such as a local normal
distribution or a local uniform distribution). As we will see, analytical results are in fact
possible—as the neighborhood radius asymptotically tends to zero, the tail distribution
(a truncated distribution induced from the global distribution) is guaranteed to converge
to a generalized pareto distribution (GPD), with the GPD parameter determined by the
LID value of the tail distribution. The technical challenge is to rigorously delineate un-
der what circumstances it is possible to leverage this relationship to achieve a dramatic
simplification of the integrals that are required to compute varieties of tail entropy or
distribution divergences. Our results in this paper show that such simplifications are in fact
possible, for a wide range of tail entropies and divergences. This allows us to characterize
and analyze fundamental properties of local neighborhood geometry, with results holding
asymptotically for essentially all smooth data distributions.

In summary, our key contributions are the development of substantial new theory that
asymptotically relates tail entropy, divergences and LID. It builds on and extends an earlier
work by Bailey et al. [3], which focused solely on univariate entropies, without reference to
divergences or multivariate settings. Specifically in this paper, we:

• Formulate technical lemmas which delineate when it is possible to substitute certain
types of tail distributions by simple formulations that depend only on their associated
LID values.

• Use these lemmas to compute univariate tail formulations of entropy, cross entropy,
cumulative entropy, entropy power and generalized q-entropies, all in terms of the
LID values of the original tail distributions.

• Use these lemmas to compute tail formulations of univariate statistical divergences
and distances (Kullback–Leibler divergence, Jensen–Shannon divergence, Hellinger
distance, χ2 divergence, α-divergence, Wasserstein distance and L2 distance).

• Extend the univariate results to a multivariate context, when local spherical symmetry
of the distribution holds.
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2. Related Work

The core of our study involves intrinsic dimensionality (ID) and we begin by reviewing
previous work on this topic.

There is a long history of work on ID, and this can be assessed either globally (for
every data point) or locally (with respect to a chosen query point). Surveys of the field
provide a good overview [7–9]. In the global case, a range of previous works have focused
on topological models and appropriate estimation methods [10–12]. Such examples encom-
pass techniques such as PCA and its variants [13], graph based methods [14] and fractal
models [7,15]. Other approaches such as IDEA [16,17], DANCo [18] or 2-NN estimate
the (global) intrinsic dimension based on concentration of norms and angles, or 2-nearest
neighbors [19].

Local intrinsic dimensionality focuses on the intrinsic dimension of a particular query
point and has been used in a range of applications. These include modeling deforma-
tion in granular materials [20,21], climate science [22,23], dimension reduction via local
PCA [24], similarity search [25], clustering [26], outlier detection [27], statistical manifold
learning [28], adversarial example detection [29], adversarial nearest neighbor characteriza-
tion [30,31] and deep learning understanding [32,33]. In deep learning, it has been shown
that adversarial examples are associated with high LID estimates, a characteristic that can
be leveraged to build accurate adversarial example detectors [29]. It has also been found
that the LID of deep representations [33] learned by Deep Neural Networks (DNNs) or
the raw input data [34,35] is correlated with the generalization performance of DNNs.
A ‘dimensionality expansion’ phenomenon has been observed when DNNs overfit to noisy
class labels [32] and this can be leveraged to develop improved loss functions. The use of
a “cross-LID” measure to evaluate the quality of synthetic examples generated by GANs
has been proposed in [36]. Connections between local intrinsic dimensionality and global
intrinsic dimensionality were explored by Romano et al in [37]. In the area of climate science
and dynamical systems, a formulation similar to local intrinsic dimensionality has been
developed and referred to as local dimension or instantaneous dimension [22,23,38], using
links to extreme value theoretic methods. It has proved useful as measure to characterize
predictability of states and explain system dynamics.

For local intrinsic dimensionality, a popular estimator is the maximum likelihood
estimator, studied in the Euclidean setting by Levina and Bickel [39] and later formulated
under the more general assumptions of extreme value theory by Houle [2] and Amsa-
leg et al. [40], who showed it to be equivalent to the classic Hill estimator [41]. Other
local estimators include expected simplex skewness [42], the tight locality estimator [43],
the MiND framework [17], manifold adaptive dimension [44], statistical distance [45] and
angle-based approaches [46]. Smoothing approaches for estimation have also been used
with success [47,48].

Local intrinsic dimensionality is closely related to (univariate) distance distributions.
Fundamental relations for interpoint distances, connecting multivariate distributions and
univariate distributions have been explored by both [4,5]. The former showed that two
multivariate distributions are equal whenever the interpoint distances both within and
between samples have the same univariate distribution, while the latter showed that two
multivariate distributions F and G are different if their univariate distance distributions
from some randomly chosen point z are different. This can form the basis of a two sample
test for comparing F and G. These studies have implications for our work in this paper,
since they characterize the role that comparison between univariate distributions can play
as a necessary condition for comparing equality of multivariate distributions.

Our work in this paper formulates results for different varieties of entropy and dif-
ferent types of divergences. Entropy is a fundamental notion used across many scientific
disciplines. A good overview of its role in information theory is presented in [49]. Entropy
power (the exponential of entropy) is commonly used in signal processing and information
theory, and is a building block for the well-known Shannon entropy power inequality which
can be used to analyze the convolution of two independent random variables [50]. Entropy
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power goes under the name of perplexity in the field of natural language processing [51]
and true diversity in the field of ecology [52]. It also corresponds to the volume of the
smallest set that contains most of the probability measure [49], and it can be interpreted as
a measure of statistical dispersion [53]. It is also related to Fisher information via Stam’s
inequality [54].

Cumulative entropy was formulated in [55] and is a modification of cumulative
residual entropy [56]. It is popular in reliability theory where it is used to characterize
uncertainty over time intervals. Apart from reliability theory analysis, it has been used
in data mining tasks such as dependency analysis [57] and subspace cluster analysis [58],
where it has proved more effective due to good estimation properties. These data mining
investigations have used cumulative entropy at a global level (over the entire data domain),
rather than at the local (tail) level, as in our study. Generalized variants based on Tsallis q-
statistics have been developed for both entropy [59] and cumulative entropy [60]. Inclusion
of the extra q parameter can assist with higher robustness to anomalies and better fitting to
characteristics of data distributions. Tail entropy has been used in financial applications for
measuring the expected shortfall [61] in the upper tail using quantization. This is different
from our context, where the our exclusive focus is on lower tails and we develop exact
results for an asymptotic regime where lower tail size approaches zero.

Divergences between probability distributions are a fundamental building block in
statistics and are used to assess the degree to which one probability distribution is different
from another probability distribution. They have a wide range of formulations [1] and
applications, which range from use as objective functions in supervised and unsupervised
machine learning [62], to hypothesis and two sample or goodness of fit testing in statis-
tics [63], as well as generative modeling in deep learning, particularly using the Wasserstein
distance [64]. Asymptotic forms of KL divergence have been investigated by Contreras-
Reyes [65], for comparison of multivariate asymmetric heavy-tailed distributions.

Finally, we note that this work considerably expands a recent study by Bailey et al. [3],
which established relationships between tail entropies and LID. This current paper extends
and generalizes that work in several directions: (i) We establish general lemmas that
provide sufficient conditions for when it is possible to substitute a tail distribution with
components such as a power law, inside an integral. The techniques of [3] were specially
crafted for specific integrals. (ii) We provide results for statistical divergences and distances
(the work of [3] only considers entropy). (iii) We show how to formulate results for the
multivariate context (as [3] only considers univariate scenarios).

3. Local Intrinsic Dimensionality

In this section, we summarize the LID model using the presentation of [2]. LID can
be regarded as a continuous extension of the expansion dimension [66,67]. Like earlier
expansion-based models of intrinsic dimension, its motivation comes from the relationship
between volume and radius in an expanding ball, where (as originally stated in [68]) the
volume of the ball is taken to be the probability measure associated with the region it
encloses. The probability as a function of radius—denoted by F(r)—has the form of a
univariate cumulative distribution function (CDF). The model formulation (as stated in [2])
generalizes this notion to real-valued functions F for which F(0) = 0, under appropriate
assumptions of smoothness.

Definition 1 ([2]). Let F be a real-valued function that is non-zero over some open interval
containing r ∈ R, r 6= 0. The intrinsic dimensionality of F at r is defined as follows whenever the
limit exists:

IntrDimF(r) , lim
ε→0

ln(F((1+ε)r)/F(r))
ln(1+ε)

.

When F satisfies certain smoothness conditions in the vicinity of r, its intrinsic dimen-
sionality has a convenient known form:
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Theorem 1 ([2]). Let F be a real-valued function that is non-zero over some open interval containing
r ∈ R, r 6= 0. If F is continuously differentiable at r and using F′(r) to denote the derivative dF(r)

dr ,
then

IDF(r) ,
r · F′(r)

F(r)
= IntrDimF(r) .

Let x be a location of interest within a data domain S for which the distance measure
d : S × S → R+ ∪ 0 has been defined. To any generated sample s ∈ S we associate the
distance d(x, s); in this way, a global distribution that produces the sample s can be said to
induce the random value d(x, s) from a local distribution of distances taken with respect to
x. The CDF F(r) of the local distance distribution is simply the probability of the sample
distance lying within a threshold r—that is, F(r) , Pr[d(x, s) ≤ r]. In characterizing the
local intrinsic dimensionality in the vicinity of location x, we are interested in the limit of
IDF(r) as the distance r tends to 0, which we denote by

ID∗F , lim
r→0

IDF(r) .

Henceforth, when we refer to the local intrinsic dimensionality (LID) of a function F, or of
a point x whose induced distance distribution has F as its CDF, we will take ‘LID’ to mean
the quantity ID∗F. In general, ID∗F is not necessarily an integer. In practice, estimation of the
LID at x would give an indication of the dimension of the submanifold containing x that
best fits the distribution.

The function IDF can be seen to fully characterize its associated function F. This result
is analogous to a foundational result from the statistical theory of extreme values (EVT),
in that it corresponds under an inversion transformation to the Karamata representation
theorem [69] for the upper tails of regularly varying functions. For more information on
EVT and how the LID model relates to the extreme-value theoretic generalized pareto
distribution, we refer the reader to [2,70,71].

Theorem 2 (LID Representation Theorem [2]). Let F : R→ R be a real-valued function, and
assume that ID∗F exists. Let x and w be values for which x/w and F(x)/F(w) are both positive. If
F is non-zero and continuously differentiable everywhere in the interval [min{x, w}, max{x, w}],
then

F(x)
F(w)

=
( x

w

)ID∗F · AF(x, w), where AF(x, w) , exp
(∫ w

x

ID∗F − IDF(t)
t

dt
)

,

whenever the integral exists.

In [2], conditions on x and w are provided for which the factor AF(x, w) can be seen
to tend to 1 as x, w → 0. The convergence characteristics of F to its asymptotic form are
expressed by the factor AF(x, w), which is related to the slowly varying component of
functions as studied in EVT [70]. As we will shown in the next section, we make use of the
LID Representation Theorem in our analysis of the limits of tail entropy variants under a
form of normalization.

4. Definitions of Tail Entropies and Tail Dissimilarity Measures

In this section, we present the formulations of entropy, divergences and distances that
will be studied in the later sections, in the light of the model of local intrinsic dimensionality
outlined in Section 3. These entropies and dissimilarity measures will all be conditioned on
the lower tails of smooth functions on domains bounded from below at zero. In each case,
the formulations involve one or more non-negative real-valued functions whose restriction
to [0, w] satisfies certain smooth growth properties:
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Definition 2. Let F : R+ ∪ 0→ R+ ∪ 0 be a function that is positive except at F(0) = 0. We say
that F is a smooth growth function if

• There exists a value r > 0 such that F is monotonically increasing over (0, r);
• F is continuous over [0, r);
• F is differentiable over (0, r); and
• The local intrinsic dimensionality ID∗F exists and is positive.

Given a smooth growth function F and a value w > 0, we define Fw(t) ,
F(t)
F(w)

. If F
is the CDF of some random variable X ≥ 0, then Fw(t) = Pr[X ≤ t |X ≤ w], which can in
turn be interpreted as the CDF of the distribution of X conditioned to the lower tail [0, w].
It is easy to see that for a sufficiently small choice of w, Fw must also be a smooth growth
function. Its derivative F′w(t) =

F′(t)
F(w)

exists since F′(t) exists, and thus can be regarded as
the probability density function (PDF) of the restriction of F to [0, w]. In addition, it can
easily be shown (using Theorem 1) that the LID of Fw is identical to that of F.

If the monotonicity of the function F is strict over the domain of interest [0, r), its
inverse function F−1 exists and satisfies the smooth growth conditions within some
neighborhood of the origin. Moreover, F−1

w is also a smooth growth function over [0, 1],
with F−1

w (0) = 0 and F−1
w (1) = w.

The following tail entropy, tail divergence and tail distance formulations all apply to
any functions F and G satisfying the conditions stated above; in particular, they involve one
or more of Fw, F′w, Gw, G′w, and (if the monotonicity of the functions is strict) F−1

w and G−1
w .

In their definitions, the only difference between the tail variants and the original versions is
that the distributions are conditioned on the lower tail [0, w]. In the tail measures involving
one or more of Fw, F′w, Gw and G′w, integration is performed over the lower tail and not the
entire distributional range [0,+∞); for the variant involving F−1

w and G−1
w , integration is

performed over [0, 1] for values of w constrained to the lower tail.
We begin with (differential) tail entropy. Entropy is perhaps the most fundamental and

widely used model of data complexity and can be regarded as a measure of the uncertainty
of a distribution. Differential entropy assesses the expected surprisal of a random variable
and can take negative values.

Definition 3 (Tail Entropy). The entropy of F conditioned on [0, w] is

H(F, w) , −
∫ w

0
F′w(t) ln F′w(t)dt .

The tail entropy is equal to E(− log F′w), the expected value of the (tail) log-likelihood.
It is also possible to define the variance of the (tail) log-likelihood. This is known as the
varentropy. Understanding this further, note that one may define the information content of
a random variable X with density function f , to be − log f (X). The entropy (uncertainty)
then corresponds to the expected value of the information content of X and the varentropy
corresponds to the variance of the information content of X. The varentropy was introduced
by Song [72] as an intrinsic measure of the shape of a distribution and has been explored in
a range of studies [73–75].

Definition 4 (Tail varentropy). The varentropy of F conditioned on [0, w] is

VarH(F, w) ,
∫ w

0
F′w(t) ln2 F′w(t)dt −

(∫ w

0
F′w(t) ln F′w(t)dt

)2

The cumulative entropy is a variant of entropy proposed in [55,56] due to its attractive
theoretical properties. Tail conditioning on the cumulative entropy has the same general
form as that of the tail entropy. Cumulative entropy [55,56] is an information-theoretic
measure popular in reliability theory, where it is used to model uncertainty over time
intervals. It corresponds to the expected value of the mean inactivity time. Compared to
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ordinary Shannon differential entropy, cumulative entropy has certain attractive properties,
such as non-negativity and ease of estimation.

Definition 5 (Cumulative Tail Entropy). The cumulative entropy of F conditioned on [0, w] is

cH(F, w) , −
∫ w

0
Fw(t) ln Fw(t)dt .

The entropy power is the exponential of the entropy, and is also known as perplexity in
the natural language processing community. It corresponds to the volume of the smallest
set that contains most of the probability measure [49], and can be interpreted as a measure
of statistical dispersion [53]. There are several standard definitions of entropy power in the
research literature. For our purposes, we adopt the simplest—the exponential of Shannon
entropy—for our definition conditioned to the tail.

Definition 6 (Tail Entropy Power). The entropy power of F conditioned on [0, w] is defined to
be

HP(F, w) , exp (H(F, w)) .

In the introduction, we briefly mentioned some motivation for the entropy power
HP(F, w). We can add to this as follows:

• It can be interpreted as a diversity. Observe that when F is a (univariate) uniform
distance distribution ranging over the interval [0, w], we have ID∗F = 1 and HP(F, w) =
w. In other words, the entropy power is equal to the ‘effective diversity’ of the
distribution (the number of neighbor distance possibilities).

• Given two different queries, each with its own neighborhood, one query with tail
entropy power equal to 2 and the other with tail entropy power equal to 4, we can say
that the distance distribution of the second query is twice as diverse as that of the first
query.

For each of the tail entropy variants introduced above, we also propose analogous
variants based on the q-entropy formulation due to Tsallis [59]. Generalized Tsallis en-
tropies [59,60] are a family of entropies characterized via an exponent parameter q applied
to the probabilities, in which the traditional (Shannon) entropy variants are obtained as
the special case when q is allowed to tend to 1. The use of such a parameter q can often
facilitate more accurate fitting of data characteristics and robustness to outliers.

Definition 7 (Tail q-Entropy). For any q > 0 (q 6= 1), the q-entropy of F conditioned on [0, w]
is defined to be

Hq(F, w) ,
1

q− 1

(
1−

∫ w

0

(
F′w(t)

)q dt
)

=
1

q− 1

∫ w

0
F′w(t)−

(
F′w(t)

)q dt .

Definition 8 (Cumulative Tail q-Entropy). For any q > 0 (q 6= 1), the cumulative q-entropy
of F conditioned on [0, w] is defined to be

cHq(F, w) ,
1

q− 1

∫ w

0
Fw(t)− (Fw(t))

q dt .

We define the tail q-entropy power using the q-exponential function from Tsallis

statistics [59], expq(x) , [1 + (1− q)x]
1

1−q . Note that L’Hôpital’s rule can be used to show
that expq(x)→ ex as q→ 1.
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Definition 9 (Tail q-Entropy Power). For any q > 0 (q 6= 1), the q-entropy power of F
conditioned on [0, w] is defined to be

HPq(F, w) ,
[
1 + (1− q)Hq(F, w)

] 1
1−q .

We next define the tail cross entropy. Cross entropy can be used to compare two
probability distributions and is often employed as a loss function in machine learning,
comparing a true distribution and a learned distribution. From an information theoretic
perspective, cross entropy corresponds to the expected coding length when a wrong
distribution G is assumed while the data actually follows a distribution F.

Definition 10 (Tail Cross Entropy). The cross entropy from F to G, conditioned on [0, w], is
defined to be

XH(F; G, w) , −
∫ w

0
F′w(t) ln G′w(t)dt .

Similar to entropy power, we can also define the cross entropy power, which is the
exponential of the cross entropy.

Definition 11 (Tail Cross Entropy Power). The cross entropy power from F to G, conditioned
on [0, w], is defined to be

XHP(F; G, w) , exp
(
−
∫ w

0
F′w(t) ln G′w(t)dt

)
.

A classic and fundamental method for comparing two probability distributions is the
Kullback–Leibler divergence (KL Divergence) [76]. KL(F, G) measures the degree to which
a probability distribution G is different from a reference probability distribution F. It is a
member of both the family of f -divergences and Bregman divergences. It is widely used in
statistics, machine learning and information theory.

Definition 12 (Tail KL Divergence). The Kullback–Leibler divergence from F to G, conditioned
on [0, w], is defined to be

KL(F; G, w) ,
∫ w

0
F′w(t) ln

F′w(t)
G′w(t)

dt .

The tail KL divergence can be connected to the tail entropy and the tail cross entropy
according to the relationship KL(F; G, w) = XH(F; G; w)−H(F, w).

The Jensen–Shannon divergence (JS divergence) [77] is another popular measure of
distance between probability distributions. It is based on the KL divergence, but unlike the
KL, the square root of the JS divergence is a true metric.

Definition 13 (Tail JS Divergence). The Jensen–Shannon divergence between F and G, condi-
tioned on [0, w], is defined to be

JS(F; G, w) ,
KL(F; M, w) + KL(G; M, w)

2
, where M(t) =

F(t) + G(t)
2

.

The tail JS divergence can also be written in terms of the tail entropies JS(F; G, w) =

H( F+G
2 , w)− H(F,w)+H(G,w)

2
The L2 distance is the squared Euclidean distance when comparing two probability

distributions. It is part of the family of β divergences when setting β = 2 [78].
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Definition 14 (Tail L2 Distance). The L2 distance between F and G, conditioned on [0, w], is
defined to be

L2D(F; G, w) ,
∫ w

0

(
F′w(t)− G′w(t)

)2 dt .

The Hellinger distance [79] is a true metric for comparing two probability distributions.
The squared Hellinger distance a member of the family of f -divergences and is part of the
family of α divergences when setting α = 1

2 [80].

Definition 15 (Tail Hellinger Distance). The Hellinger distance between F and G, conditioned
on [0, w], is defined to be

HD(F; G, w) ,

√
1
2

∫ w

0

(√
F′w(t)−

√
G′w(t)

)2
dt .

The χ2 divergence between two probability distributions [81] is a member of the family
of f divergences and is part of the family of α divergences when setting α = 2 [80].

Definition 16 (Tail χ2-Divergence). The χ2 divergence between F and G, conditioned on [0, w],
is defined to be

χ2D(F; G, w) ,
∫ w

0

(F′w(t)− G′w(t))
2

G′w(t)
dt .

The asymmetric α-divergence [80] is another member of the family of f divergences.
When α = 2 it is proportional to the χ2 divergence. When α = 0.5 it is proportional to the
squared Hellinger distance. When α→ 1 it corresponds to the KL-divergence.

Definition 17 (Tail α-Divergence). The α-divergence from F to G, conditioned on [0, w], is
defined to be

αD(F; G, w) ,
1

α(1− α)

∫ w

0
αF′w(t) + (1− α)G′w(t)−

(
F′w(t)

)α(G′w(t))1−α dt .

The Wasserstein distance between two probability distributions is also known as the
Kantorovich–Rubinstein metric [82] or the earth mover’s distance. It has become very
popular as part of the loss function used in generative adversarial networks [83]. In the
univariate case it can be expressed in a simple analytic form.

Definition 18 (Tail Wasserstein Distance). The p-th Wasserstein distance between F and G,
conditioned on [0, w], is defined to be

WDp(F; G, w) ,
(∫ 1

0

∣∣∣F−1
w (u)− G−1

w (u)
∣∣∣p du

) 1
p
.

For some of the aforementioned tail measures, we will also consider a normalization
of the entropy, divergence or distance (as the case may be) with respect to w, the length
of the tail. In Sections 5 and 6, we will show that as w tends to zero, the limits of these
(possibly normalized) tail entropies and tail divergences can be expressed in terms of the
local intrinsic dimensionalities of F and G. The notation for these variants, and our results
for their limits in terms of ID∗F and ID∗G, are summarized in Table 1.
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Table 1. Asymptotic equivalences between LID formulations and tail measures of entropy or diver-
gence. In each case, the functions F and G are assumed to be smooth growth functions. In addition,
for the Normalized Wasserstein Distance, F and G must be strictly monotonically increasing, thereby
guaranteeing that the inverses of Fw and Gw exist near zero. In some cases, for the asymptotic limit to
exist non-trivially (that is, to be both finite and non-zero), the tail entropy or tail divergence must
be normalized by the multiplicative factor 1

w , w. For the Tail Entropy and Tail Cross Entropy, no
reweighting by powers of w can lead to a non-trivial asymptotic limit as w tends to zero.

Tail Measure Formulation Limit as w→ 0+

Entropy H(F, w) = −
∫ w

0 F′w(t) ln F′w(t)dt Diverges (no reweighting possible)

Varentropy VarH(F, w) =
∫ w

0 F′w(t) ln2 F′w(t)dt −
(∫ w

0 F′w(t) ln F′w(t)dt
)2

(
1− 1

ID∗F

)2

q-Entropy Hq(F, w) = 1
q−1

∫ w
0 F′w(t)− (F′w(t))

q dt 1
q−1 if q < 1, diverges if q > 1

Normalized Cumulative Entropy 1
w cH(F, w) = − 1

w

∫ w
0 Fw(t) ln Fw(t)dt ID∗F

(ID∗F +1)2

Normalized Cumulative q-Entropy 1
w cHq(F, w) = 1

w(q−1)

∫ w
0 Fw(t)− (Fw(t))

q dt ID∗F
(ID∗F +1)(q ID∗F +1) if q 6= 1

Normalized Entropy Power 1
w HP(F, w) = 1

w exp(H(F, w)) 1
ID∗F

exp
(

1− 1
ID∗F

)
Normalized q-Entropy Power 1

w HPq(F, w) = 1
w
[
1 + (1− q)Hq(F, w)

] 1
1−q

(
(ID∗F)

q

q ID∗F −q+1

) 1
1−q

if q 6= 1 and q ID∗F −q + 1 > 0

Cross Entropy XH(F; G, w) = −
∫ w

0 F′w(t) ln G′w(t)dt Diverges (no reweighting possible)

Normalized Cross Entropy Power 1
w XHP(F; G, w) = 1

w exp
(
−
∫ w

0 F′w(t) ln G′w(t)dt
) 1

ID∗G
exp

(
ID∗G −1

ID∗F

)
KL Divergence KL(F; G, w) =

∫ w
0 F′w(t) ln F′w(t)

G′w(t) dt ρ− ln ρ− 1; ρ =
ID∗G
ID∗F

JS Divergence JS(F; G, w) = 1
2

(
KL
(

F; F+G
2 , w

)
+ KL

(
G; F+G

2 , w
))

1
2 (τ − ln τ − 1); τ = min{ρ, 1

ρ }; ρ =
ID∗G
ID∗F

Weighted L2 Distance w L2D(F; G, w) = w
∫ w

0 (F′w(t)− G′w(t))
2 dt (ID∗F − ID∗G)

2

2(ID∗F + ID∗G −1)

[
1 + 1

(2 ID∗F −1)(2 ID∗G −1)

]
ID∗F > 1

2 ; ID∗G > 1
2

Hellinger Distance HD(F; G, w) =

√
1
2

∫ w
0

(√
F′w(t)−

√
G′w(t)

)2
dt |1−√ρ|√

1+ρ
; ρ =

ID∗G
ID∗F

χ2-Divergence χ2D(F; G, w) =
∫ w

0
(F′w(t)−G′w(t))

2

G′w(t) dt (1−ρ)2

ρ(2−ρ)
; ρ =

ID∗G
ID∗F

; ρ < 2

α-Divergence αD(F; G, w) = 1
α(1−α)

∫ w
0 αF′w(t) + (1− α)G′w(t)

1
α(1−α)

(
1− 1

αρα−1+(1−α)ρα

)
−(F′w(t))

α(G′w(t))
1−α dt ρ =

ID∗G
ID∗F

; α + ρ(1− α) > 0

Normalized Wasserstein Distance 1
w WDp(F; G, w) = 1

w

(∫ 1
0

∣∣F−1
w (u)− G−1

w (u)
∣∣p du

) 1
p p = 2:

√
1

2
ID∗F

+1
− 2

1
ID∗F

+ 1
ID∗G

+1
+ 1

2
ID∗G

+1

p even:

∑
p
j=0

(−1)j

(
p
j

)
(p−j)·(ID∗F)−1+j·(ID∗G)−1+1


1
p

5. Simplification of Tail Measures

Next, we present the main theoretical contributions of the paper: three technical lem-
mas that will later be used to establish relationships between local intrinsic dimensionality
and a variety of tail measures based on entropy, divergences or distances. The results
presented in this section all apply asymptotically, as the tail boundary tends toward zero.

Each of the three lemmas allow, under certain conditions, the simplification of limits
of integrals involving smooth growth functions of the form Fw (as defined in Section 4), or
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its associated first derivative F′w or inverse function F−1
w . The limit integral simplifications

allow for the substitution of the function (or derivative or inverse) by expressions that
involve one or more of the following: the LID value of the function, the variable of
integration or the tail boundary w. Moreover, the lemmas require that the integrand be
monotone with respect to small variations in the targeted function.

The first lemma allows terms of the form Fw (resembling the CDF of a tail-conditioned
distribution) to be converted into a term that depends only on the variable of integration,
the tail length w, and the local intrinsic dimension ID∗F.

Lemma 1. Let F be a smooth growth function over the interval [0, r). Consider the function
φ : R2

+ → R admitting a representation of the form

φ(t, w) ≡ ψ(t, w, z(t, w)),

where:

• ψ : R3
+ → R;

• z(t, w) = Fw(t) =
F(t)
F(w)

; and

• for all fixed choices of t and w satisfying 0< t≤w< r, ψ(t, w, z) is monotone and continu-
ously partially differentiable with respect to z over the interval z ∈ (0, 1].

Then

lim
w→0+

∫ w

0
φ(t, w)dt ≡ lim

w→0+

∫ w

0
ψ(t, w, Fw(t))dt

= lim
w→0+

∫ w

0
ψ

(
t, w,

(
t
w

)ID∗F
)

dt

whenever the latter limit exists or diverges to +∞ or −∞.

Proof. Since F is assumed to be a smooth growth function, the limit ID∗F = limv→0+ IDF(v)
exists and is positive. We present an ‘epsilon-delta’ argument based on this limit. For any
real value ε > 0 satisfying ε < min{r, ID∗F}, there must exist a value 0 < δ < ε such that
v < δ implies that | IDF(v)− ID∗F | < ε. Therefore, when 0 < t ≤ w < δ,∣∣∣∣ ln AF(t, w)

∣∣∣∣ =

∣∣∣∣∫ w

t

ID∗F − IDF(v)
v

dv
∣∣∣∣ < ε ·

∣∣∣∣∫ w

t

1
v

dv
∣∣∣∣ = ε · ln w

t
.

Exponentiating, we obtain the bounds(w
t

)−ε
< AF(t, w) <

(w
t

)ε
.

Applying this bound together with Theorem 2, the ratio Fw(t) =
F(t)
F(w)

can be seen to satisfy

(
t
w

)ID∗F +ε

<
F(t)
F(w)

= AF(t, w) ·
(

t
w

)ID∗F
<

(
t
w

)ID∗F −ε

. (1)

Over the domain of interest 0 < t ≤ w < δ, the assumption that 0 < ε < min{r, ID∗F}
ensures that 0 < t

w ≤ 1, and that the upper and lower bounds of Inequality (1) lie in the
interval (0, 1]. Since ψ(t, w, z) has been assumed to be monotone with respect to z ∈ (0, 1],
the maximum and minimum attained by ψ over choices of z restricted to any (closed)
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subinterval of (0, 1] must occur at opposite endpoints of the subinterval. With this in mind,
for any choice of ε ∈ (0, min{r, ID∗F}), Inequality (1) implies that

Bmin(t, w, ε) ≤ ψ(t, w, Fw(t)) ≤ Bmax(t, w, ε)

and
∫ w

0
Bmin(t, w, ε)dt ≤

∫ w

0
ψ(t, w, Fw(t))dt ≤

∫ w

0
Bmax(t, w, ε)dt ,

where

Bmin(t, w, ε) , min

{
ψ

(
t, w,

(
t
w

)ID∗F −ε
)

, ψ

(
t, w,

(
t
w

)ID∗F +ε
)}

,

Bmax(t, w, ε) , max

{
ψ

(
t, w,

(
t
w

)ID∗F −ε
)

, ψ

(
t, w,

(
t
w

)ID∗F +ε
)}

.

Since ψ(t, w, z) and
∫ w

0 ψ(t, w, z)dt are also continuously partially differentiable with re-
spect to z over z ∈ (0, 1],

lim
ε→0+

Bmin(t, w, ε) = lim
ε→0+

Bmax(t, w, ε) = ψ

(
t, w,

(
t
w

)ID∗F
)

and

lim
ε→0+
w<ε

∫ w

0
Bmin(t, w, ε)dt = lim

ε→0+
w<ε

∫ w

0
Bmax(t, w, ε)dt = lim

w→0+

∫ w

0
ψ

(
t, w,

(
t
w

)ID∗F
)

dt.

It therefore follows from the squeeze theorem for integrals that

lim
w→0+

∫ w

0
ψ(t, w, Fw(t))dt = lim

w→0+

∫ w

0
ψ

(
t, w,

(
t
w

)ID∗F
)

dt ,

whenever the right-hand limit exists or diverges.

In a manner similar to that of the preceding lemma, the following result allows terms
of the form F−1

w (the inverse of Fw) to be converted into a term that depends only on the
variable of integration, the tail length w and the local intrinsic dimension ID∗F. Here, in order
to ensure the existence of the inverse function, F (and by extension Fw and F−1

w ) must be
strictly monotonically increasing over the tail.

Lemma 2. Let F be a smooth growth function over the interval [0, r). Let us also assume that,
over the interval, the monotonicity of F is strict. Consider the function φ : R2

+ → R admitting a
representation of the form

φ(u, w) ≡ ψ(u, w, z(u, w)),

where:

• ψ : R3
+ → R;

• z(u, w) = F−1
w (u) for all w ∈ (0, r), where Fw(t) , F(t)/F(w) is restricted to values of t in

[0, w]; and
• for all fixed choices of u and w satisfying u ∈ [0, 1] and 0<w< r, ψ(u, w, z) is monotone

and continuously partially differentiable with respect to z over the interval z ∈ (0, r).

Then

lim
w→0+

∫ 1

0
φ(u, w)du ≡ lim

w→0+

∫ 1

0
ψ
(

u, w, F−1
w (u)

)
du

= lim
w→0+

∫ 1

0
ψ

(
u, w, wu

1
ID∗F

)
du

whenever the latter limit exists or diverges to +∞ or −∞.
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Proof. First, we note that the strict monotonicity of F implies that for all u ∈ [0, 1] and
w ∈ (0, r), the function F−1

w (u) is uniquely defined when Fw is restricted to [0, w].
As in the proof of Lemma 1, an ‘epsilon-delta’ argument based on the existence of

the limit ID∗F = limv→0+ IDF(v) yields the following: for any real value ε > 0 satisfying
ε < min{r, ID∗F}, there exists a value δ ∈ (0, ε) such that(

t
w

)ID∗F +ε

< Fw(t) =
F(t)
F(w)

<

(
t
w

)ID∗F −ε

holds for all 0 < t ≤ w < δ. Solving for t through exponentiation of the bounds, and then
setting t = F−1

w (u), we obtain

w · (Fw(t))
1

ID∗F −ε < t < w · (Fw(t))
1

ID∗F +ε

w ·
(

Fw(F−1
w (u))

) 1
ID∗F −ε < F−1

w (u) < w ·
(

Fw(F−1
w (u))

) 1
ID∗F +ε

wu
1

ID∗F −ε < F−1
w (u) < wu

1
ID∗F +ε .

The remainder of the proof follows essentially the same path as that of Lemma 1. Over
the domain of interest 0 < t ≤ w < δ, the assumption that 0 < ε < min{r, ID∗F} ensures
that 0 < t

w ≤ 1, and that u lies in the interval (0, w]. Since ψ(u, w, z) has been assumed to
be monotone with respect to z ∈ (0, r), the maximum and minimum attained by ψ over
choices of z restricted to any (closed) subinterval of (0, r) must occur at opposite endpoints.
Therefore, for any choice of ε ∈ (0, min{r, ID∗F}),

Cmin(u, w, ε) ≤ ψ
(

u, w, F−1
w (u)

)
≤ Cmax(u, w, ε)

and
∫ 1

0
Cmin(u, w, ε)du ≤

∫ 1

0
ψ
(

u, w, F−1
w (u)

)
du ≤

∫ 1

0
Cmax(u, w, ε)du ,

where

Cmin(u, w, ε) , min
{

ψ

(
u, w, wu

1
ID∗F −ε

)
, ψ

(
u, w, wu

1
ID∗F +ε

)}
,

Cmax(u, w, ε) , max
{

ψ

(
u, w, wu

1
ID∗F −ε

)
, ψ

(
u, w, wu

1
ID∗F +ε

)}
.

Since ψ(u, w, z) is also continuously partially differentiable with respect to z over z ∈ (0, r),

lim
ε→0+

Cmin(u, w, ε) = lim
ε→0+

Cmax(u, w, ε) = ψ

(
u, w, wu

1
ID∗F

)
and

lim
ε→0+
w<ε

∫ 1

0
Cmin(u, w, ε)du = lim

ε→0+
w<ε

∫ 1

0
Cmax(u, w, ε)du = lim

w→0+

∫ 1

0
ψ

(
u, w, wu

1
ID∗F

)
du.

It therefore follows from the squeeze theorem for integrals that

lim
w→0+

∫ 1

0
ψ
(

u, w, F−1
w (u)

)
du = lim

w→0+

∫ 1

0
ψ

(
u, w, wu

1
ID∗F

)
du ,

whenever the right-hand limit exists or diverges.

The third lemma facilitates the conversion of a term of the form F′w to Fw, together
with a factor that depends only on the variable of integration and ID∗F. Since F is assumed
to be a smooth growth function, Fw must be smooth as well, and therefore Fw satisfies
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the conditions of Theorem 1 over [0, w). Hence, F′w can be substituted by an expression
involving Fw:

F′w(t) =
IDFw(t)

t
· Fw(t) =

IDF(t)
t
· Fw(t) .

The substitution comes at the cost of introducing a non-constant factor IDF(t). The follow-
ing lemma shows that IDF(t) can in turn be substituted by the constant ID∗F, provided that
certain monotonicity assumptions are satisfied.

Lemma 3. Let F be a smooth growth function over the interval [0, r). Consider the function
φ : R2

+ → R admitting a representation of the form

φ(t, w) ≡ ψ(t, w, z(t, w)),

where:

• ψ : R3
+ → R;

• z(t, w) = IDF(t), and
• there exists a value γ ∈ (0, ID∗F) such that for all fixed choices of t satisfying 0< t≤w< r,

ψ(t, w, z) is monotone with respect to z over the interval z ∈ (ID∗F −γ, ID∗F +γ).

Then

lim
w→0+

∫ w

0
φ(t, w)dt ≡ lim

w→0+

∫ w

0
ψ(t, w, IDF(t))dt = lim

w→0+

∫ w

0
ψ(t, w, ID∗F)dt

whenever the latter limit exists or diverges to +∞ or −∞.

Proof. Since F is assumed to be a smooth growth function, the limit ID∗F = limv→0+ IDF(v)
exists and is positive. We present an ‘epsilon-delta’ argument based on this limit. For any
real value ε > 0 satisfying ε < min{r, γ}, there must exist a value 0 < δ < ε such that
v < δ implies that | IDF(v)− ID∗F | < ε.

Since ψ(t, w, z) has been assumed to be monotone with respect to z over the interval
z ∈ (ID∗F −γ, ID∗F +γ), the restriction v < δ < ε < min{r, γ} ensures that ψ(t, w, z) is
monotone over the entire domain of interest 0 < t ≤ w < δ. Therefore, the maximum
and minimum attained by ψ over choices of z restricted to any (closed) subinterval of
(ID∗F −γ, ID∗F +γ) must occur at opposite endpoints of the subinterval. As in the proof of
Lemma 1,

Dmin(t, w, ε) ≤ ψ(t, w, IDF(t)) ≤ Dmax(t, w, ε)

and
∫ w

0
Dmin(t, w, ε)dt ≤

∫ w

0
ψ(t, w, IDF(t))dt ≤

∫ w

0
Dmax(t, w, ε)dt ,

where

Dmin(t, w, ε) , min{ψ(t, w, ID∗F −ε), ψ(t, w, ID∗F +ε)} ,

Dmax(t, w, ε) , max{ψ(t, w, ID∗F −ε), ψ(t, w, ID∗F +ε)} .

Since ψ(t, w, z) is also continuously partially differentiable with respect to z over the range
(ID∗F −γ, ID∗F +γ),

lim
ε→0+

Dmin(t, w, ε) = lim
ε→0+

Dmax(t, w, ε) = ψ(t, w, ID∗F) and

lim
ε→0+
w<ε

∫ w

0
Dmin(t, w, ε)dt = lim

ε→0+
w<ε

∫ w

0
Dmax(t, w, ε)dt = lim

w→0+

∫ w

0
ψ(t, w, ID∗F)dt.
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It therefore follows from the squeeze theorem for integrals that

lim
w→0+

∫ w

0
ψ(t, w, IDF(t))dt = lim

w→0+

∫ w

0
ψ(t, w, ID∗F)dt ,

whenever the right-hand limit exists or diverges.

6. Derivation of the Limits of Tail Measures

In this section, we will see how the three substitution lemmas can be applied to the
limits of tail measures of entropy, divergence or distance, so as to produce formulations
that depend only on the local intrinsic dimensions of the functions involved. All three
lemmas require that the integral function be monotone with respect to small variations in
the term that is targeted for substitution. In the discussion, we choose two tail measures as
running examples: the tail KL divergence and the second tail Wasserstein distance (p = 2).

6.1. Handling Derivatives of Smooth Growth Functions

In the case of the tail KL divergence, Theorem 1 allows us to substitute out the first
derivatives F′w and G′w for the functions Fw and Gw:

KL(F; G, w) =
∫ w

0
F′w(t) ln

F′w(t)
G′w(t)

dt =
∫ w

0

IDF(t) Fw(t)
t

ln
IDF(t) Fw(t)
IDG(t) Gw(t)

dt .

6.2. Substitution of LID Functions by Constants

In the limit of the tail KL divergence, the functions IDF(t) and IDG(t) can be re-
placed by the constants ID∗F and ID∗G, respectively, through three successive applications of
Lemma 3. To verify that the monotonicity condition of the Lemma is satisfied, we choose
one of the terms and replace it by a new variable, z:

lim
w→0+

KL(F; G, w) = lim
w→0+

∫ w

0

z Fw(t)
t

ln
IDF(t) Fw(t)
IDG(t) Gw(t)

dt .

For any fixed values of t and w, it is easy to see that the integrand is locally monotone in
the vicinity of z = IDF(t)—here, if ln IDF(t) Fw(t)

IDG(t) Gw(t)
is positive, a small increase in z (above

the value IDF(t)) would result in an increase in the value of the integrand, and a small
decrease would cause the integrand to decrease. If instead the logarithmic factor were
negative, an increase in z would result in a decrease in the value of the integrand. Either
way, the integrand would be monotone in the vicinity of z = IDF(t) at each fixed value
of t and w. Its monotonicity condition thus being satisfied, Lemma 3 allows the targeted
instance of IDF(t) to be substituted by ID∗F:

lim
w→0+

KL(F; G, w) = lim
w→0+

∫ w

0

ID∗F Fw(t)
t

ln
IDF(t) Fw(t)
IDG(t) Gw(t)

dt .

Similarly, it can be verified that the new integrand is monotone in each of the remaining
two factors IDF(t) and IDG(t); consequently, they too can be substituted by ID∗F and ID∗G,
one at a time, to yield

lim
w→0+

KL(F; G, w) = lim
w→0+

∫ w

0

ID∗F Fw(t)
t

ln
ID∗F Fw(t)
ID∗G Gw(t)

dt .

6.3. Elimination of Tail-Conditioned Smooth Growth Functions

Now that the tail KL divergence has been reformulated in terms of the tail-conditioned
smooth growth functions Fw and Gw, these two functions can be substituted out via three
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successive applications of Lemma 1, so as to obtain the limit of an integral involving only
the variable of integration t, and the constants w, IDF and IDG:

lim
w→0+

KL(F; G, w) = lim
w→0+

∫ w

0

ID∗F
t

(
t
w

)ID∗F
ln

[
ID∗F
ID∗G

(
t
w

)ID∗F − ID∗G
]

dt .

As in the previous step in which IDF(t) and IDG(t) were substituted out, the monotonicity
conditions of Lemma 1 can easily be verified.

Now that the integral involves only constants and the variable t, it can be solved
straightforwardly using the integration-by-parts technique, yielding

lim
w→0+

KL(F; G, w) = lim
w→0+

(
ID∗G
ID∗F
− ln

ID∗G
ID∗F
− 1
)

=
ID∗G
ID∗F
− ln

ID∗G
ID∗F
− 1 .

6.4. Elimination of the Inverses of Tail-Conditioned Smooth Growth Functions

We now turn our attention to the limit of the tail Wasserstein distance for the case
p = 2. Using Lemma 2, the inverse functions F−1

w and G−1
w can be substituted out, provided

that the monotonicity requirements are satisfied. However, immediate application of the
lemma to F−1

w (u) or G−1
w (u) does not necessarily work—to see this, consider substituting

F−1
w (u) by the new variable z.

WD2(F; G, w) =

√∫ 1

0

(
F−1

w (u)− G−1
w (u)

)2
du =

√∫ 1

0

(
z− G−1

w (u)
)2

du .

Clearly, the integrand is not necessarily monotone in z in the vicinity of those values of the
integration variable u where G−1

w (u) = z.
Instead, we expand the squared difference and apply Lemma 3 to each of the result-

ing four occurrences of F−1
w and G−1

w , one by one. By way of illustration, we consider
substitution by z for the factor of F−1

w (u) in the cross term:

lim
w→0+

(WD2(F; G, w))2 = lim
w→0+

∫ 1

0

(
F−1

w (u)− G−1
w (u)

)2
du

= lim
w→0+

∫ 1

0

(
F−1

w (u)
)2
− 2F−1

w (u)G−1
w (u) +

(
G−1

w (u)
)2

du

= lim
w→0+

∫ 1

0

(
F−1

w (u)
)2
− 2z · G−1

w (u) +
(

G−1
w (u)

)2
du .

With respect to small variations in the variable z about the value F−1
w (u), noting that G−1

w
is always non-negative, the integrand is easily seen to be monotone in z when G−1

w (u) is
non-zero: for any increase in z, the value of the integrand decreases, and for any decrease
in z, the value of the integrand increases. Lemma 2 can therefore be applied, producing

lim
w→0+

(WD2(F; G, w))2 = lim
w→0+

∫ 1

0

(
F−1

w (u)
)2
− 2wu

1
ID∗F · G−1

w (u) +
(

G−1
w (u)

)2
du .

After three more applications of Lemma 2, followed by taking the square root of the integral,
we obtain

lim
w→0+

WD2(F; G, w) = lim
w→0+

(∫ 1

0
w2u

2
ID∗F − 2w2u

1
ID∗F

+ 1
ID∗G + w2u

2
ID∗G du

) 1
2

= lim
w→0+

w ·

 1
2

ID∗F
+ 1
− 2

1
ID∗F

+ 1
ID∗G

+ 1
+

1
2

ID∗G
+ 1

 1
2

= 0 .
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6.5. Normalization

Even though the limit of the second tail Wasserstein distance is zero and therefore
uninteresting, we observe that by normalizing it by the tail length w, we arrive at a more
useful result:

lim
w→0+

1
w

WD2(F; G, w) =

 1
2

ID∗F
+ 1
− 2

1
ID∗F

+ 1
ID∗G

+ 1
+

1
2

ID∗G
+ 1

 1
2

.

In general, reweighting by a power of w may be required to expose a relationship
between the tail limit of an entropy measure or divergence and an expression in terms of
the local intrinsic dimensions of the functions involved. Since local intrinsic dimension is
a unitless quantity, in order to establish a non-trivial formulation solely in terms of LID
values, any tail measure whose values are not unitless will generally require some form
of normalization.

6.6. Summary of Results

Table 1 provides a summary of results. All the results stated in Table 1 can be derived
either using the techniques outlined earlier in this section, or through direct substitution of
another result in the table. The derivations are outlined in Table 2 (tail entropy variants),
Table 3 (tail divergence variants), Table 4 (tail distance variants) and Table 5 (tail Wasserstein
distances). Most of these derivations are straightforward; however, for two of the tail
measures, some clarifications are required.

Generally speaking, for the normalized tail Wasserstein distances with p non-integer
or p odd (Table 5), Lemma 2 cannot be applied, due to the absolute value operation in the
integrand. It may happen that the functions F−1(u) and G−1(u) may have crossing points
for many (possibly even infinitely many) values of u between 0 and 1. At these values of u,∣∣F−1(u)− G−1(u)

∣∣ = 0, and neither
∣∣z− G−1(u)

∣∣ nor
∣∣F−1(u)− y

∣∣ would be monotone in
the vicinity of z = F−1(u) or y = G−1(u), as the case may be.

For the tail JS divergence (Table 3), the derivation relies on the fact that the LID of the
sum (or average) of two non-negative smooth growth functions is the smaller of the two
individual LID values. This is an implication of the fact that limt→0+

V(t)
W(t) = 0 whenever the

smooth growth functions V(t) and W(t) have 0 < ID∗W < ID∗V (see [84] for more details).
Accordingly, if ID∗F 6= ID∗G, then the function (F or G) with smaller LID value must have
the same LID value as the average function M(t) = F(t)+G(t)

2 , and the other function (G
or F) must have LID value equal to the maximum of the two. From these observations,
the derivation can be seen to hold.

The result for the limit of the tail KL divergence has an interesting interpretation in
light of the so-called Itakura–Saito (IS) divergence (or distance) [85]:

dIS(x|y) =
n

∑
i=1

(
xi
yi
− ln

xi
yi
− 1
)

.

As the tail boundary w tends to 0, the tail KL divergence between smooth functions F and
G tends to the (univariate) IS divergence between their associated LID values ID∗G and ID∗F:

lim
w→0+

KL(F; G, w) =
ID∗G
ID∗F
− ln

ID∗G
ID∗F
− 1 = dIS(ID∗G | ID∗F) .

When F and G are interpreted as the CDFs of distance distributions, the shape param-
eters of the extreme-value-theoretic generalized pareto distributions (GPDs) that asymptot-
ically characterize their lower tails are known to equal − 1

ID∗F
and − 1

ID∗G
, respectively [40].

Since the ratio of these parameters is equal to (the reciprocal of) the ratio of LID val-
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ues, the tail KL divergence between F and G can also be interpreted as tending to the IS
divergence between GPD parameters.

Table 2. Derivations of asymptotic relationships between tail entropy variants and local intrinsic
dimensionality. Each step shows the equivalences between the formulations when w is allowed to
tend to zero. In the comments column, for each step of the derivation, the lemmas invoked are stated,
as well as any additional assumptions made. If a normalization other weighting is needed to avoid
divergence, or convergence to a constant (independent of F), the details are shown in a comment in
the final step. In all cases, F is assumed to be a smooth growth function.

Tail Measure Derivation Steps Comments

Entropy H(F, w)→−
∫ w

0 F′w(t) ln F′w(t)dt

→−
∫ w

0
IDF (t) Fw (t)

t ln IDF (t) Fw (t)
t dt using Theorem 1

→−
∫ w

0
ID∗F Fw (t)

t ln
ID∗F Fw (t)

t dt using Lemma 3

→−
∫ w

0
ID∗F

t

( t
w

)ID∗F ln
[

ID∗F
t

( t
w

)ID∗F
]

dt using Lemma 1

→ 1− 1
ID∗F
− ln

ID∗F
w no reweighting

Varentropy VarH(F, w)→
∫ w

0 F′w(t) ln2 F′w(t)dt −
(∫ w

0 F′w(t) ln F′w(t)dt
)2

→
∫ w

0
IDF (t) Fw (t)

t ln2 IDF (t) Fw (t)
t dt −

(∫ w
0

IDF (t) Fw (t)
t ln IDF (t) Fw (t)

t dt
)2

using Theorem 1

→
∫ w

0
ID∗F Fw (t)

t ln2 ID∗F Fw (t)
t dt −

(∫ w
0

ID∗F Fw (t)
t ln

ID∗F Fw (t)
t dt

)2

using Lemma 3

→
∫ w

0
ID∗F

t

( t
w

)ID∗F ln2
[

ID∗F
t

( t
w

)ID∗F
]

dt −
(∫ w

0
ID∗F

t

( t
w

)ID∗F ln
[

ID∗F
t

( t
w

)ID∗F
]

dt
)2

using Lemma 1

→
(

1− 1
ID∗F

)2

q-Entropy Hq(F, w)→ 1
q−1

∫ w
0 F′w(t)− (F′w(t))

q dt q > 1

→ 1
q−1

∫ w
0

IDF (t) Fw (t)
t −

(
IDF (t) Fw (t)

t

)q
dt using Theorem 1

→ 1
q−1

∫ w
0

ID∗F Fw (t)
t −

(
ID∗F Fw (t)

t

)q

dt using Lemma 3

→ 1
q−1

∫ w
0

ID∗F
t

( t
w

)ID∗F −
(

ID∗F
t

( t
w

)ID∗F
)q

dt using Lemma 1

→ 1
q−1

(
1− 1

wq−1 ·
(ID∗F)

q

q ID∗F −q+1

)
Cumulative

Entropy cH(F, w)→−
∫ w

0 Fw(t) ln Fw(t)dt

→−
∫ w

0

( t
w

)ID∗F ln
( t

w

)ID∗F dt using Lemma 1

→ w
ID∗F

(ID∗F +1)2
weight by 1

w

Cumulative
q-Entropy cHq(F, w)→ 1

q−1

∫ w
0 Fw(t)− (Fw(t))

q dt q 6= 1

→ 1
q−1

∫ w
0

( t
w

)ID∗F −
( t

w

)q ID∗F dt using Lemma 1

→ w
ID∗F

(ID∗F +1)(q ID∗F +1) weight by 1
w

Entropy Power HP(F, w)→ exp(H(F, w))

→ exp
(

1− 1
ID∗F
− ln

ID∗F
w

)
by substitution

→ w 1
ID∗F

exp
(

1− 1
ID∗F

)
weight by 1

w

q-Entropy Power HPq(F, w)→
[
1 + (1− q)Hq(F, w)

] 1
1−q q 6= 1

→
(

1 + (1− q) · 1
q−1

[
1− 1

wq−1 ·
(ID∗F)

q

q ID∗F −q+1

]) 1
1−q

by substitution

→ w
(

(ID∗F)
q

q ID∗F −q+1

) 1
1−q

weight by 1
w
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Table 3. Derivations of asymptotic relationships between tail divergences and local intrinsic dimen-
sionality. Each step shows the equivalences between the formulations when w is allowed to tend to
zero. In the comments column, for each step of the derivation, the lemmas invoked are stated, as well
as any additional assumptions made. If a normalization or weighting is needed, the details are shown
in a comment in the final step. In all cases, F and G are assumed to be smooth growth functions.

Tail Measure Derivation Steps Comments

Cross Entropy XH(F; G, w)→−
∫ w

0 F′w(t) ln G′w(t)dt

→−
∫ w

0
IDF(t) Fw(t)

t ln IDG(t) Gw(t)
t dt using Theorem 1

→−
∫ w

0
ID∗F Fw(t)

t ln ID∗G Gw(t)
t dt using Lemma 3

→−
∫ w

0
ID∗F

t
( t

w
)ID∗F ln

[
ID∗G

t
( t

w
)ID∗G

]
dt using Lemma 1

→ ID∗G −1
ID∗F

− ln ID∗G
w no reweighting

Cross Entropy Power XHP(F; G, w)→ exp(XH(F; G, w))

→ exp
(

ID∗G −1
ID∗F

− ln ID∗G
w

)
by substitution

→ w 1
ID∗G

exp
(

ID∗G −1
ID∗F

)
weight by 1

w

KL Divergence KL(F; G, w)→
∫ w

0 F′w(t) ln F′w(t)
G′w(t)

dt

→
∫ w

0
IDF(t) Fw(t)

t ln IDF(t) Fw(t)
IDG(t) Gw(t)

dt using Theorem 1

→
∫ w

0
ID∗F Fw(t)

t ln ID∗F Fw(t)
ID∗G Gw(t)

dt using Lemma 3

→
∫ w

0
ID∗F

t
( t

w
)ID∗F ln

[
ID∗F
ID∗G

( t
w
)ID∗F − ID∗G

]
dt using Lemma 1

→ ρ− ln ρ− 1 ρ =
ID∗G
ID∗F

JS Divergence JS(F; G, w)→ 1
2 (KL(F; M, w) + KL(G; M, w)) M(t) = 1

2 (F(t) + G(t))

→ 1
2

(
ID∗M
ID∗F
− ln ID∗M

ID∗F
− 1 + ID∗M

ID∗G
− ln ID∗M

ID∗G
− 1
)

ID∗M = min{ID∗F, ID∗G}

→ 1
2

(
ID∗M

B +
ID∗M
ID∗M
− ln ID∗M

B − ln ID∗M
ID∗M
− 2
)

let B = max{ID∗F, ID∗G}

→ 1
2 (τ − ln τ − 1) τ = min

{
ID∗G
ID∗F

, ID∗F
ID∗G

}

The IS divergence is popular as an objective for matrix factorization of audio spec-
tra [86], for assessing the loss of using entry yi,j to approximate a true entry xi,j; more
precisely, to approximate a matrix V by factorization WH, the loss is ∑i ∑j dIS([V]ij|[WH]ij).
The IS divergence is a convenient choice for this scenario due to its scale-free property
(dIS(x|y) = dIS(αx|αy) for any α 6= 0), thus giving the same relative weight to both small
and large values of xi and yi, since they only appear as the ratio xi

yi
. This is important for

scenarios such as audio spectra, where the magnitudes of xi and yi can vary greatly.
The Itakura–Saito divergence falls into the family of so-called Bregman divergences (or

distances) [87], which have a geometric interpretation as the difference between the value
of a convex generator function at x on the one hand, and the value at x of a hyperplane
function that is tangent to the generator curve at y. Bregman divergences are a highly
expressive family of distances with a wide range of applications [88]. For the IS divergence,
the convex generator function is the negative logarithm −∑n

i=1 ln xi. Interestingly, the KL
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divergence is also a Bregman divergence, with its convex generator being the negative
entropy function ∑n

i=1 xi ln xi [89].

Table 4. Derivations of asymptotic relationships between tail distances and local intrinsic dimension-
ality. Each step shows the equivalences between the formulations when w is allowed to tend to zero.
In the comments column, for each step of the derivation, the lemmas invoked are stated, as well as
any additional assumptions made. For each tail distance, the first step of the derivations shows an
expansion by which the monotonicity of each factor can be verified. If a normalization or weighting
is needed, the details are shown in a comment in the final step. In all cases, F and G are assumed to
be smooth growth functions.

Tail Measure Derivation Steps Comments

L2 Distance L2D(F; G, w)→
∫ w

0 (F′w(t)− G′w(t))
2 dt

→
∫ w

0

(
IDF(t) Fw(t)

t − IDG(t) Gw(t)
t

)2
dt using Theorem 1

→
∫ w

0

(
ID∗F Fw(t)

t

)2
− 2 ID∗F Fw(t)

t · ID∗G Gw(t)
t +

(
ID∗G Gw(t)

t

)2
dt using Lemma 3

→
∫ w

0
(ID∗F)

2

t2

( t
w
)2 ID∗F − 2 ID∗F ID∗G

t2

( t
w
)ID∗F + ID∗G +

(ID∗G)
2

t2

( t
w
)2 ID∗G dt using Lemma 1

→ 1
w ·

(ID∗F − ID∗G)
2

2(ID∗F + ID∗G −1)

[
1 + 1

(2 ID∗F −1)(2 ID∗G −1)

]
weight by w

Hellinger Distance HD(F; G, w)→
√

1
2

∫ w
0

(√
F′w(t)−

√
G′w(t)

)2
dt

→

√
1
2

∫ w
0

(√
IDF(t) Fw(t)

t −
√

IDG(t) Gw(t)
t

)2

dt using Theorem 1

→
√

1
2

∫ w
0

ID∗F Fw(t)
t − 2

√
ID∗F Fw(t)·ID∗G Gw(t)

t +
ID∗G Gw(t)

t dt using Lemma 3

→
√∫ w

0
1
2t

(
ID∗F

( t
w
)ID∗F − 2

√
ID∗F ID∗G

( t
w
)(ID∗F + ID∗G)/2

+ ID∗G
( t

w
)ID∗G

)
dt using Lemma 1

→ |1−
√

ρ|√
1+ρ

ρ =
ID∗G
ID∗F

χ2-Divergence χ2D(F; G, w)→
∫ w

0
(F′w(t)−G′w(t))

2

G′w(t) dt

→
∫ w

0

(
IDF(t) Fw(t)

t − IDG(t) Gw(t)
t

)2 t
IDG(t) Gw(t) dt using Theorem 1

→
∫ w

0

[(
ID∗F Fw(t)

t

)2
− 2 ID∗F Fw(t)

t · ID∗G Gw(t)
t +

(
ID∗G Gw(t)

t

)2
]

t
ID∗G Gw(t) dt using Lemma 3

→
∫ w

0

[
(ID∗F)

2

t2

( t
w
)2 ID∗F − 2 ID∗F ID∗G

t2

( t
w
)ID∗F + ID∗G +

(ID∗G)
2

t2

( t
w
)2 ID∗G

]
t

ID∗G

( w
t
)ID∗G dt using Lemma 1

→ (1−ρ)2

ρ(2−ρ)
ρ =

ID∗G
ID∗F

α-Divergence αD(F; G, w)→ 1
α(1−α)

∫ w
0 αF′w(t) + (1− α)G′w(t)− (F′w(t))

α(G′w(t))
1−α dt

→ 1
α(1−α)

∫ w
0

α IDF(t) Fw(t)
t + (1−α) IDG(t) Gw(t)

t −
(

IDF(t) Fw(t)
t

)α( IDG(t) Gw(t)
t

)1−α
dt using Theorem 1

→ 1
α(1−α)

∫ w
0

α ID∗F Fw(t)
t +

(1−α) ID∗G Gw(t)
t −

(
ID∗F Fw(t)

t

)α( ID∗G Gw(t)
t

)1−α
dt using Lemma 3

→ 1
α(1−α)

∫ w
0

α ID∗F
t
( t

w
)ID∗F+

(1−α) ID∗G
t

( t
w
)ID∗G− (ID∗F)

α(ID∗G)1−α

t
( t

w
)α ID∗F +(1−α) ID∗G dt using Lemma 1

→ 1
α(1−α)

(
1− (ID∗F)

α(ID∗G)1−α

α ID∗F +(1−α) ID∗G

)
→ 1

α(1−α)

(
1− 1

αρα−1+(1−α)ρα

)
ρ =

ID∗G
ID∗F
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Table 5. Derivations of asymptotic relationships between tail Wasserstein distances and local intrinsic
dimensionality. Each step shows the equivalences between the formulations when w is allowed to
tend to zero. In the comments column, for each step of the derivation, the lemmas invoked are stated,
as well as any additional assumptions made. Normalization details are shown in a comment in the
final step. In all cases, F and G are assumed to be invertible smooth growth functions.

Tail Measure Derivation Steps Comments

Wasserstein Distance WD2(F; G, w)→
√∫ 1

0

(
F−1

w (u)− G−1
w (u)

)2
du

→
√∫ 1

0

(
F−1

w (u)
)2
− 2F−1

w (u) · G−1
w (u) +

(
G−1

w (u)
)2

du

p = 2 →
√∫ 1

0 w2u
2

ID∗F − 2w2u
1

ID∗F
+ 1

ID∗G + w2u
2

ID∗G du using Lemma 2

→ w
√

1
2

ID∗F
+1
− 2

1
ID∗F

+ 1
ID∗G

+1
+ 1

2
ID∗G

+1
weight by 1

w

Wasserstein Distance WDp(F; G, w)→
(∫ 1

0

(
F−1

w (u)− G−1
w (u)

)p du
) 1

p

p ∈ N, p even →
(∫ 1

0 ∑
p
j=0(−1)j

(p
j
)(

F−1
w (u)

)p−j(G−1
w (u)

)j du
) 1

p

→
(∫ 1

0 ∑
p
j=0(−1)j

(p
j
)(

wu
1

ID∗F

)p−j(
wu

1
ID∗G

)j

du

) 1
p

using Lemma 2

→ w

∑
p
j=0

(−1)j
(p

j
)

(p−j)·(ID∗F)−1+j·(ID∗G)−1+1


1
p

weight by 1
w

7. Extension to Multivariate Distributions

Thus far, our results have focused on a univariate scenario, wherein entropy and
divergence variants were shown to be asymptotically equivalent to formulations involving
the local intrinsic dimensionalities of smooth distributions of a single random variable.
As discussed in Section 3, these results can be applied to distance-based analysis, through
characterizations involving the LIDs of local (univariate) distance distributions induced by
the overall (global) multivariate distribution. These characterizations are indirect, in that
they do not explicitly involve (nor do they require) any knowledge of the underlying global
distribution and its parameters. However, characterizations in terms of induced distance
distributions may not be entirely satisfying when the nature of the global multivariate
distribution is either known or assumed. In this section, we will assume that our domain
S is the n-dimensional space Rn equipped with the Euclidean distance, d(x, y) = ‖x− y‖.
Within S , we will also assume that we are given a data distribution D with probability
density function p : Rn → R+ ∪ 0.

7.1. Multivariate Tail Distributions with Local Spherical Symmetry

Within the Euclidean domain, the challenge is to analyze distributions in terms of
the probability measure captured within volumes associated with a distributional tail.
However, unlike in univariate distributions, there is no universally accepted notion of
‘distributional tail’ for multivariate distributions. For our purposes, given a distance r > 0,
we define the tail of D of length r to be the region enclosed by the ball of radius r centered
at the origin; that is, B(r) , {x ∈ Rn : ‖x‖ ≤ r}. The boundary of the tail is the (n− 1)-
dimensional surface area of B(r), which we denote by B′(r) , {x ∈ Rn : ‖x‖ = r}.

To enable tractable analysis, we will assume that the PDF can be expressed in terms of
a locally spherically symmetrical function. One example of where local spherical symmetry
can be expected to hold is for a locally isotropic context. This is a common assumption for
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physical systems, including metals, glasses, fluids and polymers, for which the distribution
locally surrounding a particle in the system does not have a directional preference.

Formally, we say that a density function f is locally spherically symmetrical within
radius w if for all ‖x‖ ≤ w, we have f (x) = f∗(r) for some univariate function f∗ where
r = ‖x‖. For f to be locally spherically symmetrical, it suffices that f (x) be equal to f (y)
whenever 0 ≤ ‖x‖ = ‖y‖ ≤ r. The assumption also implies the existence of a function f∗
for which f (x) = f∗(r), and therefore that f must be constant over all points of the sphere
B′(r).

The probability measure captured by B(r), which we denote by F(r), is obtained
through the integration of f over this ball:

F(r) ,
∫
B(r)

f dB(r) .

It is not difficult to see that the univariate function F is simply the CDF of the distribution
of distances to the origin induced by the global distribution D. If F is differentiable over
the tail interval (0, r], then the integral of F′ over this interval exists, and equals F:∫

B(r)
f dB(r) = F(r) =

∫ r

0
F′(t)dt . (2)

The derivative F′(r) can therefore be interpreted as the PDF of the radial distance distribu-
tion as measured from the origin.

For spherically symmetric distributions in Euclidean spaces, the multivariate density
and radial density is related through a factor that depends on the surface area of spherical
volumes. The formulae for the volume of an n-sphere and its (n− 1)-dimensional surface
area are given by

Vn(r) ,
πn/2

Γ((n/2) + 1)
rn and

Sn−1(r) ,
2πn/2

Γ(n/2)
rn−1 ,

respectively. Γ is the common gamma function Γ(n) = (n− 1)! if n is a positive integer and
Γ(n + 1

2 ) = (n− 1
2 )(n−

3
2 ) . . . 1

2
√

π if n is a non negative integer. Furthermore, the volume
and surface area have a simple relationship that allows for easy conversion between the
two:

r · Sn−1(r) = n ·Vn(r) . (3)

Lemma 4 ([90]). Let X be an n-dimensional random vector that is spherically symmetric with a
radial distributionR. Then X has a density f (x) if and only ifR has a density s and

s(r) = f (x) · Sn−1(r) .

If F is a smooth growth function that is locally spherically symmetric over [0, r],
Equation (2) and Lemma 4 together give us the following relationship between the radial
density F′ and the multivariate density f :

f (x) =
F′(‖x‖)

Sn−1(‖x‖)

whenever ‖x‖ ≤ r. Conditioning the distribution to the ball B(r), the tail distribution PDF
becomes

fr(x) ,
f (x)∫

B(w) f dB(w)
=

F′(‖x‖)
Sn−1(‖x‖) · F(r)

=
F′r(‖x‖)

Sn−1(‖x‖)
.
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7.2. Multivariate Tail Entropy Variants

The aforementioned relationships between multivariate and radial densities can be
immediately used to compute the various tail entropies for the locally spherically symmetric
multivariate case. Useful background on evaluating radial integrals can be found in
Baker [91]. For example, the multivariate Tail Entropy is

H( f , w) , −
∫
B(w)

fw ln fw dB(w)

= −
∫ w

0

(
F′w(t)

Sn−1(t)
ln

F′w(t)
Sn−1(t)

)
· Sn−1(t)dt

= −
∫ w

0
F′w(t) ln

F′w(t)
Sn−1(t)

dt .

Although the multivariate formulation of Tail Entropy H( f , w) resembles that of the
univariate formulation H(F, w), the two are not identical. Nevertheless, the multivariate
formulation can still be simplified using the technical lemmas introduced in Section 5.
In much the same way as for the univariate Tail Entropy Power, we can use Theorem 1
together with Lemmas 1 and 3 to determine the limit of H( f , w) as w tends to 0. Replacing

F′w(t) by 1
t IDF(t)Fw(t), then IDF(t) by ID∗F, and finally Fw(t) by

( t
w
)ID∗F , we obtain

lim
w→0

H( f , w) = lim
w→0
−
∫ w

0
F′w(t) ln

F′w(t)
tn−1Sn−1(1)

dt

= lim
w→0
−
∫ w

0

ID∗F
t

(
t
w

)ID∗F
ln

[
ID∗F

tnSn−1(1)

(
t
w

)ID∗F
]

dt

= lim
w→0
−
∫ w

0

ID∗F
wID∗F

tID∗F −1 ln

[
ID∗F

wID∗F Sn−1(1)
tID∗F −n

]
dt

= lim
w→0
−
∫ w

0

ID∗F
wID∗F

tID∗F −1

[
ln

ID∗F
wID∗F Sn−1(1)

+ (ID∗F −n) ln t

]
dt .

Solving the integral, and then using Equation (3) to convert the surface area factor Sn−1 to
an expression involving the volume Vn, we eventually arrive at

lim
w→0

H( f , w) = lim
w→0

(
1− n

ID∗F
− ln

ID∗F
wn Sn−1(1)

)
= lim

w→0

(
1− n

ID∗F
− ln

ID∗F
w Sn−1(w)

)
= lim

w→0

(
1− n

ID∗F
− ln

ID∗F
n

+ ln Vn(w)

)
,

which diverges even when the Tail Entropy is reweighted by Vn(w) (or indeed, by any
other polynomial in w). However, the Tail Entropy Power, when normalized by Vn(w),
does converge to a strictly positive value:

lim
w→0

1
Vn(w)

HP( f , w) , lim
w→0

1
Vn(w)

exp(H( f , w))

= lim
w→0

1
Vn(w)

exp
(

1− n
ID∗F
− ln

ID∗F
n

+ ln Vn(w)

)
=

1
ϕ

exp
(

1− 1
ϕ

)
, where ϕ =

ID∗F
n

.
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As one might expect in the n-dimensional Euclidean setting, the (normalized asymptotic)
multivariate Tail Entropy Power is maximized whenever ID∗F, the local intrinsic dimension-
ality of the associated radial CDF F, is equal to n.

7.3. Multivariate Cumulative Tail Entropy

In the multivariate setting, cumulative entropy is defined in terms of the distributional
tail, according to the notion laid out in Section 7.1. In place of the usual probability density
f (x), the entropy function is applied to the probability measure associated with the ball
centered at the origin with radius ‖x‖; that is, with

Pr[X ≤ ‖x‖] ,
∫
B(‖x‖)

f dB(‖x‖) = F(‖x‖) .

Note that since F takes the same value at x and y whenever ‖x‖ = ‖y‖, the quantity F(‖x‖)
is locally spherically symmetric even when the underlying density function f is not.

We can adapt the multivariate formulation of cumulative residual entropy that was
originally proposed by Rao [56]. The multivariate Cumulative Tail Entropy, conditioned to
a distributional tail of radius w, is expressed as a multivariate integral involving Fw(‖x‖),
or as a radial integral involving Fw, as follows:

cH( f , w) , −
∫

x∈B(w)
Fw(‖x‖) ln Fw(‖x‖)dB(w)

= −
∫ w

0
(Fw(t) ln Fw(t)) · Sn−1(t)dt .

As in the treatment of the univariate tail entropies, we can use Lemma 1 to determine the

limit of cH( f , w) as w tends to 0. Replacing Fw(t) by
( t

w
)ID∗F ,

lim
w→0

cH( f , w) = lim
w→0
−
∫ w

0
tn−1Sn−1(1) Fw(t) ln Fw(t)dt

= lim
w→0
−
∫ w

0
tn−1Sn−1(1)

(
t
w

)ID∗F
ln
(

t
w

)ID∗F
dt

= lim
w→0
−
∫ w

0

Sn−1(1) ID∗F
wID∗F

· tID∗F +n−1 (ln t− ln w)dt .

Solving the integral, and then converting the surface area factor Sn−1 to a volume factor Vn
using Equation (3), we obtain

lim
w→0

cH( f , w) = lim
w→0

w Sn−1(w) · ID∗F
(ID∗F +n)2

= lim
w→0

Vn(w) · ϕ

(ϕ + 1)2 , where ϕ =
ID∗F

n
.

Although the multivariate Cumulative Tail Entropy vanishes as the tail boundary w tends
to zero, when normalized by the tail volume Vn(w) it converges to a strictly positive value:

lim
w→0

1
Vn(w)

cH( f , w) =
ϕ

(ϕ + 1)2 .

Again, as with the Normalized Tail Entropy Power, the (asymptotic) multivariate Tail
Cumulative Entropy is maximized whenever ϕ = 1. That is, when ID∗F = n.

7.4. Multivariate Tail Divergences

Several of the tail divergence measures, when considered in the multivariate setting
under the assumptions of locally spherical symmetry, turn out to be identical to those of the
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radial (univariate) setting. As an example, consider the multivariate Tail KL Divergence,
defined as

KL( f ; g, w) ,
∫
B(w)

fw ln
fw

gw
dB(w) .

Applying Lemma 4 and integrating radially over the tail, we see that

KL( f ; g, w) =
∫ w

0

(
F′w(t)

Sn−1(t)
ln

F′w(t)/Sn−1(t)
G′w(t)/Sn−1(t)

)
· Sn−1(t)dt

=
∫ w

0
F′w(t) ln

F′w(t)
G′w(t)

dt

= KL(F; G, w) ,

the Tail KL Divergence of F and G, which (as stated in Table 1) has the limit ID∗G
ID∗F
− ln ID∗G

ID∗F
− 1

as the tail length w tends to zero.
Similarly, it can easily be seen that the multivariate versions of the JS Divergence,

the Hellinger Distance, the χ2-Divergence and the α-Divergence all have radial integral
formulations identical to their corresponding univariate versions.

7.5. Observations

The general strategy for deriving these results is essentially the same as for the mul-
tivariate Tail Entropy: first use Lemma 4 to convert the multidimensional integral to an
integral in one dimension, then use the technical lemmas of Section 5 to simplify the
univariate integral as before.

Our results for the locally spherically symmetric multivariate case are shown in Table 6;
however, since their derivations greatly resemble those of the analogous univariate cases,
we omit the details. Some remarks:

1. A result for the Wasserstein Distance is not included, since its formulation does
not generalize straightforwardly to higher dimensions, unlike the other divergence
measures.

2. The normalizations and weightings used depend only on the tail volume Vn(w)
and (for the Tsallis entropy variants) the parameter q. This generalizes our earlier
univariate results where normalization was performed with regard to the tail length
w.

3. All the multivariate tail variants considered Table 6 are elegant generalizations of
their corresponding univariate formulations, and all explicitly depend on the ratios

between the LIDs and the dimension of the space n (ϕ =
ID∗F

n and γ =
ID∗G

n ), or on

the ratio of two LID values (ρ =
ID∗G
ID∗F

= γ
ϕ ). Among these, the Normalized Entropy

Power and the Normalized Cumulative Entropy are maximized when ID∗F = n, which
can occur when the tail distribution is uniform. The Varentropy is minimized when
ID∗F = n, which can occur when the variance of the log-likelihood for a uniform
distribution is equal to zero.

4. As mentioned in Related Work, a number of previous studies in deep learning have
found that the local intrinsic dimension in learned representations is lower than
the dimension of the full space [32–35] (i.e., ID∗F < n) and that the learning process
progressively reduces local intrinsic dimension. Consider a concrete example where
n = 100 and ID∗F = 12 and the learning process is reducing ID∗F at a point from 12 to 11.
The consequent effect on entropy can be interpreted from two different perspectives,
either as an increase in tail distance entropy or a decrease in tail location entropy:

• Considering univariate normalized entropy power or normalized cumulative
entropy (Table 1), reduction of ID∗F corresponds to an increase in entropy. Here,
the entropy is measuring the uncertainty of the univariate random variable
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modeling distances to nearest neighbors. Thus, reduction of ID∗F corresponds to
an increase in “distance entropy”.

• Considering multivariate normalized entropy power or multivariate normalized
cumulative entropy (Table 6), reduction of ID∗F corresponds to an decrease in
entropy. Here, the entropy is measuring the uncertainty of the multivariate ran-
dom variable modeling locations of nearest neighbors, assuming local spherical
symmetry. So reduction of ID∗F corresponds to a decrease in “location entropy”.

We will see a visualization of these scenarios in Section 7.6.
5. All four of the multivariate tail divergences listed in Table 6, as well as the Hellinger

Distance, have radial integral formulations that are identical to their univariate coun-
terparts. All the divergences and distances (including the Weighted L2 Distance) are
minimized when ID∗F = ID∗G.

6. By setting n = 1, we can recover the univariate results from Table 1. However, note
that the range of integration used in Table 6 is a hypersphere of radius w, where for
n = 1 it is the interval [−w, w]. In contrast, the integral formulations listed in Table 1
were taken over the interval [0, w]. For some results, this means a minor (constant
factor of 2) difference between Table 1 and the result from Table 6 when n = 1.

Table 6. Asymptotic equivalences between LID formulations and tail measures of entropy or diver-
gence for locally spherically symmetric distributions in the n-dimensional Euclidean setting. In each
case, the density functions are assumed to be f and g, and the CDFs F and G of their induced distance
distributions are assumed to be smooth growth functions. In the results, Vn(r) and Sn−1(r) denote
the volume and surface area of the n-dimensional ball with radius r (respectively). In some cases,
for the asymptotic limit to exist non-trivially (that is, to be both finite and non-zero), the tail entropy
or tail divergence must be normalized by some multiplicative factor dependent on the tail volume
Vn(w).

Tail Measure Formulation Limit as w→ 0+

Entropy H( f , w) = −
∫
B(w) fw ln fw dB(w) = −

∫ w
0 F′w(t) ln F′w(t)

Sn−1(t)
dt Diverges (no reweighting possible)

Varentropy VarH( f , w) =
∫
B(w) fw ln2 fw dB(w)−

(∫
B(w) fw ln fw dB(w)

)2 (
1− 1

ϕ

)2

=
∫ w

0 F′w(t) ln2 F′w(t)
Sn−1(t)

dt −
(∫ w

0 F′w(t) ln F′w(t)
Sn−1(t)

dt
)2

ϕ =
ID∗F

n

q-Entropy Hq( f , w) = 1
q−1

∫
B(w) fw − f q

w dB(w) 1
q−1 if q < 1

= 1
q−1

∫ w
0 F′w(t)−

(F′w(t))
q

(Sn−1(t))
q−1 dt diverges if q > 1

Normalized 1
Vn(w)

cH( f , w) = − 1
Vn(w)

∫
x∈B(w)Fw(‖x‖) ln Fw(‖x‖)dB(w) ϕ

(ϕ+1)2

Cumulative Entropy = − 1
Vn(w)

∫ w
0 (Fw(t) ln Fw(t)) · Sn−1(t)dt ϕ =

ID∗F
n

Normalized 1
Vn(w)

cHq( f , w) = − 1
Vn(w)

· 1
q−1

∫
x∈B(w)Fw(‖x‖)− (Fw(‖x‖))q dB(w) ϕ

(qϕ+1)(ϕ+1) if q 6= 1

Cumulative q-Entropy = 1
Vn(w)

· 1
q−1

∫ w
0

(
Fw(t)− (Fw(t))

q) · Sn−1(t)dt ϕ =
ID∗F

n

Normalized Entropy Power 1
Vn(w)

HP( f , w) = 1
Vn(w)

exp(H( f , w)) 1
ϕ exp

(
1− 1

ϕ

)
; ϕ =

ID∗F
n

Normalized q-Entropy Power 1
Vn(w)

HPq( f , w) = 1
Vn(w)

[
1 + (1− q)Hq( f , w)

] 1
1−q

(
ϕq

qϕ−q+1

) 1
1−q ; ϕ =

ID∗F
n

if q 6= 1 and qϕ− q + 1 > 0

Cross Entropy XH( f ; g, w) = −
∫
B(w) fw ln gw dB(w) = −

∫ w
0 F′w(t) ln G′w(t)

Sn−1(t)
dt Diverges (no reweighting possible)

Normalized Cross Entropy Power 1
Vn(w)

XHP( f ; g, w) = 1
Vn(w)

exp(XH( f ; g, w)) 1
γ exp

(
γ−1

ϕ

)
; ϕ =

ID∗F
n ; γ =

ID∗G
n
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Table 6. Cont.

Tail Measure Formulation Limit as w→ 0+

Weighted Vn(w) · L2D( f ; g, w) = Vn(w)
∫
B(w)( fw − gw)

2 dB(w) (ϕ−γ)2

2(ϕ+γ−1)

[
1 + 1

(2ϕ−1)(2γ−1)

]
L2 Distance = Vn(w)

∫ w
0

1
Sn−1(t)

(F′w(t)− G′w(t))
2 dt ϕ =

ID∗F
n ; γ =

ID∗G
n

ID∗F > 1
2 ; ID∗G > 1

2

Hellinger Distance HD( f ; g, w) =
√

1
2

∫
B(w)

(√
fw −

√
gw
)2

dB(w)
|1−√ρ|√

1+ρ

=

√
1
2

∫ w
0

(√
F′w(t)−

√
G′w(t)

)2
dt ρ =

ID∗G
ID∗F

χ2-Divergence χ2D( f ; g, w) =
∫
B(w)

( fw−gw)2

gw
dB(w) (1−ρ)2

ρ(2−ρ)

=
∫ w

0
(F′w(t)−G′w(t))

2

G′w(t) dt ρ =
ID∗G
ID∗F

; ρ < 2

α-Divergence αD( f ; g, w) = 1
α(1−α)

∫
B(w) α fw + (1− α)gw − f α

wg1−α
w dB(w) 1

α(1−α)

(
1− 1

αρα−1+(1−α)ρα

)
= 1

α(1−α)

∫ w
0 αF′w(t) + (1− α)G′w(t) ρ =

ID∗G
ID∗F

−(F′w(t))
α(G′w(t))

1−α dt Require α + ρ(1− α) > 0

KL Divergence KL( f ; g, w) =
∫
B(w) fw ln fw

gw
dB(w) =

∫ w
0 F′w(t) ln F′w(t)

G′w(t) dt ρ− ln ρ− 1; ρ =
ID∗G
ID∗F

JS Divergence JS( f ; g, w) = 1
2

(
KL
(

f ; f+g
2 , w

)
+ KL

(
g; f+g

2 , w
))

τ−ln τ−1
2 ; τ = min{ρ, 1

ρ }; ρ =
ID∗G
ID∗F

7.6. Visualization of Behavior

Our results in Table 6 relate local intrinsic dimensionality to entropies and divergences.
If analyzing an n dimensional global distribution such as the standard normal distribution
or uniform distribution, then the dimension of every sub-manifold (i.e., the local intrinsic
dimensionality ID∗F) will be n. However, our interest is in situations where the local intrinsic
dimensionality differs from the representation dimension n. To provide further intuition
on this aspect, two plots are shown in Figure 1.

(a) (b)

Figure 1. Visualization of selected measures from Table 6 (a) Entropy behavior as the ratio ID∗F
n varies;

(b) Divergence/distance behavior as the ratio ID∗G
ID∗F

varies.

Figure 1a compares the behavior of the normalized entropy power and the normalized
cumulative entropy (multiplied by a constant factor of 4) in n-dimensional space, as the
ratio φ =

ID∗F
n is varied. We see that these measures have similar trends and they are

maximized when ID∗F = n. We also see that when 1� ID∗F < n, these entropic measures
will decrease if ID∗F is decreased (for a fixed n). On the other hand, if n = 1 and 1� ID∗F,
then these entropic measures will increase if ID∗F is decreased, where n = 1 corresponds
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to the scenario where we are modeling the uncertainty of a distance distribution. This
illustrates remark number 4 from Section 7.5 above.

Figure 1b compares the behavior of different tail divergences as the ratio ρ =
ID∗G
ID∗F

varies. The divergences shown are the KL divergence, the Jensen–Shannon divergence and
the Hellinger distance. These measures have similar trends as ρ varies and are minimized
and equal to zero when ID∗F = ID∗G. Also, the Hellinger distance is bounded above by 1.

8. Conclusions

In this theoretical investigation, we have established asymptotic relationships between
tail entropy variants, tail divergences and the theory of local intrinsic dimensionality. Our
results are derived under the assumption that the distribution(s) under consideration are
being analyzed in a highly local context, within the distribution tail(s), an asymptotically
small neighborhood whose radius approaches zero. These results show that tail entropies
and tail divergences depend in a fundamental way on local intrinsic dimensionality and
help form a theoretical foundation for cross-fertilization between intrinsic dimensionality
research and entropy research. As future work, we plan to investigate the potential of these
new characterizations in a range of application settings. For example, for use as a basis in
machine learning to characterize and improve representations and representation learning,
as well as use in understanding behavior of physical systems such as fluids and helping
characterize their critical transitions in time and space.

Our results from both univariate and multivariate cases, show that the tail entropies
and divergences considered in this paper depend only on (i) the embedding (representation)
dimension in which the distribution is situated, and (ii) the local intrinsic dimension(s) of
the distribution(s). Furthermore, in many cases there is dependence involving the ratio
between the intrinsic dimension and the embedding dimension.

Consider the context of distance based analysis, when a distribution models distances
from a central query location to its nearest neighbors, and the distances are induced by
global data. In this situation, our characterization of entropy might be termed as ‘personal-
ized’, in that entropy expresses the uncertainty (or complexity) from the perspective of the
query, in regard to the distances to samples within an asymptotically small neighborhood.
Phrased another way, these local entropies are ‘observer-dependent’, since they are tied to
the choice of query (the observer). This can be contrasted with the more common notion of
entropy, where one analyzes a global distribution, and there is no requirement of a query
point or its local neighborhood.

As alluded to in the introduction, divergences between tail distributions could be used
for comparison of real and synthetic distributions, as is commonly required for generative
adversarial networks (GANs). Given a particular query location we may either: (i) compute
the divergence between the univariate tail distance distributions of synthetic and real
examples, as measured from a query point; or (ii) compute the divergence between the
multivariate tail distance distributions of synthetic and real examples, again as measured
from the query, under an assumption of local isotropy. Our results show that under the
assumption of local spherical symmetry, the use of divergences (such as KL) between tail
distance distributions is asymptotically equivalent to the standard multivariate formula-
tions with the same divergences, when restricted to the neighborhoods around locations of
interest. For future work it will be interesting to consider whether it is possible to further
extend our multivariate results to elliptically symmetric distributions or skew-elliptical
distributions, such as those studied by Contreras-Reyes [65].

Lastly, our results in Tables 1 and 6 show theoretical relationships for entropies and
divergences, but in practice one must estimate the measures using samples of data. A
natural approach here is to first estimate local intrinsic dimensional values such as ID∗F
and ID∗G using any desired estimator (such as the maximum likelihood estimator [39–41]),
and then plug in the estimated LID value into the desired tail entropy or tail divergence
formula. For example, an estimator of the (univariate) Normalized Cumulative Entropy
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could be obtained by computing ÎD∗F
(ÎD∗F+1)2

, where ÎD∗F is the estimated LID of the distance

distribution F.
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