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Abstract: We consider the problem of modeling and estimating communities in directed networks.
Models to this problem in the previous literature always assume that the sending clusters and the
receiving clusters have non-overlapping property or overlapping property simultaneously. However,
previous models cannot model the directed network in which nodes in sending clusters have over-
lapping property, while nodes in receiving clusters have non-overlapping property, especially for
the case when the number of sending clusters is no larger than that of the receiving clusters. This
kind of directed network exists in the real world for its randomness, and by the fact that we have
little prior knowledge of the community structure for some real-world directed networks. To study
the asymmetric structure for such directed networks, we propose a flexible and identifiable Overlap-
ping and Non-overlapping model (ONM). We also provide one model as an extension of ONM to
model the directed network, with a variation in node degree. Two spectral clustering algorithms are
designed to fit the models. We establish a theoretical guarantee on the estimation consistency for the
algorithms under the proposed models. A small scale computer-generated directed networks are
designed and conducted to support our theoretical results. Four real-world directed networks are
used to illustrate the algorithms, and the results reveal the existence of highly mixed nodes and the
asymmetric structure for these networks.

Keywords: community detection; directed network; network analysis; spectral clustering

1. Introduction

Community detection is a powerful tool in studying social networks with a latent
structure of community [1–4]. The goal of community detection is to estimate a node’s
community information from the network. In the study of social networks, various models
have been proposed for community detection to model different networks with different
community structures [5]. Due to the extremely intensive studies on community detection,
we only focus on identifiable models that are closely relevant to our study in this paper.

The Stochastic Blockmodel (SBM) [6] is a classical and widely used model for an
undirected network. SBM assumes that the probability of an edge between two nodes only
depends on the clusters they belong to, and this assumption is not realistic because nodes
have various degrees in real-world networks. To model real-world un-directed networks
in which nodes degrees vary, the Degree-Corrected Stochastic Blockmodel (DCSBM) [7]
extends SBM by introducing degree heterogeneities. Under SBM and DCSBM, all nodes
are pure, such that each node only belongs to one community. However, in real cases,
some nodes may belong to multiple communities, and such nodes have overlapping
(also known as mixed membership) property. To model undirected networks in which
nodes have an overlapping property, Ref. [8] designs the Mixed Membership Stochastic
Blockmodel (MMSB). Ref. [9] introduces the Degree-Corrected Mixed Membership model
(DCMM), which extends MMSB by considering degree heterogeneities. Ref. [10] designs
the Overlapping Continuous Community Assignment model (OCCAM), which equals
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DCMM actually. Spectral methods with consistent estimations under the above models are
provided in [9,11–17].

For directed networks in which all nodes have a non-overlapping property, Ref. [18]
proposes a model called Stochastic co-Blockmodel, (ScBM) and its extension, the Degree-
Corrected Stochastic co-Blockmodel (DCScBM), by considering the degree heterogeneity,
where ScBM (DCScBM) is an extension of SBM (DCSBM) from an un-directed network to a
directed network. ScBM and DCScBM can model non-overlapping directed networks in
which row nodes belong to Kr sending clusters (we also use community to denote cluster
occasionally) and column nodes belong to Kc receiving clusters, where row nodes can differ
from column nodes, and Kr can differ from Kc. Ref. [19] studies the consistency of some
adjacency-based spectral algorithms under ScBM. Ref. [20] studies the consistency of the
spectral method D-SCORE under DCScBM when Kr = Kc. Ref. [21] designs the Directed
Mixed Membership Stochastic Blockmodel (DiMMSB) as an extension of ScBM and MMSB
to model directed networks in which all nodes have overlapping property. Meanwhile,
DiMMSB can also be seen as an extension of the two-way blockmodels with a Bernoulli
distribution of [22]. All of the above models are identifiable under certain conditions. The
identifiability of ScBM and DCScBM holds even for the case when Kr 6= Kc. DiMMSB
is identifiable only when Kr = Kc. Sure, SBM, DCSBM, MMSB, DCMM, and OCCAM
are identifiable when Kr = Kc, since they model undirected networks. For all the above
models, row nodes and column nodes have symmetric structural information such that
they always have non-overlapping property or overlapping property simultaneously. As
shown by the identifiability of DiMMSB, to model a directed network in which all nodes
have overlapping property, the identifiability of the model requires Kr = Kc. Naturally,
there is a bridge model from ScBM to DiMMSB such that the bride model can model a
directed network in which the row nodes and column nodes have asymmetric structural
information such that they have different overlapping property. In this paper, we introduce
this model and name it the Overlapping and Non-overlapping model.

Our contributions in this paper are as follows. We propose an identifiable model
for directed networks, the Overlapping and Non-overlapping model (ONM for short).
ONM allows that nodes in a directed network can have different overlapping properties.
Without a loss of generality, in a directed network, we let the row nodes have overlapping
property while the column nodes do not. The proposed model is identifiable when Kr ≤ Kc.
Recall that the identifiability of ScBM modeling non-overlapping directed networks holds
even for the case Kr 6= Kc, and that DiMMSB modeling overlapping directed networks
is identifiable only when Kr = Kc, this is the reason for why we call ONM modeling
directed networks, in which row nodes have different overlapping properties to column
nodes, as a bridge model from ScBM to DiMMSB. We also propose an identifiable model,
Overlapping and Degree-Corrected Non-overlapping model (ODCNM), as an extension of
ONM, by considering the degree heterogeneity. We construct two spectral algorithms to fit
ONM and ODCNM. We show that our methods enjoy consistent estimations under mild
conditions. Especially, our theoretical results under ODCNM match those under ONM
when ODCNM reduces to ONM. The numerical results of simulated directed networks
generated under ONM and ODCNM support our theoretical findings, and the results
on four real-world directed networks demonstrate the advantages of our algorithms in
studying the asymmetric structure between the sending and receiving clusters.

Notations. We take the following general notations in this paper. For any positive
integer m, let [m] := {1, 2, . . . , m}, and let Im denote the m×m identity matrix. For a vector
x and fixed q > 0, ‖x‖q denotes its lq-norm. For a matrix M, M′ denotes the transpose of
the matrix M, ‖M‖ denotes the spectral norm, ‖M‖F denotes the Frobenius norm, and
‖M‖2→∞ denotes the maximum l2-norm of all the rows of M. Let σi(M) be the i-th largest
singular value of matrix M, and let λi(M) denote the i-th largest eigenvalue of the matrix
M ordered by the magnitude. M(i, :) and M(:, j) denote the i-th row and the j-th column
of matrix M, respectively. M(Sr, :) and M(:, Sc) denote the rows and columns in the index
sets Sr and Sc of matrix M, respectively. For any matrix M, we simply use Y = max(0, M)
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to represent Yij = max(0, Mij) for any i, j. For any matrix M ∈ Rm×m, let diag(M) be the
m×m diagonal matrix whose i-th diagonal entry is M(i, i), and let rank(M) be M’s rank.
1 is a column vector with all entries being the value 1. ei is a column vector whose i-th
entry is 1, while other entries are zero. In this paper, C is a positive constant which may
occasionally be different.

2. The Overlapping and Non-Overlapping Model

Consider a directed network N = (Vr, Vc, E), where Vr = {1, 2, . . . , nr} is the set of
row nodes, Vc = {1, 2, . . . , nc} is the set of column nodes, and E is the set of edges from
the row nodes to the column nodes. Note that since the row nodes can be different from
the column nodes, we may have Vr ∩Vc = ∅ (i.e., there are no common nodes between Vr
and Vc), and Vr may not be equal to Vc (i.e., the row nodes are different from the column
nodes), which is a more general case than Vr = Vc (i.e., all row nodes are same as column
nodes), where ∅ denotes the null set, and such a directed network N is also known as a
bipartite graph (or bipartite network) in [18,19]. In this paper, we use the subscript r and c
to distinguish the terms for the row nodes and column nodes, where works in [18,19,23–26]
also consider the general bipartite setting, such that the row nodes may differ from the
column nodes. Let A ∈ {0, 1}nr×nc be the bi-adjacency matrix of directed network N , such
that A(ir, ic) = 1 if there is a directional edge from row node ir to column node ic, and
A(ir, ic) = 0 otherwise. For convenience, we call the community that the row nodes belong
to as the row community (or sending cluster occasionally), and the community that the
column nodes belong to as the column community (or receiving cluster occasionally).

We propose a new blockmodel which we call the Overlapping and Non-overlapping
model (ONM for short). ONM can model directed networks whose row nodes belong to
Kr overlapping row communities, while the column nodes belong to Kc non-overlapping
column communities. For row nodes, let Πr ∈ Rnr×Kr be the membership matrix, such that

Πr(ir, ) ≥ 0, ‖Πr(ir, :)‖1 = 1 for ir ∈ [nr]. (1)

Call row node ir pure if Πr(ir, :) degenerates (i.e., one entry is 1, all others Kr− 1 entries
are 0), and mixed otherwise. From such a definition, row node ir has mixed membership
and may belong to more than one row communities for ir ∈ [nr].

For column nodes, let ` be the nc × 1 vector whose ic-th entry `(ic) = k if column
node ic belongs to the k-th column community, and `(ic) takes value from {1, 2, . . . , Kc}
for ic ∈ [nc]. Let Πc ∈ Rnc×Kc be the membership matrix of column nodes, such that for
ic ∈ [nc], k ∈ [Kc],

Πc(ic, k) = 1 when `(ic) = k, and 0 otherwise, and ‖Πc(ic, :)‖1 = 1. (2)

From such a definition, column node ic belongs to exactly one of the Kc column
communities for ic ∈ [nc]. Sure, all of the column nodes are pure nodes.

In this paper, we assume that

Kr ≤ Kc. (3)

Equation (3) is required for the identifiability of ONM. Let P ∈ RKr×Kc be the probabil-
ity matrix, such that

0 ≤ P(k, l) ≤ ρ ≤ 1 for k ∈ [Kr], l ∈ [Kc], (4)

where ρ controls the network sparsity and is called the sparsity parameter in this pa-
per. For convenience, set P = ρP̃, where P̃(k, l) ∈ [0, 1] for k ∈ [Kr], l ∈ [Kc], and
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maxk∈[Kr ],l∈[Kc ] P̃(k, l) = 1 for model identifiability. For all pairs of (ir, ic) with ir ∈ [nr], ic ∈
[nc], our model assumes that A(ir, ic) are independent Bernoulli random variables satisfying

Ω := ΠrPΠ′c, A(ir, ic) ∼ Bernoulli(Ω(ir, ic)), (5)

where Ω = E[A] , and we call it the population adjacency matrix in this paper.

Definition 1. Call model (1)–(5) the Overlapping and Non-overlapping model (ONM), and denote
it with ONMnr ,nc(Kr, Kc, P, Πr, Πc).

Remark 1. Under ONMnr ,nc(Kr, Kc, P, Πr, Πc), for ir ∈ [nr], jc ∈ [nc], since P(A(ir, jc) =
1) = Ω(ir, jc) = ρΠ(ir, :)P̃Π′c(jc, :), we see that increasing ρ increases the probability to generate
an edge from row node ir to column node jc, i.e., the sparsity of the network is governed by ρ.

The following conditions are sufficient for the identifiability of ONM:

• (I1) rank(P) = Kr, rank(Πr) = Kr, and rank(Πc) = Kc.
• (I2) There is at least one pure row node for each of the Kr row communities.

For k ∈ [Kr], let I (k)r = {i ∈ [nr]} : Πr(i, k) = 1}. By condition (I2), I(k)r is non-empty
for all k ∈ [Kr]. For k ∈ [Kr], select one row node from I (k)r to construct the index set Ir;
i.e., Ir is the indices of row nodes corresponding to Kr pure row nodes, one from each row
community. Without loss of generality, let Πr(Ir, :) = IKr (Lemma 2.1 [17] also has a similar
setting to design their spectral algorithm under MMSB). Ic is defined similarly for the
column nodes, such that Πc(Ic, :) = IKc . The next proposition guarantees the identifiability
of ONM.

Proposition 1. If conditions (I1) and (I2) hold, ONM is identifiable: For eligible (P, Πr, Πc) and
(P̌, Π̌r, Π̌c), if ΠrPΠ′c = Π̌r P̌Π̌′c, then P = P̌, Πr = Π̌r, and Πc = Π̌c.

All proofs of propositions, lemmas, and theorems are provided in Appendix B and
Appendix C of this paper. Compared to some previous models, ONM models different
directed networks.

• When the row nodes are the same as the column nodes, Kr = Kc, and all nodes are
pure, ONM degenerates to SBM. However, ONM can model directed networks where
row nodes enjoy mixed memberships, while SBM only models un-directed networks.

• When all row nodes are pure, our ONM reduces to ScBM with Kr row clusters and
Kc column clusters [18]. However, ONM allows for row nodes to have overlapping
memberships, while ScBM does not. Meanwhile, for model identifiability, ScBM does
not require rank(P) = Kr that ONM requires, and this can be seen as the cost of ONM
when modeling the overlapping row nodes.

• Though DiMMSB [21] can model directed networks whose row and column nodes
have overlapping memberships, DiMMSB requires Kr = Kc for model identifiability.
For comparison, our ONM allows Kr ≤ Kc at the cost of losing the overlapping
property of the column nodes.

2.1. A Spectral Algorithm for Fitting ONM

The primary goal of the proposed algorithm is to estimate the row membership matrix
Πr and the column membership matrix Πc from the observed adjacency matrix A with a
given Kr and Kc. We now discuss our intuition for the design of our algorithm to fit ONM.

Under conditions (I1) and (I2), by basic algebra, we have rank(Ω) = Kr. Let Ω =
UrΛU′c be the compact singular value decomposition of Ω, where Ur ∈ Rnr×Kr , Λ ∈
RKr×Kr , Uc ∈ Rnc×Kr , U′rUr = IKr , U′cUc = IKr , and IKr is a Kr × Kr identity matrix. Let
nc,k = |{ic : `(ic) = k}| be the size of the k-th column community for k ∈ [Kc]. Let
nc,max = maxk∈[Kc ]nc,k and nc,min = mink∈[Kc ]nc,k. Meanwhile, without causing confusion,
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let nc,Kr be the Kr-th largest size among all column communities. The following lemma
guarantees that Ur enjoys an ideal simplex structure and Uc has Kc distinct rows.

Lemma 1. Under ONMnr ,nc(Kr, Kc, P, Πr, Πc), there exists a unique Kr × Kr matrix Br and a
unique Kc × Kr matrix Bc, such that

• Ur = ΠrBr, where Br = Ur(Ir, :). Meanwhile, Ur(ir, :) = Ur(īr, :) when Πr(ir, :) =
Πr(īr, :) for ir, īr ∈ [nr].

• Uc = ΠcBc. Meanwhile, Uc(ic, :) = Uc(īc, :) when `(ic) = `(īc) for ic, īc ∈ [nc], i.e., Uc
has Kc distinct rows. Furthermore, when Kr = Kc = K, we have ‖Bc(k, :)− Bc(l, :)‖F =√

1
nc,k

+ 1
nc,l

for all 1 ≤ k < l ≤ K.

Lemma 1 says that the rows of Uc form a Kr-simplex in RKr , which we call the Ideal
Simplex (IS), with the Kr rows of Br being the vertices. This IS is also found in [9,17,21].
Meanwhile, Lemma 1 says that Uc has Kc distinct rows, and if two column nodes ic and īc
are from the same column community, then Uc(ic, :) = Uc(īc, :).

Under ONM, to recover Πc from Uc, since Uc has Kc distinct rows, applying the
k-means algorithm on all rows of Uc returns true column communities by Lemma 1.
Since Uc has Kc distinct rows, we can set δc = mink 6=l‖Bc(k, :)− Bc(l, :)‖F to measure the

minimum center separation of Bc. By Lemma 1, δc ≥
√

2
nc,max

when Kr = Kc = K under

ONMnr ,nc(Kr, Kc, P, Πr, Πc). However, when Kr < Kc, it is a challenge to obtain a positive
lower bound of δc; see the proof of Lemma 1 for details.

Under ONM, to recover Πr from Ur, since Br is full rank, if Ur and Br are known in
advance ideally, we can exactly recover Πr by setting Πr = UrB′r(BrB′r)−1 via Lemma 1. Set
Yr = UrB′r(BrB′r)−1. Since Yr ≡ Πr and ‖Πr(ir, :)‖1 = 1 for ir ∈ [nr], we have

Πr(ir, :) =
Yr(ir, :)
‖Yr(ir, :)‖1

, ir ∈ [nr].

With a given Ur, since it enjoys IS structure Ur = ΠrBr ≡ ΠrUr(Ir, :), as long as we
can obtain the row corner matrix Ur(Ir, :) (i.e., Br), we can recover Πr exactly. As mentioned
in [9,17,21], for such an ideal simplex, the successive projection (SP) algorithm [27] (for
details of SP, see Algorithm A1) can be applied to Ur with Kr row communities to find
Ur(Ir, :).

Based on the above analysis, we are now ready to give the following algorithm which
we call Ideal ONA. Input Ω, Kr, and Kc with Kr ≤ Kc. Outputs: Πr and `.

• Let Ω = UrΛU′c be the compact SVD of Ω, such that Ur ∈ Rnr×Kr , Uc ∈ Rnc×Kr , Λ ∈
RKr×Kr , U′rUr = IKr , andU′cUc = IKr .

• For the row nodes,

– Run the SP algorithm on all rows of Ur, assuming there are Kr row communities
to obtain Ur(Ir, :). Set Br = Ur(Ir, :).

– Set Yr = UrB′r(BrB′r)−1. Recover Πr by setting Πr(ir, :) = Yr(ir ,:)
‖Yr(ir ,:)‖1

for ir ∈ [nr].

For the column nodes,

– Run k-means on Uc assuming that there are Kc column communities, i.e., find the
solution to the following optimization problem

M∗ = argminM∈Mnc ,Kr ,Kc
‖M−Uc‖2

F,

where Mnc ,Kr ,Kc denotes the set of nc × Kr matrices with only Kc different rows.
– Use M∗ to obtain the labels vector ` of the column nodes. Note that since M∗ has

Kc distinct rows, two different column nodes, ic, īc ∈ [nc], are in the same column
community if M∗(ic, :) = M∗(īc, :).
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Following a similar proof of Theorem 1 of [21], the Ideal ONA exactly recovers row
nodes memberships and column nodes labels, and this also verifies the identifiability of
ONM in turn. For convenience, call the two steps for column nodes “run k-means on Uc
assuming there are Kc column communities to obtain `”.

We now extend the ideal case to the real case. Set Ã = ÛrΛ̂Û′c be the top-Kr-dimensional
SVD of A, such that Ûr ∈ Rnr×Kr , Ûc ∈ Rnc×Kr , Λ̂ ∈ RKr×Kr , Û′rÛr = IKr , Û′cÛc = IKr , and Λ̂
contains the top Kr singular values of A. For the real case, we use B̂r, B̂c, Ŷr, Π̂r, Π̂c given in
Algorithm 1 to estimate Br, Bc, Yr, Πr, Πc, respectively. Algorithm 1, called the Overlapping
and Non-overlapping algorithm (ONA for short), is a natural extension of the Ideal ONA to
the real case. In ONA, we set the negative entries of Ŷr as 0 by setting Ŷr = max(0, Ŷr), for the
reason that the weights for any row node should be non-negative while there may exist some
negative entries of Ûr B̂′r(B̂r B̂′r)−1. Note that in a directed network, if the column nodes have
an overlapping property while row nodes do not, to perform community detection for such a
directed network, the transpose of the adjacency matrix should be set as input when applying
our algorithm.

Algorithm 1 Overlapping and Non-overlapping Algorithm (ONA)

Require: The adjacency matrix A ∈ Rnr×nc of a directed network, the number of row
communities Kr, and the number of column communities Kc with Kr ≤ Kc.

Ensure: The estimated nr × Kr membership matrix Π̂r for row nodes, and the estimated
nc × 1 labels vector ˆ̀ for column nodes.

1: Compute Ûr ∈ Rnr×Kr and Ûc ∈ Rnc×Kr from the top-Kr-dimensional SVD of A.
2: For row nodes:

• Apply SP algorithm (i.e., Algorithm A1) on the rows of Ûr assuming there are Kr

row clusters to obtain the near-corners matrix Ûr(Îr, :) ∈ RKr×Kr , where Îr is the
index set returned by SP algorithm. Set B̂r = Ûr(Îr, :).

• Compute the nr × Kr matrix Ŷr such that Ŷr = Ûr B̂′r(B̂r B̂′r)−1. Set Ŷr = max(0, Ŷr)

and estimate Πr(ir, :) by Π̂r(ir, :) = Ŷr(ir ,:)
‖Ŷr(ir ,:)‖1

, ir ∈ [nr].

For column nodes: run k-means on Ûc assuming there are Kc column communities to
obtain ˆ̀.

2.2. Main Results for ONA

In this section, we show the consistency of our algorithm for fitting the ONM as the
number of row nodes nr and the number of column nodes nc increases. Throughout this
paper, Kr and Kc are two known integers. First, we assume that:

Assumption 1. ρmax(nr, nc) ≥ log(nr + nc).

Assumption 1 controls the sparsity of the directed network considered for theoretical
study. When building an estimation consistency of the spectral clustering methods in com-
munity detection, the sparsity assumption is common; see [13,14,17,18,20,21]. Especially,
when ONM reduces to SBM, the sparsity requirement in Assumption 1 is consistent with
that of Theorem 3.1 in [13], which guarantees the theoretical optimality on the sparsity
condition of this paper. To measure the performance of ONA for row nodes memberships,
since row nodes have mixed memberships, naturally, we use the l1 norm difference be-
tween Πr and Π̂r. Since the column nodes are all pure nodes, we consider the performance
criterion defined in [15] to measure the estimation error of ONA on the column nodes. We
introduce this measurement of estimation error below.

Let Tc = {Tc,1, Tc,2, . . . , Tc,Kc} be the true partition of column nodes {1, 2, . . . , nc}
obtained from `, such that Tc,k = {ic ∈ [nc] : `(ic) = k} for k ∈ [Kc]. Let T̂c =
{T̂c,1, T̂c,2, . . . , T̂c,Kc} be the estimated partition of column nodes {1, 2, . . . , nc} obtained
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from ˆ̀ of ONA, such that T̂c,k = {ic ∈ [nc] : ˆ̀(ic) = k} for k ∈ [Kc]. The criterion is defined
as

f̂c = minπ∈SKc
maxk∈[Kc ]

|Tc,k ∩ T̂ c
c,π(k)|+ |T

c
c,k ∩ T̂c,π(k)|

nc,k
,

where SKc is the set of all permutations of {1, 2, . . . , Kc}, and the superscript c denotes the
complementary set. As mentioned in [15], f̂c measures the maximum proportion of column
nodes in the symmetric difference of Tc,k and T̂c,π(k).

The next theorem gives the theoretical bounds on the estimations of memberships for
both the row and column nodes, which is the main theoretical result for ONA.

Theorem 1. Under ONMnr ,nc(Kr, Kc, P, Πr, Πc), when Assumption 1 holds, suppose that
σKr (Ω) ≥ C

√
ρ(nr + nc)log(nr + nc), with a probability of at least 1 − o((nr + nc)−α) for

any α > 0,

• For row nodes, there exists a permutation matrix Pr such that

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(vκ(Π′rΠr)Kr

√
λ1(Π′rΠr)),

where v = ‖ÛrÛ′r −UrU′r‖2→∞ is the row-wise singular eigenvector error.
• For column nodes, f̂c = O(

KrKcmax(nr ,nc)log(nr+nc)

σ2
Kr (P̃)ρδ2

c σ2
Kr (Πr)nc,Kr nc,min

). Especially, when Kr = Kc = K,

f̂c = O(
K2max(nr, nc)nc,maxlog(nr + nc)

σ2
K(P̃)ρσ2

K(Πr)n2
c,min

).

Adding conditions similar to Corollary 3.1 in [17], we have the following corollary.

Corollary 1. Under ONMnr ,nc(Kr, Kc, P, Πr, Πc), suppose conditions in Theorem 1 hold, and
further, suppose that λKr (Π

′
rΠr) = O( nr

Kr
), nc,min = O( nc

Kc
), with a probability of at least 1−

o((nr + nc)−α),

• For row nodes, when Kr = Kc = K,

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

K2(
√

Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

σK(P̃)
√

ρnc
).

• For column nodes, f̂c = O(
K2

r K3
c max(nr ,nc)log(nr+nc)

σ2
Kr (P̃)ρδ2

c nrn2
c

). When Kr = Kc = K,

f̂c = O(
K4max(nr, nc)log(nr + nc)

σ2
K(P̃)ρnrnc

).

Especially, when nr = O(n), nc = O(n), Kr = O(1), and Kc = O(1),

• For row nodes, when Kr = Kc = K,

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

√
log(n)

σK(P̃)
√

ρn
).

• For column nodes, f̂c = O(
log(n)

σ2
Kr (P̃)ρδ2

c n2 ). When Kr = Kc = K,

f̂c = O(
log(n)

σ2
K(P̃)ρn

).
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When nr = O(n), nc = O(n), Kr = Kc = K = O(1) in Corollary 1, the bounds for

the row and column nodes are O( 1
σK(P̃)

√
log(n)

n ) and O( 1
σ2

K(P̃)
log(n)

ρn ), respectively, and we

see that ONA yields a stable and consistent community detection for both the row and
column nodes, since the error rates go to zero as n → ∞ when P̃ is fixed. Especially, for
the row nodes with mixed memberships, when the DCMM proposed in [9] reduces to
MMSB and K = O(1), the error bound of the Mixed-SCORE in Theorem 2.2 of [9] is also

O( 1
σK(P̃)

√
log(n)

n ), which guarantees the theoretical optimality of our analysis for the row
nodes. For the column nodes, when every column community enjoys similar sizes and
K = O(1), our bound O( 1

σ2
K(P̃)

log(n)
ρn ) matches Corollary 3.2 in [13] up to a logarithmic factor,

which guarantees the theoretical optimality of our analysis for column nodes. Furthermore,
the optimality of our requirement on network sparsity and the theoretical upper bounds of
ONA’s error rates is also supported by using the separation condition and sharp threshold
criterion developed in [28].

3. The Overlapping and Degree-Corrected Non-Overlapping Model

In this section, we propose an extension of ONM by considering the degree hetero-
geneity, and we build theoretical guarantees for algorithm fitting our model.

Let θc be an nc × 1 vector whose ic-th entry is the degree heterogeneity of column node
ic, for ic ∈ [nc]. Let Θc be an nc × nc diagonal matrix whose ic-th diagonal element is θc(ic).
For ir ∈ [nr], ic ∈ [nc], the extended model for generating A is:

Ω := ΠrPΠ′cΘc, A(ir, ic) ∼ Bernoulli(Ω(ir, ic)). (6)

Definition 2. Call model (1)–(4), (6) the Overlapping and Degree-Corrected Non-overlapping
model (ODCNM), and denote it by ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, Θc).

Note that, under ODCNM, the maximum element of P can be larger than 1, since
maxic∈[nc ]θc(ic) also controls the sparsity of directed networkN . The following proposition
guarantees that ODCNM is identifiable in terms of P, Πr, and Πc, and such identifiability
is similar to that of DCSBM.

Proposition 2. If conditions (I1) and (I2) hold, ODCNM is identifiable for the membership
matrices: For eligible (P, Πr, Πc, Θc) and (P̌, Π̌r, Π̌c, Θ̌c), if ΠrPΠ′cΘc = Π̌r P̌Π̌′cΘ̌c, then Πr =
Π̌r and Πc = Π̌c.

Remark 2. By setting θc(ic) = ρ for ic ∈ [nc], ODCNM reduces to ONM, and this is the reason
for why ODCNM can be seen as an extension of ONM. Meanwhile, though DCScBM [18] can
model directed networks with degree heterogeneities for both row and column nodes, DCScBM
does not allow the overlapping property for row nodes. For comparison, our ODCNM allows row
nodes to have an overlapping property at the cost of losing the degree heterogeneities and requiring
Kr ≤ Kc for model identifiability.

3.1. A Spectral Algorithm for Fitting ODCNM

We now discuss our intuition for the design of our algorithm to fit ODCNM. Without
causing confusion, we also use Ur, Uc, Br, Bc, δc, Yr under ODCNM. Let Uc,∗ ∈ Rnc×Kr be
the row-normalized version of Uc, such that Uc,∗(ic, :) = Uc(ic ,:)

‖Uc(ic ,:)‖F
for ic ∈ [nc]. Then,

clustering the rows of Uc,∗ using the k-means algorithm can return perfect clustering for
column nodes, and this is guaranteed by the following lemma.

Lemma 2. Under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, Θc), there exists a unique Kr × Kr matrix Br
and a unique Kc × Kr matrix Bc, such that

• Ur = ΠrBr, where Br = Ur(Ir, :). Meanwhile, Ur(ir, :) = Ur(īr, :) when Πr(ir, :) =
Πr(īr, :) for ir, īr ∈ [nr].
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• Uc,∗ = ΠcBc. Meanwhile, Uc,∗(ic, :) = Uc,∗(īc, :) when `(ic) = `(īc) for ic, īc ∈ [nc].
Furthermore, when Kr = Kc = K, we have ‖Bc(k, :)− Bc(l, :)‖F =

√
2 for all 1 ≤ k < l ≤

K.

Recall that we set δc = mink 6=l‖Bc(k, :) − Bc(l, :)‖F by Lemma 2; δc =
√

2 when
Kr = Kc = K under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, Θc). However, when Kr < Kc, it is a
challenge to obtain a positive lower bound of δc; see the proof of Lemma 2 for details.

Under ODCNM, to recover Πc from Uc, since Uc,∗ has Kc distinct rows, applying the
k-means algorithm on all rows of Uc,∗ returns true column communities by Lemma 2. To
recover Πr from Ur, the same idea as that of under ONM can be followed.

Based on the above analysis, we are now ready to present the following algorithm,
which we call Ideal ODCNA. Input Ω, Kr, Kc with Kr ≤ Kc. Output: Πr and `.

• Let Ω = UrΛU′c be the compact SVD of Ω, such that Ur ∈ Rnr×Kr , Uc ∈ Rnc×Kr , Λ ∈
RKr×Kr , U′rUr = IKr , U′cUc = IKr . Let Uc,∗ be the row-normalization of Uc.

• For row nodes, they are the same as that of Ideal ONA.
For column nodes: run k-means on Uc,∗ assuming there are Kc column communities
to obtain `.

We now extend the ideal case to the real case. Let Ûc,∗ ∈ Rnc×Kr be the row-normalized

version of Ûc, such that Ûc,∗(ic, :) = Ûc(ic ,:)
‖Ûc(ic ,:)‖F

for ic ∈ [nc]. The Overlapping and Degree-
Corrected Non-overlapping Algorithm (ODCNA for short) is a natural extension of the
Ideal ODCNA to the real case, where all steps of ODCNA are the same as ONA except for
those for column nodes. ODCNA applies k-means on Ûc,∗ to obtain ˆ̀.

3.2. Main Results for ODCNA

Set θc,max = maxic∈[nc ]θc(ic), θc,min = minic∈[nc ]θc(ic), and Pmax = maxk∈[Kr ],l∈[nc ]P(k, l).
Assume that

Assumption 2. Pmaxmax(θc,maxnr, ‖θc‖1) ≥ log(nr + nc).

The next theorem is the main theoretical result for ODCNA, where we also use the
same measurements as ONA to measure the performances of ODCNA.

Theorem 2. Under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, Θc), when Assumption 2 holds, suppose
σKr (Ω) ≥ C

√
θc,max(nr + nc)log(nr + nc), with a probability at least 1− o((nr + nc)−α),

• For the row nodes,

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(vκ(Π′rΠr)Kr

√
λ1(Π′rΠr)).

• For the column nodes,

f̂c = O(
θ2

c,maxKrKcmax(θc,maxnr, ‖θc‖1)nc,maxlog(nr + nc)

σ2
Kr
(P)θ4

c,minδ2
c m2

Vc
σ2

Kr
(Πr)nc,Kr nc,min

),

where mVc is a parameter defined in the proof of this theorem, and it is 1 when Kr = Kc.
Especially, when Kr = Kc = K,

f̂c = O(
θ2

c,maxK2max(θc,maxnr, ‖θc‖1)nc,maxlog(nr + nc)

σ2
K(P)θ4

c,minσ2
K(Πr)n2

c,min
).

Adding some conditions on model parameters, we have the following corollary.
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Corollary 2. Under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, Θc), suppose that conditions in Theorem 2
hold, and further, suppose that λKr (Π

′
rΠr) = O( nr

Kr
), nc,min = O( nc

Kc
), with a probability of at

least 1− o((nr + nc)−α),

• For row nodes, when Kr = Kc = K,

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

K2√θc,max(
√

Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

θc,minσK(P)
√

nc
).

• For column nodes, f̂c = O(
θ2

c,maxK2
r K2

c max(θc,maxnr ,‖θc‖1)log(nr+nc)

σ2
Kr (P)θ4

c,minδ2
c m2

Vc nrnc
). When Kr = Kc = K,

f̂c = O(
θ2

c,maxK4max(θc,maxnr, ‖θc‖1)log(nr + nc)

σ2
K(P)θ4

c,minnrnc
).

Especially, when nr = O(n), nc = O(n), Kr = O(1) and Kc = O(1),

• For row nodes, when Kr = Kc,

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

√
θc,maxlog(n)

θc,minσK(P)
√

n
).

• For column nodes, f̂c = O(
θ2

c,maxmax(θc,maxnr ,‖θc‖1)log(n)
σ2

Kr (P)θ4
c,minδ2

c m2
Vc n2 ). When Kr = Kc = K,

f̂c = O(
θ2

c,maxmax(θc,maxnr, ‖θc‖1)log(n)
σ2

K(P)θ4
c,minn2

).

If we further set θc,max = O(ρ) and θc,min = O(ρ), we have the below corollary.

Corollary 3. Under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, Θc), suppose that the conditions in
Theorem 2 hold, and further, suppose that λKr (Π

′
rΠr) = O( nr

Kr
), nc,min = O( nc

Kc
) and θc,max =

O(ρ), θc,min = O(ρ), with a probability of at least 1− o((nr + nc)−α),

• For row nodes, when Kr = Kc = K,

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

K2(
√

Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

σK(P)
√

ρnc
).

• For column nodes, f̂c = O(
K2

r K2
c max(nr ,nc)log(nr+nc)

σ2
Kr (P)ρδ2

c m2
Vc nrnc

). When Kr = Kc = K,

f̂c = O(
K4max(nr, nc)log(nr + nc)

σ2
K(P)ρnrnc

).

Especially, when nr = O(n), nc = O(n), Kr = O(1) and Kc = O(1),

• For row nodes, when Kr = Kc,

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

√
log(n)

σK(P)
√

ρn
).

• For column nodes, f̂c = O(
log(n)

σ2
Kr (P)ρδ2

c m2
Vc n

). When Kr = Kc = K,

f̂c = O(
log(n)

σ2
K(P)ρn

).
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By setting Θc = ρI, ODCNM degenerates to ONM. By comparing Corollaries 1 and 3,
we see that theoretical results under ODCNM are consistent with those under ONM when
ODCNM degenerates to ONM for the case where Kr = Kc = K.

4. Simulations

In this section, we present some simulations to investigate the performances of the two
proposed algorithms. We measure their performances using the Mixed-Hamming error
rate (MHamm for short) for row nodes, and the Hamming error rate (Hamm for short) for
the column nodes defined below

MHamm =
minπ∈SKr

‖Π̂rπ −Πr‖1

nr
, Hamm =

minπ∈SKc
‖Π̂cπ −Πc‖0

nc
,

where SKr is the set of all permutations of {1, 2, . . . , Kr}, SKc is the set of all permutations
of {1, 2, . . . , Kc}; Π̂c ∈ Rnc×Kc is defined as Π̂c(ic, k) = 1 if ˆ̀(ic) = k, and 0 otherwise for
ic ∈ [nc], k ∈ [Kc].

For all simulations in this section, the parameters (nr, nc, Kr, Kc, P, ρ, Πr, Πc, Θc) are
set as below. Unless specified, set nr = 400, nc = 300, Kr = 3, Kc = 4. For the column nodes,
generate Πc by setting each column node belonging to one of the column communities
with equal probability. Let each row community have 100 pure nodes, and let all the
mixed row nodes have memberships (0.6, 0.3, 0.1). P = ρP̃ is set independently under
ONM and ODCNM. Under ONM, ρ is 0.5 in Experiment 1, and we study the influence
of ρ in Experiment 2. Under ODCNM, for zc ≥ 1, we generate the degree parameters

for the column nodes as below: let θc ∈ Rnc×1, such that 1/θc(ic)
iid∼ U(1, zc) for ic ∈ [nc],

where U(1, zc) denotes the uniform distribution on [1, zc]. We study the influences of zc
and ρ under ODCNM in Experiments 3 and 4, respectively. For all settings, we report the
averaged MHamm and the averaged Hamm over 50 repetitions.

Experiment 1: Changing nc under ONM. Let nc range over {50, 100, 150, . . . , 300}.
For this experiment, P is set as

P = ρ

 1 0.3 0.2 0.3
0.2 0.9 0.1 0.2
0.3 0.2 0.8 0.3

.

Let ρ = 0.5 for this experiment designed under ONM. The numerical results are shown
in panels (a) and (b) of Figure 1. The results show that as nc increases, ONA and ODCNA
perform better. For the row nodes, since both ONA and ODCNA apply the SP algorithm
on Û to estimate Πr, the estimated row membership matrices of ONA and ODCNA are
same, and hence, MHamm for ONA is always equal to that of ODCNA.
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Figure 1. Estimation errors of ONA and ODCNA.

Experiment 2: Changing ρ under ONM. P is set the same as in Experiment 1, and
we let the range of ρ be {0.1, 0.2, . . . , 1} to study the influence of ρ on the performances of
ONA and ODCNA under ONM. The results are displayed in panels (c) and (d) of Figure 1.
From the results, we can see that both methods perform better as ρ increases, since a larger
ρ gives more edges generated in a directed network.

Experiment 3: Change zc under ODCNM. P is set to be the same as Experiment 1,
and ρ = 0.5. Let zc range in {1, 2, . . . , 8}. Increasing zc decreases the edges generated under
ODCNM. Panels (e) and (f) in Figure 1 display the simulation results of this experiment.
The results show that generally, increasing the variability of the node degrees makes it
harder to detect the node memberships for both ONA and ODCNA. Though ODCNA is
designed under ODCNM, it holds similar performances as ONA for directed networks in
which column nodes have various degrees in this experiment, and this is consistent with
our theoretical findings in Corollaries 1 and 2.

Experiment 4: Change ρ under ODCNM. Setting zc = 3, P is set to be the same as
in Experiment 1, and let ρ range in {0.1, 0.2, . . . , 1} under ODCNM. Panels (g) and (h) in
Figure 1 display the simulation results of this experiment. The performances of the two
proposed methods are similar as those of Experiment 2.

Remark 3. For visuality, we plot A generated under ONM. Let nr = 24, nc = 20, Kr = 2, Kc = 2,
and

P =

[
1 0.2

0.1 0.9

]
.

For the row nodes, let Πr(ir, 1) = 1 for 1 ≤ ir ≤ 8, Πr(ir, 2) = 1 for 9 ≤ ir ≤ 16, and
Πr(rr, :) = [0.7 0.3] for 17 ≤ ir ≤ 24. For the column nodes, let `(ic) = 1 for 1 ≤ ic ≤ 10, and
`(ic) = 2 for 11 ≤ ic ≤ 20. For the above setting, we generate two random adjacency matrices in
Figure 2, where we also report the error rates of ONA and ODCNA. Note that, since the adjacency
matrices are shown in Figure 2, and as Πr, `, Kr, and Kc are known here, readers can apply ONA
and ODCNA to A in Figure 2 to check the effectiveness of ONA and ODCNA.
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Figure 2. For adjacency matrix in panel (a), MHamm and Hamm for ONA are 0.0544 and 0, respec-
tively. For adjacency matrix in panel (b), MHamm and Hamm for ONA are 0.1004 and 0, respectively.
ODCNA enjoys same error rates as ONA. x-axis: row nodes; y-axis: column nodes.

Remark 4. For visuality, we also plot a directed network as well as its adjacency matrix generated
under ONM. Let nr = 30, nc = 30, Kr = 2, Kc = 3, and

P = 0.9
[

1 0.1 0.1
0.1 0.9 0.1

]
.

For row nodes, let Πr(ir, 1) = 1 for 1 ≤ ir ≤ 10, Πr(ir, 2) = 1 for 11 ≤ ir ≤ 20, and
Πr(ir, :) = [0.7 0.3] for 21 ≤ ir ≤ 30. For column nodes, let `(ic) = 1 for 1 ≤ ic ≤ 10, `(ic) = 2
for 11 ≤ ic ≤ 20, and `(ic) = 3 for 21 ≤ ic ≤ 30. For the above setting, we generate one
adjacency matrix in panel (a) of Figure 3, where we also report the error rates of ONA and ODCNA.
Furthermore, panels (b) and (c) of Figure 3 show the sending pattern and receiving pattern sides of
this simulated directed network, respectively.
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(a) Adjacency matrix (b) Sending clusters (c) Receiving clusters

Figure 3. Illustration of a simulated directed network generated under ONM. Panels (a–c) show the
adjacency matrix, the sending clusters, and the receiving clusters of this simulated directed network,
respectively. For this directed network, MHamm and Hamm for ONA (and ODCNA) are 0.0615
(0.0615) and 0 (0.2333), respectively. In panels (b,c), the dots in the same color are pure nodes in
the same sending (receiving) clusters, and the square indicates the mixed nodes with weight 0.7
belonging to red sending clusters, and weight 0.3 belonging to blue sending clusters, where the
sending and receiving clusters are obtained by Πr and ` provided in Remark 4.

5. Real Data Analysis

For real-world directed networks, since nodes always have various degrees, we only
apply ODCNA to deal with real-world datasets in this section. For the real-world directed
networks analyzed in this section, the row nodes are always same as the column nodes, so
we do not use subscript r and c to distinguish the row and column nodes here, and we let
nr = nc = n. Meanwhile, the number of row communities is equal to that of the column
communities; i.e, Kr = Kc = K for real data, where we always set Kr = Kc = K, as analyzed
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in [18], since it is a challenge to determine the number of row (column) communities for
real-world directed networks without prior knowledge. When the row nodes are the same
as the column nodes, A(i, j) = 1 means that a directed edge is sent from node i to node j.
Thus, for any node, it has two patterns, the sending pattern and the receiving pattern. For
the sending (receiving) pattern, we use the sending (receiving) cluster to denote the prior
row (column) community, where we use the sending and receiving patterns to distinguish
the behaviors of any node having the two patterns, as was performed in [18].

For Π̂r obtained from ODCNA, we call node i a highly mixed node if
0.8 ≥ max1≤k≤KΠ̂r(i, k), where 0.8 is a threshold. Here, 0.8 is a moderate value to de-
fine highly mixed nodes, and we can also choose 0.9, 0.95, or some other values in (0, 1).
However, we choose 0.8 as the threshold, because setting the threshold to be larger (or
lesser) than 0.8 may be too restrictive (loose) to define highly mixed nodes. The defini-
tion of highly mixed node is important, since it tells us whether a node only belongs to
one community or belongs to multiple communities. Let τ be the proportion of highly
mixed row nodes among all nodes, to measure the mixability of a directed network,
i.e, τ =

|i∈[n]:i is a highly mixed node|
n . Meanwhile, we let ˆ̀r be an n × 1 vector, such that

ˆ̀r(i) = argmax1≤k≤KΠ̂r(i, k), where we use ˆ̀r(i) to denote the home base sending pattern
cluster of node i. Set

Hammrc =
minπ∈SK‖Π̂cπ − ˜̂Πr‖0

n
,

where SK is the set of all permutations of {1, 2, . . . , K}; ˜̂Πr ∈ Rn×K is defined as ˜̂Πr(i, k) = 1
if ˆ̀r(i) = k, and 0 otherwise for i ∈ [n], k ∈ [K]. Hammrc is defined to measure the differ-
ence between the sending and receiving pattern clusters. After defining τ and Hammrc, we
see that a larger τ indicates a directed network in which a large proposition of nodes are
highly mixed nodes with a sending pattern, and a larger Hammrc indicates that the sending
pattern differs a lot with the receiving pattern. For i ∈ [n], let dsending(i) = ∑n

j=1 A(i, j)
denote the total number of edges sent by node i, and let dreceiving(i) = ∑n

j=1 A(j, i) denote
the total number of edges that are received by node i. Call dsending(i) and dreceiving(i) the
sending degree and receiving degree of node i, respectively. For real-world directed net-
works, we find that there are many nodes whose sending degree or receiving degree are
zero, and so we need the following pre-processing steps before analyzing the real data:

(a) Set Ssending,0 = {i ∈ [n] : dsending(i) = 0} and Sreceiving,0 = {i ∈ [n] : dreceiving(i) = 0}.
(b) Set Sdegree,0 = Ssending,0

⋃
Sreceiving,0.

(c) Update A by removing the nodes in Sdegree,0.
(d) Repeat (a)–(c) until Sdegree,0 is a null set.
(e) After obtaining A through the above four steps, obtain the largest connected compo-

nent of A.

We now describe the real-world directed networks analyzed in this paper:
Metabolic: This is a directed network representing the metabolic reactions of E.coli bac-

teria. In this data, node means metabolite, and a directed edge from node i to node j means
that there is a reaction where node i is an input and node j is a product [29]. These data can
be downloaded from http://networksciencebook.com/translations/en/resources/data.
html. The original dat has 1039 nodes; after preprocessing, A ∈ {0, 1}893×893. To estimate
K, we plot the leading 20 singular values of A, and panel (a) of Figure 4 shows the result
that suggests that K = 2 for these data, where [18] also applies the idea of an eigengap to
estimate K for real-world directed networks with an unknown number of communities.

http://networksciencebook.com/translations/en/resources/data.html
http://networksciencebook.com/translations/en/resources/data.html
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Figure 4. Leading 20 singular values of adjacency matrices for real-world directed networks used in
this paper.

Political blogs: this is a directed network of hyperlinks between weblogs on US
politics [30], and it can be downloaded from http://www-personal.umich.edu/~mejn/
netdata/. Political blogs send and receive hyperlinks to and from blogs for the same
political persuasion [18], so node means blog and edge means hyperlink in these data.
The original network has 1490 nodes. After removing nodes with zero degrees via pre-
processing steps, there are 814 nodes left; i.e., A ∈ {0, 1}813×813 for these data. Since there
are two parties, “liberal” and “conservative”, K is 2 for both the sending and receiving
pattern communities for these data. [18] applies their DI-SIM algorithm to the Political
blogs network, assuming that all nodes have non-overlapping property. In this paper,
we apply our ODCNA algorithm on these data to study its asymmetric structure on the
overlapping property.

Wikipedia links (crh): This directed network represents the wikilinks of the Wikipedia
website in the Crimean Turkish language (crh). Node means article, and the directed
edge between two articles is the wikilink [31]. These data can be downloaded from
http://konect.cc/networks/wikipedia_link_crh/. The original data have 8286 nodes.
After pro-processing, A ∈ {0, 1}3555×3555. Panel (c) of Figure 4 suggests K = 2 for this data.

Wikipedia links (dv): These data represent the wikilinks of the Wikipedia website in
the Divehi language (dv), where node means article and the directed edge is a wikilink [31].
These data can be downloaded from http://konect.cc/networks/wikipedia_link_dv/. The
original data has 4266 nodes. After removing nodes with zero degrees, A ∈ {0, 1}2394×2394.
Panel (d) of Figure 4 suggests K = 2 for these data.

The proportion of highly mixed nodes and Hammrc for these directed networks are
reported in Table 1 when assuming that nodes in sending (receiving) clusters having an
overlapping (non-overlapping) property. For the Metabolic network, the results show that
the sending pattern differs a lot with the receiving pattern, since Hammrc = 0.2497 is quite
large, and there are 893× 0.1209 ≈ 108 highly mixed nodes in the sending pattern. For
the Political blogs network, there is a slight asymmetric structure between the sending
pattern and the receiving pattern, since Hammrc = 0.0443 is small. Meanwhile, for the
sending pattern of Political blogs, there are 813× 0.0246 ≈ 20 highly mixed nodes. Thus, we
may conclude that though there is a slight asymmetric structure in sending and receiving
patterns for Political blogs, there are 20 highly mixed nodes in the sending pattern. For
the Wikipedia links (crh), they have a slight asymmetric structure between sending and
receiving patterns, and there are 3555× 0.0444 ≈ 158 highly mixed nodes in the sending
pattern. For the Wikipedia links (dv) network, it has a large number of highly mixed nodes
for its large τ, and a heavy asymmetric structure in sending and receiving patterns for its
large Hammrc. Generally, Table 1 suggests that if there are a large number of highly mixed
nodes in the sending pattern, there is a heavy asymmetric structure between the sending
and receiving patterns, and vice versa.

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://konect.cc/networks/wikipedia_link_crh/
http://konect.cc/networks/wikipedia_link_dv/
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Table 1. The proportion of highly mixed nodes and the asymmetric structure measured by Hammrc

for real-world directed networks considered in this paper when ODCNA’s input adjacency matrix
is A; i.e., the case when assuming that nodes in a sending (receiving) pattern have overlapping
(non-overlapping) property.

Data τ Hammrc

Metabolic 0.1209 0.2497
Political blogs 0.0246 0.0443

Wikipedia links (crh) 0.0444 0.0307
Wikipedia links (dv) 0.4089 0.1466

For visualization, we plot the sending clusters and receiving clusters detected by
ODCNA for these directed networks when assuming that nodes in the sending (receiving)
clusters have an overlapping (non-overlapping) property, i.e., when the input adjacency
matrix of the ODCNA approach is A. The results are shown in Figures 5–8, where we
also show the highly mixed nodes in sending clusters detected by ODCNA. We see that
there exists a clear asymmetric structure between the sending and receiving patterns for
Metabolic and Wikipedia links (dv), as shown in Figures 5 and 8, while there is a slight
asymmetric structure between the sending and receiving patterns for Political blogs and
Wikipedia links (crh), as shown in Figures 6 and 7. Furthermore, most nodes are in the
same sending (receiving) cluster for Metabolic and Wikipedia links (crh), while the two
sending (receiving) clusters for Political blogs and Wikipedia links (crh) have close sizes.
The results also show that most highly mixed nodes have many edges, while some highly
mixed nodes have only a few edges, where such a phenomenon can be explained easily,
since nodes with many edges tend to have an overlapping property, while it is difficult
to detect a community for nodes with only a few edges, and ODCNA tends to treat such
nodes as highly mixed nodes.

(a) Sending clusters (b) Receiving clusters

Figure 5. Sending and receiving clusters detected by ODCNA for Metabolic network when assuming
that nodes in a sending (receiving) pattern have an overlapping (non-overlapping) property. Colors
indicate clusters detected using ODCNA, and squares indicate highly mixed nodes, where sending
clusters are obtained using ˆ̀r, the home base sending pattern community, and receiving clusters are
obtained by ˆ̀ from ODCNA.
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(a) Sending clusters (b) Receiving clusters

Figure 6. Sending and receiving clusters detected by ODCNA for Political blogs network. Colors
indicate clusters and square indicates highly mixed nodes.

(a) Sending clusters (b) Receiving clusters

Figure 7. Sending and receiving clusters detected by ODCNA for Wikipedia links (crh) network.
Colors indicate clusters and square indicates highly mixed nodes.

(a) Sending clusters (b) Receiving clusters

Figure 8. Sending and receiving clusters detected by ODCNA for Wikipedia links (dv) network.
Colors indicate clusters and square indicates highly mixed nodes.

Furthermore, for real-world directed networks, since we have no prior knowledge on
whether nodes in the sending pattern side or the receiving pattern side or both sides have
overlapping property, simply inputting A with K sending (receiving) pattern communities
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in our ODCNA algorithm is not enough. To solve this problem, we also apply ODCNA on
A′, and the numerical results are provided in Table 2, where the results show that there also
exist highly mixed nodes in the receiving pattern for these directed networks, and there
also exists a heavy asymmetric structure between the sending and receiving clusters for the
Metabolic and Wikipedia links (dv), while there also exists a slight asymmetric structure
between the sending and receiving clusters for the Political blogs and Wikipedia links (crh).

Table 2. The proportion of highly mixed nodes and the asymmetric structure measured by Hammrc

for real-world directed networks considered in this paper when ODCNA’s input adjacency matrix
is A′, i.e., the case when assuming that nodes in sending (receiving) pattern have non-overlapping
(overlapping) property.

Data τ Hammrc

Metabolic 0.0594 0.2945
Political blogs 0.1365 0.0443

Wikipedia links (crh) 0.1308 0.0543
Wikipedia links (dv) 0.3492 0.2059

6. Discussion

In this paper, we introduced Overlapping and Non-overlapping models and their
extension, by considering the degree heterogeneity. The models can model a directed
network with Kr row communities and Kc column communities, in which the row node
can belong to multiple sending clusters, while the column node only belongs to one of the
receiving clusters. The proposed models are identifiable under the case when Kr ≤ Kc,
and some other popular constraints on the connectivity matrix and membership matrices.
For comparison, modeling a directed network in which the row nodes have overlapping
property while column nodes do not, with Kr > Kc, is unidentifiable. Meanwhile, since pre-
vious works have found that modeling directed networks in which both row and column
nodes have an overlapping property with Kr 6= Kc is unidentifiable, our identifiable ONM
and ODCNM supply a gap in modeling overlapping directed networks when Kr 6= Kc.
These models provide exploratory tools for studying community structure in directed
networks with one side overlapping while another side is non-overlapping. Two spectral
algorithms are designed to fit ONM and ODCNM. We also showed an estimation con-
sistency under mild conditions for our methods. Especially, when ODCNM reduces to
ONM, our theoretical results under ODCNM are consistent with those under ONM. The
numerical results for the simulated directed networks generated under ONM and ODCNM
support our theoretical results, and the results for real-world directed networks reveal the
existence of highly mixed nodes and an asymmetric structure between the sending and
receiving clusters.

The models and algorithms introduced in this paper are useful tools for studying the
asymmetric structure for directed networks, and we wish that they can be widely applied
in network science. However, perhaps the main limitation of the models is that Kr and Kc
in the directed network are assumed as givens, and such a limitation also holds for the
spectral clustering algorithms developed under the ScBM and DCScBM studied in [18–20].
In most community problems, the number of row communities and the number of column
communities are unknown; therefore, a complete calculation and theoretical study requires
not only the algorithms and their theoretically consistent estimations described in this
paper, but also a method for estimating Kr and Kc. A possible solution to this problem may
be a combination of algorithms developed in this paper and the modularity for the directed
networks developed in [32]. Meanwhile, our idea can be extended in many ways. In this
paper, we only consider modeling an un-weighted directed network, and it is possible to
extend our work to a weighted directed network. Our algorithms are designed based on the
adjacency matrix, and it is possible to design spectral algorithms to fit ONM and ODCNM
by applying the regularized Laplace matrix used in [11,12]. When detecting large-scale
directed networks, the random projection-based and the random sampling-based spectral
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clustering ideas in [33] may be applied to accelerate our algorithms. We leave the studies
of these problems to our future work.
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Abbreviations
The following abbreviations are used in this manuscript:

SBM Stochastic Blockmodel
DCSBM Degree-Corrected Stochastic Blockmodel
MMSB Mixed Membership Stochastic Blockmodel
DCMM Degree-Corrected Mixed Membership model
OCCAM Overlapping Continuous Community Assignment model
ScBM Stochastic co-Blockmodel
DCScBM Degree-Corrected Stochastic co-Blockmodel
DiMMSB Directed Mixed Membership Stochastic Blockmodel
ONM Overlapping and Non-overlapping model
ODCNM Overlapping and Degree-Corrected Non-overlapping model
SP successive projection algorithm
ONA Overlapping and Non-overlapping algorithm
ODCNA Overlapping and Degree-Corrected Non-overlapping Algorithm

Appendix A. Successive Projection Algorithm

Algorithm A1 is the Successive Projection algorithm.

Algorithm A1 Successive Projection (SP) [27]

Require: Near-separable matrix Ysp = Ssp Msp + Zsp ∈ Rm×n
+ , where Ssp, Msp should

satisfy Assumption 1 [27], the number r of columns to be extracted.
Ensure: Set of indices K such that Y(K, :) ≈ S (up to permutation)

1: Compute Ûr ∈ Rnr×Kr and Ûc ∈ Rnc×Kr from the top-Kr-dimensional SVD of A.
2: Let R = Ysp,K = {}, k = 1.
3: While R 6= 0 and k ≤ r do
4: k∗ = argmaxk‖R(k, :)‖F.
5: uk = R(k∗, :).

6: R← (I − uku′k
‖uk‖2

F
)R.

7: K = K ∪ {k∗}.
8: k=k+1.
9: end while

Appendix B. Proofs under ONM

Appendix B.1. Proof of Proposition 1

Proof. By Lemma 1, let UrΛU′c be the compact SVD of Ω, such that Ω = UrΛU′c; since
Ω = ΠrPΠ′c = Π̌r P̌Π̌′c, we have Ω(Ir, Ic) = P = P̌, which gives P = P̌. By Lemma 1,
since Ur = ΠrUr(Ir, :) = Π̌rUr(Ir, :), we have Πr = Π̌r where we have used the fact
that the inverse of Ur(Ir, :) exists. Since Ω = ΠrPΠ′c = Π̌r P̌Π̌′c = ΠrPΠ̌′c, we have
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ΠrPΠ′c = ΠrPΠ̌′c. By Lemma 7 of [21], we have PΠ′c = PΠ̌′c, i.e., ΠcX = Π̌cX, where we
set X = P′ ∈ RKc×Kr . Let ˇ̀ be the nc × 1 vector of column nodes labels obtained from
Π̌c. For ic ∈ [nc], k ∈ [Kr], from ΠcX = Π̌cX, we have (ΠcX)(ic, k) = Πc(ic, :)X(:, k) =
X(`(ic), k) = X( ˇ̀(ic), k), which means that we must have `(ic) = ˇ̀(ic) for all ic ∈ [nc], i.e.,
` = ˇ̀ and Πc = Π̌c. Note that for the special case Kr = Kc = K, Πc = Π̌c can be obtained
easily: since PΠ′c = PΠ̌′c and P ∈ RK×K is assumed to be full rank, we have Πc = Π̌c. Thus,
the proposition holds.

Appendix B.2. Proof of Lemma 1

Proof. For Ur, since Ω = UrΛU′c and U′cUc = IKr , we have Ur = ΩUcΛ−1. Recall that
Ω = ΠrPΠ′c; we have Ur = ΠrPΠ′cUcΛ−1 = ΠrBr, where we set Br = PΠ′cUcΛ−1. Since
Ur(Ir, :) = Πr(Ir, :)Br = Br, we have Br = Ur(Ir, :). For ir ∈ [nr], Ur(ir, :) = e′ir ΠrBr =

Πr(ir, :)Br, so we have Ur(ir, :) = Ur(īr, :) when Πr(ir, :) = Πr(īr, :).
For Uc, following a similar analysis as for Ur, we have Uc = ΠcBc, where Bc =

P′Π′rUrΛ−1. Note that Bc ∈ RKc∗Kr . Sure, Uc(ic, :) = Uc(īc, :) when `(ic) = `(īc) for
ic, īc ∈ [nc].

Now, we focus on the case where Kr = Kc = K. For this case, since Bc ∈ RKc∗Kr , Bc is
full rank when Kr = Kc. Since IKr = IK = U′cUc = B′cΠ′cΠcBc, we have Π′cΠc = (BcB′c)−1.
Since Π′cΠc = diag(nc,1, nc,2, . . . , nc,K), we have BcB′c = diag( 1

nc,1
, 1

nc,2
, . . . , 1

nc,K
). When

Kr = Kc = K, we have Bc(k, :)B′c(l, :) = 0 for any k 6= l and k, l ∈ [K]. Then ,we have
BcB′c = diag(‖Bc(1, :)‖2

F, ‖Bc(2, :)‖2
F, . . . , ‖Bc(K, :)‖2

F) = diag( 1
nc,1

, 1
nc,2

, . . . , 1
nc,K

), and the
lemma follows.

Note that when Kr < Kc, since Bc is not full rank now, we cannot obtain Π′cΠc =
(BcB′c)−1 from IKr = B′cΠ′cΠcBc. Therefore, when Kr < Kc, the equality ‖Bc(k, :)− Bc(l, :

)‖F =
√

1
nc,k

+ 1
nc,l

does not hold for any k 6= l. Additionally, we can only know that Uc

has Kc distinct rows when Kr < Kc, but have no knowledge about the minimum distance
between any two distinct rows of Uc.

Appendix B.3. Proof of Theorem 1

Proof. First, by Lemma 4 of [21], we have the below lemma.

Lemma A1. (Row-wise singular eigenvector error) Under ONMnr ,nc(Kr, Kc, P, Πr, Πc), when
Assumption 1 holds, suppose σKr (Ω) ≥ C

√
ρ(nr + nc)log(nr + nc), with a probability of at least

1− o((nr + nc)−α),

‖ÛrÛ′r −UrU′r‖2→∞ = O(

√
Kr(κ(Ω)

√
max(nr ,nc)µ
min(nr ,nc)

+
√

log(nr + nc))

√
ρσKr (P̃)σKr (Πr)

√nc,Kr

),

where µ is the incoherence parameter defined as µ = max( nr‖Ur‖2
2→∞

Kr
, nc‖Uc‖2

2→∞
Kr

).

For the row nodes, when conditions in Lemma A1 hold, by Theorem 2 of [21], with a
probability of at least 1− o((nr + nc)−α) for any α > 0, there exists a permutation matrix
Pr such that, for ir ∈ [nr], we have

‖e′ir (Π̂r −ΠrPr)‖1 = O(vκ(Π′rΠr)Kr

√
λ1(Π′rΠr)).

Next, we focus on the column nodes. By the Proof of Lemma 3 in [19], there exists an
orthogonal matrix Ô such that

‖ÛcÔ−Uc‖F ≤
2
√

2Kr‖A−Ω‖√
λKr (Ω′Ω)

. (A1)
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Under ONMnr ,nc(Kr, Kc, P, Πr, Πc), by Lemma 10 of [21], we have√
λKr (Ω′Ω) ≥ ρσKr (P̃)σKr (Πr)σKr (Πc). (A2)

Since all column nodes are pure, σKr (Πc) =
√nc,Kr . By Lemma 3 of [21], when

Assumption 1 holds with a probability at least 1− o((nr + nc)−α), we have

‖A−Ω‖ = O(
√

ρmax(nr, nc)log(nr + nc)). (A3)

Substituting the two bounds in Equations (A2) and (A3) into Equation (A1), we have

‖ÛcÔ−Uc‖F ≤ C
√

Krmax(nr, nc)log(nr + nc)

σKr (P̃)
√

ρσKr (Πr)
√nc,Kr

. (A4)

Let ς > 0 be a small quantity; by Lemma 2 in [15], if
√

Kc

ς
‖Uc − ÛcÔ‖F(

1
√nc,k

+
1
√nc,l

) ≤ ‖Bc(k, :)− Bc(l, :)‖F, for each 1 ≤ k 6= l ≤ Kc, (A5)

then the clustering error f̂c = O(ς2). Recall that we set δc = mink 6=l‖Bc(k, :)− Bc(l, :)‖F to

measure the minimum center separation of Bc. Setting ς = 2
δc

√
Kc

nc,min
‖Uc − ÛcÔ‖F makes

Equation (A5) hold for all 1 ≤ k 6= l ≤ Kc. Then, we have f̂c = O(ς2) = O(
Kc‖Uc−ÛcÔ‖2

F
δ2

c nc,min
).

By Equation (A4), we have

f̂c = O(
KrKcmax(nr, nc)log(nr + nc)

σ2
Kr
(P̃)ρδ2

c σ2
Kr
(Πr)nc,Kr nc,min

).

Especially, when Kr = Kc = K, δc ≥
√

2
nc,max

under ONMnr ,nc(Kr, Kc, P, Πr, Πc) by
Lemma 1. When Kr = Kc = K, we have

f̂c = O(
K2max(nr, nc)nc,maxlog(nr + nc)

σ2
K(P̃)ρσ2

K(Πr)n2
c,min

).

Appendix B.4. Proof of Corollary 1

Proof. For the row nodes, under the conditions of Corollary 1, we have

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(vKr

√
nr

Kr
) = O(v

√
Knr).

Under the conditions of Corollary 1, κ(Ω) = O(1) and µ ≤ C for some C > 0 by the
proof of Corollary 1 [21]. Then, by Lemma A1, we have

v = O(

√
K(κ(Ω)

√
max(nr ,nc)µ
min(nr ,nc)

+
√

log(nr + nc))

√
ρσK(P̃)σK(Πr)

√nc,Kr

) = O(

√
K(
√

Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

√
ρσK(P̃)σK(Πr)

√nc,min
)

= O(
K1.5(

√
Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

σK(P̃)
√

ρnrnc
),
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which gives that

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

K2(
√

Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

σK(P̃)
√

ρnc
).

Note that, when Kr < Kc, we cannot draw a conclusion that µ ≤ C. This is because,
when Kr < Kc, the inverse of BcB′c does not exist, since Bc ∈ RKc×Kr . Therefore, Lemma
8 of [21] does not hold, and we cannot obtain the upper bound of ‖Uc‖2→∞, causing the
impossibility of obtaining the upper bound of µ, and this is the reason for why we only
consider the case for when Kr = Kc, for the row nodes here.

For the column nodes, under the conditions of Corollary 1, we have

f̂c = O(
KrKcmax(nr, nc)log(nr + nc)

σ2
Kr
(P̃)ρδ2

c σ2
Kr
(Πr)nc,Kr nc,min

) = O(
KrKcmax(nr, nc)log(nr + nc)

σ2
Kr
(P̃)ρδ2

c (nr/Kr)(nc/Kc)(nc/Kc)
)

= O(
K2

r K3
c max(nr, nc)log(nr + nc)

σ2
Kr
(P̃)ρδ2

c nrn2
c

).

For the special case Kr = Kc = K, since nc,max
nc,min

= O(1) when nc,min = O( nc
K ), we have

f̂c = O(
K4max(nr, nc)log(nr + nc)

σ2
K(P̃)ρnrnc

).

When nr = O(n), nc = O(n), Kr = O(1), and Kc = O(1), the corollary follows
immediately by basic algebra.

Appendix C. Proofs under ODCNM

Appendix C.1. Proof of Proposition 2

Proof. Since Ω = ΠrPΠ′cΘc = Π̌r P̌Π̌′cΘ̌c = UrΛU′c, we have Ur = ΠrUr(Ir, :) =
Π̌rUr(Ir, :) by Lemma 2, which gives that Πr = Π̌r. Since Uc,∗ = ΠcBc = ΠcUc,∗(Ic, :
) = Π̌cUc,∗(Ic, :) by Lemma 2, we have Πc = Π̌c.

Appendix C.2. Proof of Lemma 2

Proof.

• For Ur: since Ω = UrΛU′c and U′cUc = IKr , we have Ur = ΩUcΛ−1. Recall that
Ω = ΠrPΠ′cΘc under ODCNM; we have Ur = ΠrPΠ′cΘcUcΛ−1 = ΠrBr, where
Br = PΠ′cΘcUcΛ−1. Sure, Ur(ir, :) = Ur(īr, :) holds when Πr(ir, :) = Πr(īr, :) for
ir, īr ∈ [nr].

• For Uc: let Dc be a Kc × Kc diagonal matrix, such that Dc(k, k) = ‖ΘcΠc(:,k)‖F
‖θc‖F

for

k ∈ [Kc]. Let Γc be an nc × Kc matrix, such that Γc(:, k) = ΘcΠc(:,k)
‖ΘcΠc(:,k)‖F

for k ∈ [Kc]. For
such Dc and Γc, we have Γ′cΓc = IKc and Ω = ΠrP‖θc‖FDcΓ′c, i.e., ΘcΠc = ‖θc‖FΓcDc.
Since Ω = UrΛU′c and U′rUr = IKr , we have Uc = ΘcΠcP′Π′rUrΛ−1. Since ΘcΠc =
‖θc‖FΓcDc, we have Uc = Γc‖θc‖FDcP′Π′rUrΛ−1 = ΓcVc, where we set
Vc = ‖θc‖FDcP′Π′rUrΛ−1 ∈ RKc×Kr . Note that since U′cUc = IKr = V′c Γ′cΓcVc = V′c Vc,
we have V′c Vc = IKr . Now, for ic ∈ [nc], k ∈ [Kr], we have

Uc(ic, k) = e′ic Ucek = e′ic ΓcVcek = Γc(ic, :)Vcek

= θc(ic)[
Πc(ic, 1)

‖ΘcΠc(:, 1)‖F

Πc(ic, 2)
‖ΘcΠc(:, 2)‖F

. . .
Πc(ic, Kc)

‖ΘcΠc(:, Kc)‖F
]Vcek

=
θc(ic)

‖ΘcΠc(:, `(ic))‖F
Vc(`(ic), k),
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which gives that

Uc(ic, :) =
θc(ic)

‖ΘcΠc(:, `(ic)‖F
[Vc(`(ic), 1) Vc(`(ic), 2) . . . Vc(`(ic), Kr)]

=
θc(ic)

‖ΘcΠc(:, `(ic)‖F
Vc(`(ic), :).

Then, we have

Uc,∗(ic, :) =
Vc(`(ic), :)
‖Vc(`(ic), :)‖F

. (A6)

Sure, we have Uc,∗(ic, :) = Uc,∗(īc, :) when `(ic) = `(īc) for ic, īc ∈ [nc]. Let Bc ∈
RKc×Kr , such that Bc(l, :) = Vc(l,:)

‖Vc(l,:)‖F
for l ∈ [Kc]. Equation (A6) gives Uc,∗ = ΠcBc,

which guarantees the existence of Bc.
Now, we consider the case for when Kr = Kc = K. Since Vc ∈ RKc×Kr and Uc = ΓcVc ∈
Rnc×Kr , we have Vc ∈ RK×K and rank(Vc) = K. Since V′c Vc = IKr , we have V′c Vc = IK
when Kr = Kc = K. Then, we have

V′c Vc = IK ⇒ V′c VcV′c = V′c ⇒ V′c (VcV′c − IK) = 0
rank(Vc)=K⇒ VcV′c = IK. (A7)

Since VcV′c = V′c Vc = IK, we have Uc,∗(ic, :) = Vc(`(ic), :) by Equation (A6), and
‖Uc,∗(ic, :)−Uc,∗(īc, :)‖F = ‖Vc(`(ic), :)− Vc(`(īc), :)‖F =

√
2 when `(ic) 6= `(īc) for

ic, īc ∈ [nc], i.e., ‖Bc(k, :)− Bc(l, :)‖F =
√

2 for k 6= l ∈ [K].
Note that, when Kr < Kc, since rank(Vc) = Kr and Vc ∈ RKc×Kr , the inverse of Vc
does not exist, which causes that the last equality in Equation (A7) does not hold and
‖Bc(k, :)− Bc(`, :)‖ 6=

√
2 for all k 6= l ∈ [Kc].

Appendix C.3. Proof of Theorem 2

Proof. First, by the proof of Lemma 4.3 of [25], we have the below lemma.

Lemma A2. (Row-wise singular eigenvector error) Under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, and
Θc), when Assumption 2 holds, suppose that σKr (Ω) ≥ C

√
θc,max(nr + nc)log(nr + nc), with a

probability at least 1− o((nr + nc)−α),

‖ÛrÛ′r −UrU′r‖2→∞ = O(

√
θc,maxKr(κ(Ω)

√
max(nr ,nc)µ
min(nr ,nc)

+
√

log(nr + nc))

θc,minσKr (P)σKr (Πr)
√nc,Kr

).

For the row nodes, when the conditions in Lemma A2 hold, by Theorem 2 of [21], we
have

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(vκ(Π′rΠr)Kr

√
λ1(Π′rΠr)).

Next, we focus on the column nodes. By the proof of Lemma 3 in [19], there is an
orthogonal matrix Ô, such that

‖ÛcÔ−Uc‖F ≤
2
√

2Kr‖A−Ω‖√
λKr (Ω′Ω)

. (A8)

Under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, andΘc), by Lemma 4 of [25], we have√
λKr (Ω′Ω) ≥ θc,minσKr (P)σKr (Πr)

√
nc,Kr . (A9)
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By Lemma 4.2 of [25], when Assumption 2 holds, with a probability at least 1− o((nr +
nc)−α), we have

‖A−Ω‖ = O(
√

max(θc,maxnr, ‖θc‖1)log(nr + nc)). (A10)

Substituting the two bounds in Equations (A9) and (A10) into Equation (A8), we have

‖ÛcÔ−Uc‖F ≤ C
√

Krmax(θc,maxnr, ‖θc‖1)log(nr + nc)

σKr (P)θc,minσKr (Πr)
√nc,Kr

. (A11)

For ic ∈ [nc], by basic algebra, we have

‖Ûc,∗(ic, :)Ô−Uc,∗(ic, :)‖F ≤
2‖Ûc(ic, :)Ô−Uc(ic, :)‖F

‖Uc(ic, :)‖F
.

Setting mc = min1≤ic≤nc‖Uc(ic, :)‖F, we have

‖Ûc,∗Ô−Uc,∗‖F =

√√√√ nc

∑
ic=1
‖Ûc,∗(ic, :)Ô−Uc,∗(ic, :)‖2

F ≤
2‖ÛcÔ−Uc‖F

mc
.

Next, we provide the lower bounds of mc. By the proof of Lemma 2, we have

‖Uc(ic, :)‖F = ‖ θc(ic)

‖ΘcΠc(:, `(ic))‖F
Vc(`(ic), :)‖F =

θc(ic)

‖ΘcΠc(:, `(ic))‖F
‖Vc(`(ic), :)‖F

≥ θc(ic)

‖ΘcΠc(:, `(ic))‖F
mVc ≥

θc,min

θc,max
√

nc,max
mVc ,

where we set mVc = mink∈[Kc ]‖Vc(k, :)‖F. Note that when Kr = Kc = K, by the Proof
of Lemma 2, we know that VcV′c = IK, which gives that ‖Vc(k, :)‖F = 1 for k ∈ [K]; i.e.,
mVc = 1 when Kr = Kc = K. However, when Kr < Kc, it is challenge to obtain a positive

lower bound of mVc . Hence, we have 1
mc
≤ θc,max

√
nc,max

θc,minmVc
. Then, by Equation (A11), we have

‖Ûc,∗Ô−Uc,∗‖F = O(
θc,max

√
Krmax(θc,maxnr, ‖θc‖1)nc,maxlog(nr + nc)

σKr (P)θ2
c,minmVc σKr (Πr)

√nc,Kr

).

Let ς > 0 be a small quantity; by Lemma 2 in [15], if
√

Kc

ς
‖Uc,∗ − Ûc,∗Ô‖F(

1
√nc,k

+
1
√nc,l

) ≤ ‖Bc(k, :)− Bc(l, :)‖F, for each 1 ≤ k 6= l ≤ Kc,

(A12)

then the clustering error f̂c = O(ς2). Setting ς = 2
δc

√
Kc

nc,min
‖Uc,∗ − Ûc,∗Ô‖F makes Equa-

tion (A12) hold for all 1 ≤ k 6= l ≤ Kc. Then, we have f̂c = O(ς2) = O(
Kc‖Uc,∗−Ûc,∗Ô‖2

F
δ2

c nc,min
). By

Equation (A11), we have

f̂c = O(
θ2

c,maxKrKcmax(θc,maxnr, ‖θc‖1)nc,maxlog(nr + nc)

σ2
Kr
(P)θ4

c,minδ2
c m2

Vc
σ2

Kr
(Πr)nc,Kr nc,min

).

Especially, when Kr = Kc = K, δc =
√

2 under ODCNMnr ,nc(Kr, Kc, P, Πr, Πc, Θc) by
Lemma 2, and mVc = 1. When Kr = Kc = K, we have

f̂c = O(
θ2

c,maxK2max(θc,maxnr, ‖θc‖1)nc,maxlog(nr + nc)

σ2
K(P)θ4

c,minσ2
K(Πr)n2

c,min
).
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Appendix C.4. Proof of Corollary 2

Proof. For the row nodes, under the conditions of Corollary 2, we have

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(vKr

√
nr

Kr
) = O(v

√
Knr).

Under the conditions of Corollary 2, κ(Ω) = O(1) and µ ≤ C θ2
c,max

θ2
c,min

≤ C for some

C > 0 by Lemma 2 of [25]. Then, by Lemma A2, we have

v = O(

√
θc,maxKr(κ(Ω)

√
max(nr ,nc)µ
min(nr ,nc)

+
√

log(nr + nc))

θc,minσKr (P)σKr (Πr)
√nc,Kr

)

= O(

√
θc,maxK(κ(Ω)

√
max(nr ,nc)µ
min(nr ,nc)

+
√

log(nr + nc))

θc,minσK(P)σK(Πr)
√nc,min

)

= O(
K1.5√θc,max(

√
Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

θc,minσK(P)
√

nrnc
),

which gives that

maxir∈[nr ]‖e
′
ir (Π̂r −ΠrPr)‖1 = O(

K2√θc,max(
√

Cmax(nr ,nc)
min(nr ,nc)

+
√

log(nr + nc))

θc,minσK(P)
√

nc
).

The reason for why we do not consider the case when Kr < Kc for row nodes is similar
as that of Corollary 1, and we omit it here.

For column nodes, under conditions of Corollary 2, we have

f̂c = O(
θ2

c,maxKrKcmax(θc,maxnr, ‖θc‖1)nc,maxlog(nr + nc)

σ2
Kr
(P)θ4

c,minδ2
c m2

Vc
σ2

Kr
(Πr)nc,Kr nc,min

)

= O(
θ2

c,maxK2
r K2

c max(θc,maxnr, ‖θc‖1)log(nr + nc)

σ2
Kr
(P)θ4

c,minδ2
c m2

Vc
nrnc

).

For the case Kr = Kc = K, we have

f̂c = O(
θ2

c,maxK2max(θc,maxnr, ‖θc‖1)nc,maxlog(nr + nc)

σ2
K(P)θ4

c,minσ2
K(Πr)n2

c,min
)

= O(
θ2

c,maxK4max(θc,maxnr, ‖θc‖1)log(nr + nc)

σ2
K(P)θ4

c,minnrnc
).

When nr = O(n), nc = O(n), Kr = O(1) and Kc = O(1), the corollary follows immedi-
ately by basic algebra.
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