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Abstract: Numerical optimization has been a popular research topic within various engineering
applications, where differential evolution (DE) is one of the most extensively applied methods.
However, it is difficult to choose appropriate control parameters and to avoid falling into local
optimum and poor convergence when handling complex numerical optimization problems. To
handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted
oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge
faster, and avoid trapping in local optimum. Firstly, a new ROML strategy integrates mutual learning
(ML) and refractive oppositional learning (ROL), achieving stochastic switching between ROL and
ML during the population initialization and generation jumping period to balance exploration and
exploitation. Meanwhile, a dynamic adjustment factor is constructed to improve the ability of the
algorithm to jump out of the local optimum. Secondly, a Bernstein operator, which has no parameters
setting and intrinsic parameters tuning phase, is introduced to improve convergence performance.
Finally, the performance of BROMLDE is evaluated by 10 bound-constrained benchmark functions
from CEC 2019 and CEC 2020, respectively. Two engineering optimization problems are utilized
simultaneously. The comparative experimental results show that BROMLDE has higher global
optimization capability and convergence speed on most functions and engineering problems.

Keywords: refracted oppositional learning; mutual learning; refracted oppositional-mutual learning;
differential evolution; Bernstein operator; CEC 2019 and 2020

1. Introduction

Recently, numerical optimization has become a trending research topic of interest for
many researchers and is broadly used to handle many engineering optimization problems,
such as mobile robots path planning [1], vehicle problem [2], and task scheduling [3].
These optimization problems can be expressed as NP-Hard problems, which are difficult to
derive high-quality solutions by traditional approaches owing to the reliance of traditional
methods on the choice of starting points and vulnerability to optimal local problems [4,5].
Fortunately, the meta-heuristic algorithms (MAs) have the features of high efficiency, low
demands for the starting point, and robustness [6]. These overcome the limitations of
traditional approaches to addressing NP problems. In the past decades, tremendous MAs
have been suggested to handle numerical optimization tasks, such as differential evolution
(DE) [7], PSO [8], SA [9], cockroach swarm optimization [10], and so on. Among them,
DE, a population-based MA, is extensively utilized in the parameter training of neural
networks [11], problem prediction [12], and path planning of unmanned aerial vehicles [13],
etc., because of its features such as simple model, easy execution, stronger search capability,
and robustness. Regrettably, DE is susceptible to the control parameters and has drawbacks
of easily falling into local optimum as well as low convergence.
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Control parameters setting may impact the convergence performance of MAs. Given
this, investigators have developed various strategies for DE algorithms. For instance,
the authors in [14] propose a quantization orthogonal crossover operator on the basis
of an orthogonal design, where the operator crossover probabilities are considered as
structural parameters. Unfortunately, its parameters are set artificially, and the stability
of the algorithm is difficult to be guaranteed. To further improve algorithm performance,
parameter adaptation approaches have been proposed. The authors in [15] introduce an
automatic adaptation parameter mechanism that performs depending on the deviation
of the objective function between the optimal individuals and the total population in the
preceding generation, which helps improve the performance of the mutation stage. An
adaptive parameter DE algorithm is reported in [16], which achieves parameter adaption
using Q-learning. Furthermore, parametric random selection methods have also been
studied by many researchers. To list a few, the authors in [17] present a self-adaptive
parameters DE algorithm, where parameters (CR and F) are randomly selected from a list
of stored success parameters or generated at random. Further, the authors in [18] introduce
a zoning strategy to obtain the optimal combination of control parameters, and an adaptive
DE algorithm having zoning evolution is proposed. Specifically, an easily controllable
and non-recursive Bernstein-search DE algorithm (BSDE) is reported in [19], which is not
required to control the parameter setting operation and has a flexible random mutation
and crossover process. Therefore, BSDE is simpler than other parameter tuning algorithms
and aids in saving the time of algorithm search. Nevertheless, the algorithm may still be
locally optimal and low convergence. Thus, one motivation is raised for this paper.

Moreover, it is critical that the MAs should balance exploration and exploitation [20,21].
For this, the opposition-based learning (OBL) strategies are the powerful search frame-
work [22–24]. The OBL mechanism is to explore improved candidate solutions by consider-
ing both the original points and their opposite counterparts. It is appropriate for population
initialization of MAs and has performed significantly in improving the convergence of the
MAs [25]. Hence, many variants of the OBL strategy have been reported to strengthen MAs
in terms of trade-offs between exploration and exploitation. The authors in [26] propose an
opposition-based DE having a protective jumping rate, which achieves stopping the oppo-
site operator when the success rate of the opposite individual falls to a constant threshold.
In [27], OBL with the current optimum DE algorithm is proposed, and its concept is that
instead of using the center point to calculate the opposite point, the best point of the current
point is utilized. Meanwhile, OBL variants based on expanded search space have also been
extensively studied. To be specific, in [28], a refracted oppositional learning (ROL) strategy
is incorporated into the artificial bee colony algorithm, promoting the diversity of the
population and guiding it to explore the global optimal solution. Based on the ROL strategy,
the authors in [29] propose a cuckoo search algorithm with refraction learning, improving
the capability of cuckoo search to avoid local optimal positions. Regrettably, their suitable
scale factors are difficult to select. Furthermore, a neighborhood opposition-based DE is
developed in [30] by executing the Gaussian perturbation operation around the opposite
point, and its search neighborhood is further expanded. In [31], a dynamic OBL mechanism
with asymmetric search space is proposed, which facilitates the exploitation and exploration
capabilities. However, the newly introduced weights that need to be adjusted may bring an
additional burden for applications. To overcome this shortcoming, an enhanced basic DE
algorithm is developed in [32] by integrating the OBL strategy and mutual learning (ML)
strategy, called the oppositional-mutual learning DE (OMLDE) algorithm. Nevertheless, it
may still suffer from the difficulty of choosing the suitable control parameters for DE and
low convergence accuracy. Thus, another motivation is derived here.

Based on the no free lunch theorem, no single algorithm can be suitable for all optimiza-
tion problems [33]. Therefore, it is valuable for modifying existing algorithms, developing
new algorithms, and mixing different algorithms to obtain better results in practical ap-
plications. Inspired by the above discussions, with the help of Bernstein-search, ROL
and ML strategies, an enhanced DE algorithm with both Bernstein operator and refracted
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oppositional-mutual learning strategy with a dynamic adjustment factor mechanism (called
BROMLDE) is proposed to achieve fast convergence, jumping out of local optimum as well
as reduced parameter selection in this paper. Highlights of this paper are as follows:

(1) The ROL strategy with a dynamic adjustment factor changed with function evaluation
quantity is presented, which facilitates jumping out of the local extremum space.

(2) Integrating ML into ROL strategy, a novel refracted oppositional-mutual learning
(ROML) strategy is proposed for better trade-off algorithm exploration and exploitation.

(3) BROMLDE can be easily operated in parallel, achieving a rapid search. Moreover,
BROMLDE is a partially elitist selective method since it uses both the fittest points
and global minimizer solution in its system equations.

(4) Compared with BSDE [19], BROMLDE integrates the ROML into the initialization
phase of the population and the generation phase of jumping.

(5) Different from the OMLDE algorithm [32], BROMLDE does not require the adjustment
of intrinsic control parameters.

(6) Several numerical experiments are investigated on the CEC 2019 and CEC 2020 bench-
marks to validate the function optimization performance. Additionally, two constrained
engineering problems are used to verify the feasibility of the proposed BROMLDE.

The arrangement of the rest of this paper is as below: Section 2, the differential evolu-
tion is presented. Section 3, the developed BROMLDE is stated. Numerical experiments
and results analysis are described in Section 4. Lastly, conclusions and future work are
provided in Section 5.

2. Differential Evolution Algorithm
2.1. The Structure of Typical DE

A typical DE [7] includes the mutation operator, crossover phase, and selection phase.
The population Pg is constructed as Pg = [X1,g, X2,g, . . . , XNp ,g] for any generation (g),
Pg is derived from Equation (1), where Xi,g is the ith individual vector. Each Xi,g has D
dimension, where i = 1, 2, . . . , Np, thus Xi,g = [x1i,g, x2i,g, . . . , xDi,g]

T .

P(i,j),g ∼ U
(
lowj,g, upj,g

)∣∣∣j = 1, 2, . . . , D, (1)

in which Np is the population Pg size, and D denotes the population dimension.

2.1.1. Mutation Operator

A mutation operator can generate a mutant vector Vi,g = [v1i,g, v2i,g, . . . , vDi,g]
T . For

instance, a classical mutation strategy “DE/rand/1” is given as follows:

Vi,g = F
(

Xd1,g − Xd2,g

)
+ Xd3,g, i 6= d1 6= d2 6= d3, (2)

where three individuals Xd1,g, Xd2,g, and Xd3,g are randomly obtained in Pg. The mutation
scale factor F is usually in [0, 1].

2.1.2. Crossover Phase

The trail vector Ui,g = [u1i,g, u2i,g, . . . , uDi,g]
T is constructed according to Xi,g and Vi,g

in the process of crossover operator. The vector is updated by Equation (3):

uji,g =

{
vji,g, i f rj 6 CR ‖j = nj,
xji,g, otherwise,

(3)

where rj ∈ [0, 1], the crossover rate CR is usually in [0, 1], and the random number nj is
chosen in [1 : D].
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2.1.3. Selection Phase

For this phase, the individuals Xi,g+1 are generated by using Equation (4):

Xi,g+1 =

{
Ui,g, i f f

(
Ui,g

)
< f (Xi,G),

Xi,g, otherwise,
(4)

where f (·) is a fitness function. The population Pg+1 = [X1,g+1, X2,g+1, . . . , XNp ,g+1] can
be obtained.

3. The Proposed BROMLDE Algorithm

ROL strategy combining the refraction principle [28,34] from physics with an OBL
strategy is a strong method to strengthen MAs [28,29,34,35]. In this paper, the ROL strategy
is applied to augment the performance of the BROMLDE algorithm. In addition, the ROL
strategy and ML strategy are combined to achieve improved exploitation capacity.

3.1. Bernstein Polynomials

The Bernstein polynomials can be utilized to consistently approximate a continuous
function on a closed range, where polynomials of 2nd degree [19,36] are defined using the
Equations (5) and (6):

Bp,m(t) =
(

m
p

)
tp(1− t)m−p, p = 0, 1, . . . , m, (5)

where
(

m
p

)
=

m!
p!(m− p)!

. The 2nd degree Bernstein polynomials are defined as Equation (6).

For p < 0 and p > m, Bp,m = 0.  B0,2(t) = (1− t)2,
B1,2(t) = 2t(1− t),
B2,2(t) = t2.

(6)

Figure 1a shows the 2nd degree Bernstein polynomials when 0 ≤ t ≤ 1.
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3.2. ROL Strategy

The principle of ROL is to calculate the fitness values for the current solution and their
ROL solution and to select a superior solution by comparing the fitness values and further
iterating. The ideology of ROL is shown in Figure 1b.
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In Figure 1b, the x-axis is the dividing line, the normal is the y-axis, the point O is the
midpoint of the search range [a, b], and the angles of incidence and refraction are θ1 and
θ2, respectively, as well as l and l∗ indicating the length of incidence and refraction light,
respectively. x indicates a point in the region [a, b], and x∗ stands for the reverse position of
the point x. The geometric relationship of the lines in Figure 1b is expressed below:

sinθ1 = ((a + b)/2− x)/l, (7)

sinθ2 = (x∗ − (a + b)/2)/l∗. (8)

The refraction rate η is defined by using Equation (9):

η =
sinθ1

sinθ2
=

l∗((a + b)/2− x)
l(x∗ − (a + b)/2)

, (9)

let h = l/l∗, then Equation (9) can be reshaped as Equation (10), then the point x∗ can be
derived by applying Equation (10):

x∗ =
a + b

2
+

a + b
2hη

− x
hη

, (10)

if h = 1 and η = 1, the Equation (10) can be changed to Equation (11) [37]:

x∗ = a + b− x, (11)

In general, Equation (10) could be modified to handle D dimensional space problems,
η is usually taken as 1, then it gets the following formula:

x∗i,j =
aj + bj

2
+

aj + bj

2h
−

xi,j

h
, j = 1, 2, · · · , D, (12)

in which xi,j is the point of the jth dimension of the ith individual. The x∗i,j is the opposite

position of xi,j. The aj and bj are the lower and upper bounds of the jth dimension on the
search space, respectively.

Obviously, the solution obtained by using Equation (11) is fixed, and the changing
refracted solution can be obtained by adjusting h in Equation (12), which further avoids the
locally extreme value space.

3.3. ML Strategy

Generally, in each generation, the individual having the best function value is con-
sidered to be the optimal current generation individual. Nevertheless, greater knowledge
in some dimensions may be provided by the individuals having worse fitness values.
Hence, to facilitate the exchange of knowledge, individuals should improve their knowl-
edge with the help of their interaction with each other. Given this, the ML strategy is
motivated [32,38].

Let x be a point in [a, b], the ML individual can be obtained using Equation (13):

x
ML

i,g = xi,g + φi,g
(
xr,g − xi,g

)∣∣∣r 6= i, i = 1, 2, . . . , Np, (13)

where xr,g denotes randomly chosen individual, and φi,g are a random number in [0, 1].
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3.4. ROML with Adjustment Factor Mechanism Strategy

Let X ∈ [Llower
g , Lupper

g ] be a position in a D dimensional space in each generation g,

where the bound vectors Lupper
g =

(
Lupper

1,g , Lupper
2,g , · · · , Lupper

D,g

)
and

Llower
g =

(
Llower

1,g , Llower
2,g , · · · , Llower

D,g

)
are updated as:

Lupper
j,g = max

([
x1,j, x2,j, · · · , xNp ,j

])
, (14)

Llower
j,g = min

([
x1,j, x2,j, · · · , xNp ,j

])
, (15)

where j = 1, · · · , D. Define Ci,g = [x1i,g, x2i,g, . . . , xDi,g]
T as a ROML individual of the

present generation g, it can be given by applying Equation (16):

Ci,g =


Llower

i,g + Lupper
i,g

2
+

Llower
i,g + Lupper

i,g

2hi(g)
−

Xi,g

hi(g)
, i f rand(0, 1) < 0.5,

Xi,g + φi,g
(
Xr,g − Xi,g

)
, otherwise,

(16)

in which φi,g is a random value of [0, 1], Xr,g(r 6= i) indicates a randomly chosen individual.

A ROML population PC
g can be generated, i.e., PC

g =
[
C1,g, . . . , CNp ,g

]
. Moreover, to keep

ROML effective, the boundaries should be checked using Equation (17):

C(i,j),g = rand
(

Llower
j,g , Lupper

j,g

)
, i f C(i,j),g < Llower

j,g ‖ C(i,j),g > Lupper
j,g . (17)

After the ROML step, Np most suitable individuals are chosen from
{

P0, PC
g

}
accord-

ing to their fitness values. Furthermore, it is worth noting that the moderator adjustment
factor hi(FES) is an essential parameter affecting the learning performance of ROML. To
achieve a wide range of refracted inverse solutions generated in the beginning stage of the
algorithm and a small range of refracted opposite solutions generated in the later stage, a
tuning factor that can be changed with the amount of function evaluation is designed by
the trial-and-error method based on the literature [39] as follows:

hi(FES) =
[
1 + (FES/MaxFES)

1
3
]15

, (18)

where FES are current function evaluations and maximal function evaluations are MaxFES.

3.5. Proposed BROMLDE

In this section, the proposed BROMLDE with Bernstein operator, ROL strategy having
adjustment factor mechanism, and ML strategy is presented in detail. First, the ROML
population initialization procedure is presented. Then, the mutation and crossover with
the Bernstein polynomials process are described. Finally, the ROML new population with
generation jumping is stated, as well as the overall procedure of the proposed BROMLDE
also be given.

3.5.1. ROML Initialization

During the starting generation (g = 0), the original population Pg = P0 = [X1,0, · · · , XNp,0]
is generated using Equation (1). The ROML strategy is utilized to generate a new ini-
tial population PC

0 = [C1,0, C2,0, · · · , CNp,0], where Np is the population PC
0 size, Ci,0,

(i = 1, . . . , Np) are obtained from Equation (16). Then, a new population is constituted via
Equation (19):

P∗0 =
{

P0 ∪ PC
0

}
. (19)
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The function values for ascending sorting of P∗0 are computed by Equation (20):

f itnessP∗0 = sort(F (P∗0 )), (20)

where F indicates the objective function. Then, Np fittest individuals are picked from P∗0
by using Equation (21). Moreover, to facilitate later understanding, we set Pλ,g = Pλ,0.

[ f itnessPλ,0, Pλ,0] = [ f itnessP∗0 , P∗0 ]
∣∣λ ∈ [1 : Np

]
. (21)

Both the best solution, Pbest, and the global minimization function value, Psol, of the
problem are calculated using Equation (22):

[Psol, Pbest] = [min( f itnessP0), P0]. (22)

3.5.2. Mutation and Crossover with Bernstein Polynomials

BROMLDE, which updates the starting mutation matrix M(i,j),g = 0, i ∈ [1 : Np],
j ∈ [1 : D] at each iteration by utilizing Equation (23), controls the mutation process using
the updated Mg.

M(i,J),g = 1. (23)

In Equation (23), J = u(d1 : κ · De)|u = permute(1 : D) where the function permute(·)
can arbitrarily change the sequence of the elements of (·). κ is given using Equation (24):

switchϑ0

case 1 κ = (1− µ)2,
case 2 κ = 2 · µ · (1− µ),
case 3 κ = µ2,

end

(24)

where µ ∼ U(0, 1) and ϑ0 = [3 · ϑ3
1], ϑ1 ∼ U[0 1], ϑ0 ∈ U{1 : 3}, the κ is computed

employing 2nd degree Bernstein polynomials. The step size Fg of the evolution is obtained
by using Equation (25):

Fg =


([

ξ3
(1,1:D),g ◦

∣∣∣γ3
(1,1:D),g

∣∣∣]′ ×Q(1,1:Np),g

)′
, i f ϑ2 < ϑ3,

γ3
(Np ,1),g ×Q(1,D),g, otherwise,

(25)

where ϑ(2:3), ξg and γg are random values that will be updated with each call, where
ϑ(2:3),g, ξg ∼ U(0, 1), γg ∼ N(0, 1), and matrix Q(·,·),g = 1.

In BROMLDE, the trial vector Tg is obtained by making use of Equation (26):

Tg = Fg ◦Mg ◦
(
(w∗)3 ◦ Eg +

(
1− (w∗)3

)
◦ Pbest− Pg

)
+ Pg

∣∣∣w∗(1:Np ,1) ∼ U(0, 1), (26)

where Eg = w ◦ PK1,g + (1− w) ◦ PK2,g

∣∣∣w(1:Np ,1:D),g ∼ U(0, 1), ◦ indicates Hadamart multi-
plication operator, K1 and K2 are specified in Equation (27):

K1 = permute
(
1 : Np

)
, K2 = permute

(
1 : Np

)∣∣K1 6=
[
1 : Np

]
, K1 6= K2. (27)

If T(i,j),g < lowj,g

∣∣∣∣∣∣T(i,j),g > upj,g , T(i,j),g values are updated using the Equation (28):

T(i,j),g =

{
lowj,g + α3(upj,g − lowj,g

)
, i f T(i,j),g < lowj,g,

upj,g + α3(lowj,g − upj,g
)
, i f T(i,j),g > upj,g,

(28)
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where α ∼ U(0, 1). The function values of Tg are obtained by applying Equation (29):

f itnessTg = F
(
Tg
)
. (29)

Based on the selection process of Equation (30), an updated population can be obtained.

i f f itnessTλ,g < f itnessPλ,g,
[
Pλ,g, f itnessPλ,g

]
=
[
Tλ,g , f itness Tλ,g

]∣∣λ ∈ [1 : N]. (30)

3.5.3. ROML New Population with Generation Jumping

Now, based on the updated population Pg in Equation (30), a new ROML population
PC

g = [C1,g, C2,g, · · · , CNp,g] can be obtained by Equations (16)–(18), if the jumping rate
Jr is bigger than the selection probability, where Np is the population PC

g size. The objective
function values of the new population PC

g are computed by Equation (31):

f itnessPC
g = F

(
PC

g

)
. (31)

Then, the new population P∗g , including Pg and PC
g , and its objective function values

for ascending sorting are denoted as follows: P∗g =
{

Pg ∪ PC
g

}
f itnessP∗g = sort

{
f itnessPg ∪ f itnessPC

g

}
.

(32)

Afterward, Np most suitable individuals are selected from P∗g using Equation (33):

[
f itnessPλ,g, Pλ,g

]
=
[

f itnessP∗g , P∗g
]∣∣∣λ ∈ [1 : Np

]
. (33)

Based on Equations (31)–(33), the individuals Pλ,g, λ ∈ [1 : Np] obtaining a better
objective function value will make up the new generation population.

In the current evolutionary step, both the optimal solution, Pbest, and corresponding
objective function value, Psol, are provided by the updated population Pg in Equation (33),
and both of them are updated by employing Equation (34):

[Psol, Pbest] =
[
min

(
f itnessPg

)
, Pg
]
. (34)

The pseudo-code of BROMLDE is provided in Algorithm 1.

Algorithm 1: The BROMLDE Algorithm Procedure

Input: Objective function:F , Search-space limits: (low, up), Population size: Np, Dimension
of problem:D, Maximal function evaluations: MaxFES, Jumping rate: Jr

Output: Psol : Global minimum Pbest : Global minimizer
1 Set the current function evaluations FES = 0
2 Set the population bounds randomly generate an initial population P0
3 for i = 1 to Np do //ROML population initialization (generation g = 0)
4 φi,0 = rand(0, 1)

5 hi(FES) = (1 + 3
√

FES
MaxFES

)
15

6 Ci,0 =

{
Llower

i,0 +Lupper
i,0

2 +
Llower

i,0 +Lupper
i,0

2hi(g) − Xi,0
hi(g) , i f rand(0, 1) < 0.5,

Xi,0 + φi,0(Xr,0 − Xi,0), otherwise,
7 Check the bounds in the current generation by Equation (17)
8 end
9 Get population Pg by selecting Np fittest points from

{
P0 ∪ PC

0
}

10 FES = FES + 2Np
11 Get Psol and Pbest by Equations (20)–(22)
12 while FES < MaxFES do //Main loop(generation g > 0)
13 M(i,j),g = 0 //Generate mutation matrix (M)
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14 for i = 1 to Np do
15 u = permute(1 : D)
16 Generate µ, where µ ∼ U(0, 1)
17 Generate ϑ0, ϑ0 = [3 · ϑ3

1 ], ϑ1 ∼ U[0 1], ϑ0 ∈ U{1 : 3}
18 switch ϑ0 do
19 case 1 do κ = (1− µ)2;
20 case 2 do κ = 2 · µ · (1− µ);
21 case 3 do κ = µ2;
22 end
23 J = u(d1 : κ · De)|u = permute(1 : D) ; M(i,J),g = 1
24 end
25 Calculate the evolutionary step size Fg by Equation (25)
26 Generate the trial vector Tg by Equations (26) and (27) and control the boundaries of Tg
by Equation (28)
27 Update population Pg by Equations (29) and (30)
28 FES = FES + Np
29 if rand ≤ Jr then //ROML population with generation jumping
30 Update the bounds by calculating the smallest and biggest values of all dimensions in

the population Pg
31 for i = 1 to Np do
32 φi,g = rand(0, 1)

33 hi(FES) = (1 + 3
√

FES
MaxFES

)
15

34 Ci,g =


Llower

i,g +Lupper
i,g

2 +
Llower

i,g +Lupper
i,g

2hi(g) − Xi,g

hi(g) , i f rand(0, 1) < 0.5,
Xi,g + φi,g(Xr,g − Xi,g), otherwise,

35 Check the bounds in the current generation by Equation (17)
36 end
37 Select Np fittest individuals from

{
Pg ∪ PC

g

}
and update the population Pg by Equation (33)

38 FES = FES + Np
39 end
40 Update Psol and Pbest by Equation (34)
41 end

3.6. Computational Complexity

The computational complexity of BROMLDE mainly depends on three parts: ROML
population initialization, mutation, crossover, and selection, as well as ROML new popula-
tion with generation jumping. The complexity of these worst-case scenarios is as below:

(1) For the ROML population initialization, the process requires generating the starting
population and its corresponding RMOL population and then selecting the Np best
individuals from the two populations as the new initial population of the algorithm.
Therefore, the time complexity is O(Np · D) + O(Np · log2(2Np)).

(2) In the mutation, crossover, and selection of the BROMLDE algorithm, the algorithm
mainly includes the initialization and update of starting mutation matrix M, the obtain-
ing of step size Fg, and trial vector Tg. The time complexity is
O(Np · D) + O(Np) + O(D).

(3) In ROML new population with generation jumping, it consists mainly of the gener-
ation of the ROML population with Np size, and the selection of Np most suitable
individuals from the ROML population and initial population. Further, the time
complexity is O(Np · D) + O(Np · log2(2Np)).

Thus, the whole-time complexity of the developed BROMLDE can be estimated as
O(Np · D) + O(Np) + O(D) + O(Np · log2(2Np)).
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4. Numerical Experiments and Results Analysis
4.1. Experiment Setup

To investigate the performance of the developed BROMLDE, numerical experiments
on the CEC 2019 benchmark functions [40] (see Table 1) and CEC 2020 test suites [41]
(see Table 2) are conducted by comparison with various well-known optimization meth-
ods. Those methods include BSDE [19], OMLDE [32], weighted differential evolution
(WDE) [42], adaptive DE with optional external archive (JADE) [43], success-history adap-
tation DE (SHADE) [44], PSO [8], CMAES [45], and simulated annealing (SA) [9]. More-
over, BROMLDE is also compared to the IEEE CEC 2020 winning DE algorithm variants
IMODE [46] and J2020 [47] to evaluate its performance. To make the experimental com-
parison fair, the comparison algorithm is run under identical test conditions. The whole
numerical experiments are performed on PlatEMO [48] of MATLAB 2021b on a computer
with CPU AMD Ryzen 5 3550H @2.10GHz and 16G RAM, Win10 64-bit operating system.
The population size Np is 100, and the jumping rate Jr is 0.05, which is consistent with
OMLDE. Then, the maximal function evaluations (MaxFES) are set to 10,000 as the termina-
tion condition, and 30 independent runs are performed. Moreover, the parameter settings
of other counterparts refer to their settings.

Table 1. CEC 2019 benchmark functions [40].

No. Functions D Search Range Best

F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192] 1
F2 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384] 1
F3 Lennard–Jones Minimum Energy Cluster 18 [−4, 4] 1
F4 Rastrigin’s Function 10 [−100, 100] 1
F5 Griewangk’s Function 10 [−100, 100] 1
F6 Weierstrass Function 10 [−100, 100] 1
F7 Modified Schwefel’s Function 10 [−100, 100] 1
F8 Expanded Schaffer’s F6 Function 10 [−100, 100] 1
F9 Happy Cat Function 10 [−100, 100] 1
F10 Ackley Function 10 [−100, 100] 1

Table 2. CEC 2020 test suites [41].

No. Functions Best

Unimodal Function F1 Shifted and Rotated Bent Cigar Function 100

Multimodal Shifted and
Rotated Functions

F2 Shifted and Rotated Schwefel’s Function 1100
F3 Shifted and Rotated Lunacek bi-Rastrigin Function 700
F4 Expanded Rosenbrock’s Plus Griewangk’s Function 1900

Hybrid Functions
F5 Hybrid Function 1 (N = 3) 1700
F6 Hybrid Function 2 (N = 4) 1600
F7 Hybrid Function 3 (N = 5) 2100

Composition Functions
F8 Composition Function 1 (N = 3) 2200
F9 Composition Function 2 (N = 4) 2400

F10 Composition Function 3 (N = 5) 2500

Search Range: [−100, 100]D(D is the population dimension)

Moreover, the Wilcoxon rank-sum test with a significant level of α = 0.05 is em-
ployed to judge the difference between BROMLDE and its competitors in this paper. More
specifically, the results of taking the minimum fitness function value for each of the 30 inde-
pendent runs are obtained. Then, the probability p-value corresponding to the BROMLDE
algorithm and each of its competitors is calculated separately by using MATLAB. Finally,
the determination of whether there are significant differences between algorithms is based
on the p-value and significance level α. The symbols applied to the Wilcoxon rank-sum
test are described as “+”, ”−”, and “=”, which indicate that BROMLDE has significantly
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superior, inferior, and no significant difference between BROMLDE and the compared
algorithm, respectively. Furthermore, the basic statistical evaluations including the global
minimum average (AVG) and global minimum standard deviation (STD) are utilized for
the obtained minimum fitness value results.

4.2. Numerical Function Optimization Problems
4.2.1. Experimental Results for CEC 2019

This subsection focuses on comparing the optimization results of BROMLDE and
other methods including BSDE, OMLDE, WDE, PSO, SHADE, JADE, and CMAES to
solve the CEC 2019 benchmark functions (see Table 1). The AVG and STD of the results
obtained from the tests performed using F1–F10 are listed in Table 3. The minimum AVG
in Table 3 is highlighted in bold. Based on the results of the minimum fitness value, the
Wilcoxon rank-sum test findings of BROMLDE and its competitors in Table 4 are symbolized
(+, −, =). +, =, and − indicate that BROMLDE performs better, equal, and worse than the
compared methods, respectively.

Table 3. Minimum fitness value on F1–F10 of CEC 2019 benchmark functions.

No. Metric BSDE OMLDE WDE PSO SHADE JADE CMAES BROMLDE

F1
AVG 2.3365 × 1010 1.3686 × 109 6.0428 × 1010 2.2371 × 1010 8.8385 × 109 3.1163 × 1010 8.6816 × 1010 1.1022 × 109

STD 1.3624 × 1010 2.1840 × 109 3.4700 × 1010 1.7275 × 1010 4.8209 × 109 1.5759 × 1010 1.6158 × 1011 1.6019 × 109

F2
AVG 8.6463 × 10 1.3452 × 102 1.0931 × 103 2.7232 × 10 2.6338 × 10 1.9322 × 10 7.5171 × 104 2.5057 × 10
STD 3.8929 × 10 1.2929 × 102 4.4152 × 102 5.3829 × 10 4.5771 2.7313 1.2393 × 104 1.0313 × 10

F3
AVG 1.2702 × 10 1.2703 × 10 1.2703 × 10 1.2703 × 10 1.2702 × 10 1.2702 × 10 1.2705 × 10 1.2702 × 10
STD 9.0900 × 10−6 2.0974 × 10−4 1.3621 × 10−4 7.5574 × 10−4 6.5941 × 10−6 1.9165 × 10−5 3.1064 × 10−3 4.5257 × 10−6

F4
AVG 2.7441 × 102 4.0491 × 103 2.5733 × 103 1.2030 × 103 8.4969 × 10 8.4365 × 10 1.9674 × 103 2.1898 × 102

STD 7.4444 × 10 2.1316 × 103 7.7972 × 102 6.6790 × 102 1.3287 × 10 2.5848 × 10 1.0480 × 104 1.6873 × 102

F5
AVG 1.7300 2.5679 2.5137 1.6473 1.6712 1.5414 1.0218 1.5682
STD 1.3887 × 10−1 3.1217 × 10−1 1.8449 × 10−1 4.3138 × 10−1 1.0437 × 10−1 1.1315 × 10−1 1.1879 × 10−1 8.3493 × 10−2

F6
AVG 8.6195 1.1608 × 10 9.4992 8.5524 1.0043 × 10 9.0537 1.3562 × 10 8.5392
STD 6.7997 × 10−1 6.7551 × 10−1 8.8662 × 10−1 1.1533 7.6363 × 10−1 6.5637 × 10−1 6.6821 × 10−1 4.8619 × 10−1

F7
AVG 2.9658 × 102 9.4097 × 102 5.4830 × 102 3.2512 × 102 5.8042 × 102 4.1793 × 102 1.0757 × 103 2.8929 × 102

STD 1.0557 × 102 1.8477 × 102 1.2762 × 102 2.8856 × 102 1.4751 × 102 9.2663 × 10 2.1772 × 102 9.4926 × 10

F8
AVG 5.4627 6.5042 5.9984 5.4877 5.9982 5.6098 6.4208 5.3501
STD 3.6571 × 10−1 2.7377 × 10−1 2.1249 × 10−1 6.8809 × 10−1 3.0162 × 10−1 4.7670 × 10−1 1.6190 2.4341 × 10−1

F9
AVG 5.0168 3.3530 × 102 5.5962 × 102 3.4069 × 10 3.3978 3.0946 2.5553 4.5696
STD 1.8876 1.8130 × 102 2.1148 × 102 4.0954 × 10 2.6188 × 10−1 3.1284 × 10−1 9.5374 × 10−2 6.2230

F10
AVG 2.0021 × 10 2.0499 × 10 2.0311 × 10 2.0041 × 10 2.0314 × 10 2.0059 × 10 2.1022 × 10 1.9994 × 10
STD 7.7741 × 10−1 1.8716 × 10−1 6.6710 × 10−2 5.4341 × 10−2 1.8459 × 10−1 5.6194 × 10−1 8.8160 × 10−2 7.1465 × 10−1

Table 4. Wilcoxon rank-sum test of BROMLDE and its competitors on F1–F10 of CEC 2019 bench-
mark functions.

BSDE OMLDE WDE PSO SHADE JADE CMAES

F1 + = + + + + +
F2 + + + + + − +
F3 + + + = + + +
F4 + + + + − − +
F5 + + + = + = −
F6 = + + = + + +
F7 = + + = + + +
F8 = + + = + + +
F9 + + + + = − −

F10 = + + + + = +

Statistics Number (+/−/=) 6/0/4 9/0/1 10/0/0 5/0/5 8/1/1 5/3/2 8/2/0

As presented in Table 1, CEC 2019 benchmark functions have different dimensions,
the dimensions of the functions F1, F2, and F3 are 9, 16, and 18, respectively. In addition,
functions F4–F10 have the same dimension 10. According to the experimental setting rules
in Section 4.1, the AVG and STD of the minimum fitness values on F1–F10 of the CEC
2019 benchmark functions are recorded in Table 3, we can see that BROMLDE obtains
the minimum AVG for 6 functions out of the total 10 functions compared to the other
algorithms, which are functions F1, F3, F6, F7, F8, and F10.
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According to the Wilcoxon rank-sum test results in Table 4 (last line), we can see
that BROMLDE achieves more than 6 significantly better results (“+”) compared to BSDE,
OMLDE, WDE, SHADE, and CMAES; BROMLDE also yields more than 5 superior results
compared to PSO and JADE. In other words, the mean percentage of the goodness of
BROMLDE for the 10 functions is 72.86%

(
∑7

i=1 +i/(10× 7)× 100%
)

. The general results
show that the ROML strategy can effectively enhance the optimization ability of DE.

Figure 2 presents the convergence diagrams of BROMLDE and other methods for
the 10 tested functions (F1–F10) on CEC 2019, where the vertical axis is the logarithm
of the minimum value of the functions and the horizontal axis is functional evaluation
numbers. It can be seen that although PSO converges fastest, the local optimum situation
occurs. BROMLDE has a fast descent rate on most of the tested functions. Moreover, we
can also conclude that for a limited number of evaluations, smaller fitness values can be
obtained for BROMLDE on the functions F1, F3, F6, F7, F8, and F10. The good performance
of BROMLDE is due to the initialization of ROML at the start and the exploring ability
of ROML.
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4.2.2. Experimental Results for CEC 2020

The optimization results of BROMLDE and other algorithms, including BSDE [19],
OMLDE [32], PSO, SA, IMODE [46], and J2020 [47], to solve the CEC 2020 benchmark
functions in dimensions 5 and 10 are compared in this subsection.

As shown in Table 2, those benchmark functions can be generally divided into the
unimodal function (F1), multimodal shifted and rotated functions (F2–F4), hybrid functions
(F5–F7), and composition functions (F8–F10). Based on the experimental setting rules
in Section 4.1, the AVG, STD and Wilcoxon rank-sum test results of the test functions
derived from the proposed BROMLDE and other test approaches are calculated by using
F1–F10 when the problem dimension D is equal to 5 and 10 are displayed in Tables 5–8.
The smallest average of each function in the table is marked in bold font. Additionally,
according to the statistical results, the Wilcoxon rank-sum test is employed to determine the
differences between BROMLDE and its competitors (+, =, and − denote that BROMLDE
performs better, equal, and worse than its competitors, respectively).

Table 5. Results of BROMLDE and other methods for solving 5D functions.

No. Metric BSDE OMLDE WDE PSO SA J2020 IMODE BROMLDE

F1
AVG 4.8740 × 104 2.0986 × 107 8.5297 × 106 4.4365 × 103 4.2100 × 103 3.4065 × 105 8.9505 × 102 9.0706 × 103

STD 5.0069 × 104 2.2874 × 107 4.9708 × 106 3.6216 × 103 4.1008 × 103 1.2306 × 106 4.9379 × 102 1.4826 × 104

F2
AVG 1.2414 × 103 1.5199 × 103 1.3496 × 103 1.4760 × 103 1.5509 × 103 1.3121 × 103 1.2256 × 103 1.2381 × 103

STD 5.6217 × 10 9.2984 × 10 9.9400 × 10 1.7947 × 102 1.9126 × 102 1.2762 × 102 5.5404 × 10 6.2432 × 10

F3
AVG 7.0965 × 102 7.2101 × 102 7.2148 × 102 7.1313 × 102 7.3505 × 102 7.1375 × 102 7.0892 × 102 7.0783 × 102

STD 2.0255 5.7317 4.0302 4.8783 1.7421 × 10 4.2279 1.1038 1.1270

F4
AVG 1.9007 × 103 1.9047 × 103 1.9022 × 103 1.9005 × 103 1.9053 × 103 1.9016 × 103 1.9006 × 103 1.9004 × 103

STD 3.3877 × 10−1 2.6435 5.6901 × 10−1 3.6936 × 10−1 3.7258 7.2313 × 10−1 1.7476 × 10−1 1.1759 × 10−1

F5
AVG 1.7167 × 103 3.0457 × 103 1.9032 × 103 5.5299 × 103 2.3202 × 103 3.3174 × 103 1.7070 × 103 1.7070 × 103

STD 7.5758 1.0090 × 103 1.2768 × 102 5.2416 × 103 1.1974 × 103 7.0944 × 103 2.8809 1.1347 × 10

F6
AVG 1.6010 × 103 1.6136 × 103 1.6035 × 103 1.6251 × 103 1.7276 × 103 1.6009 × 103 1.6010 × 103 1.6008 × 103

STD 2.6168 × 10−1 8.6732 2.0798 3.6268 × 10 9.1687 × 10 6.0805 × 10−1 2.2067 × 10−1 1.9990 × 10−1

F7
AVG 2.1005 × 103 2.1044 × 103 2.1015 × 103 2.1120 × 103 2.1234 × 103 2.1001 × 103 2.1001 × 103 2.1003 × 103

STD 1.9307 × 10−1 2.9249 5.1746 × 10−1 1.5631 × 10 3.1755 × 10 1.9415 × 10−1 5.7708 × 10−2 1.5899 × 10−1

F8
AVG 2.2159 × 103 2.2379 × 103 2.2268 × 103 2.2530 × 103 2.5333 × 103 2.2186 × 103 2.2046 × 103 2.2066 × 103

STD 9.9944 1.0055 × 10 7.1466 4.7534 × 10 3.6440 × 102 1.8780 × 10 3.0763 6.0099

F9
AVG 2.5034 × 103 2.5307 × 103 2.5299 × 103 2.5654 × 103 2.7298 × 103 2.5064 × 103 2.5033 × 103 2.4993 × 103

STD 1.9814 × 10 1.1469 × 10 1.2249 × 10 1.0929 × 102 9.8491 × 10 3.7058 × 10 1.8782 2.3732 × 10

F10
AVG 2.8209 × 103 2.8511 × 103 2.8473 × 103 2.8470 × 103 2.8626 × 103 2.7933 × 103 2.8327 × 103 2.8460 × 103

STD 5.4998 × 10 6.6783 9.4384 1.0499 × 10 7.4130 × 10 7.0970 × 10 5.8544 × 10 4.3048

For the 5-dimensional test problems, based on Table 5, one can see that BROMLDE
exhibits outstanding performance compared to other tested methods. Among the 10 CEC
2020 test functions, BROMLDE yields five minimum fitness value results, namely two
multimodal shifted and rotated functions F3 and F4, two hybrid functions F5 and F6, and
one composition function F9. This shows that BROMLDE is more dominant in solving
multimodal and hybrid function problems than the compared algorithm. Furthermore,



Entropy 2022, 24, 1205 14 of 24

from Table 6 (last line), BROMLDE is superior to BSDE, OMLDE, WDE, PSO, SA, J2020, and
IMODE by 7, 10, 10, 6, 9, 5, and 4 cases, respectively, among the 10 functions. At this time,
the mean good rate of BROMLDE reaches 72.86%

(
(∑7

i=1 +i)/(10× 7)× 100%
)

. That is to
say, those results significantly exceed the inferior functions.

Table 6. Wilcoxon rank-sum test of BROMLDE and its competitors on F1–F10 of CEC 2020 benchmark
functions (5D).

BSDE OMLDE WDE PSO SA J2020 IMODE

F1 + + + = = = −
F2 = + + + + + =
F3 + + + + + + +
F4 + + + = + + +
F5 + + + + + + +
F6 + + + + + = +
F7 + + + + + − −
F8 + + + + + + =
F9 = + + = + = =

F10 = + + = + − −
Statistics Number (+/−/=) 7/0/3 10/0/0 10/0/0 6/0/4 9/0/1 5/2/3 4/3/3

Table 7. Results of BROMLDE and other methods for solving 10D functions.

No. Metric BSDE OMLDE WDE PSO SA J2020 IMODE BROMLDE

F1
AVG 1.4476 × 108 2.4555 × 109 1.5449 × 109 4.0704 × 108 4.6326 × 103 3.6412 × 107 1.7090 × 107 4.4096 × 107

STD 8.3021 × 107 1.3660 × 109 4.9592 × 108 5.1296 × 108 3.7971 × 103 4.3766 × 107 6.3048 × 106 7.2445 × 107

F2
AVG 1.9834 × 103 2.7348 × 103 2.3048 × 103 2.1206 × 103 2.1731 × 103 1.6655 × 103 1.9956 × 103 1.8547 × 103

STD 1.3991 × 102 1.4098 × 102 1.1851 × 102 3.6835 × 102 2.8766 × 102 2.7621 × 102 1.3242 × 102 1.5977 × 102

F3
AVG 7.4407 × 102 7.9016 × 102 8.2616 × 102 7.5025 × 102 7.9052 × 102 7.5559 × 102 7.4235 × 102 7.3110 × 102

STD 5.7745 1.6326 × 10 1.8826 × 10 1.6186 × 10 4.1993 × 10 1.3715 × 10 4.9878 6.5706

F4
AVG 1.9460 × 103 6.6667 × 103 2.1915 × 103 2.0936 × 103 1.9091 × 103 1.9059 × 103 1.9041 × 103 1.9299 × 103

STD 2.6716 × 10 9.4365 × 103 2.5856 × 102 5.5618 × 102 5.2152 1.9810 6.3848 × 10−1 4.7804 × 10

F5
AVG 9.7848 × 104 1.5909 × 105 9.7802 × 104 1.9558 × 105 9.7668 × 105 4.4576 × 104 2.1550 × 104 5.2912 × 104

STD 6.6057 × 104 9.6210 × 104 7.5923 × 104 3.3832 × 105 9.0480 × 105 1.3231 × 105 1.5227 × 104 8.1556 × 104

F6
AVG 1.7118 × 103 2.0008 × 103 1.7653 × 103 1.9071 × 103 1.9416 × 103 1.6834 × 103 1.6963 × 103 1.6636 × 103

STD 4.5849 × 10 1.0720 × 102 5.6569 × 10 1.3882 × 102 1.3931 × 102 7.2439 × 10 5.4220 × 10 4.6814 × 10

F7
AVG 8.9530 × 103 2.0206 × 104 1.5814 × 104 9.5733 × 103 2.0077 × 106 1.2221 × 104 4.3612 × 103 4.3279 × 103

STD 5.6729 × 103 2.1511 × 104 8.8941 × 103 8.1418 × 103 2.5879 × 106 3.4438 × 104 1.3724 × 103 1.7359 × 103

F8
AVG 2.3216 × 103 2.5316 × 103 2.4407 × 103 2.3360 × 103 3.1952 × 103 2.3166 × 103 2.3118 × 103 2.3100 × 103

STD 1.9100 × 10 1.0034 × 102 7.0259 × 10 2.0004 × 10 7.9140 × 102 8.2685 5.9606 9.0332

F9
AVG 2.6409 × 103 2.7814 × 103 2.7274 × 103 2.7447 × 103 2.8628 × 103 2.7239 × 103 2.7013 × 103 2.6473 × 103

STD 5.6065 × 10 6.7746 × 10 4.3935 × 10 1.1248 × 102 1.0451 × 102 6.2291 × 10 5.6735 × 10 6.7168 × 10

F10
AVG 2.9502 × 103 3.0807 × 103 3.0229 × 103 2.9518 × 103 3.0048 × 103 2.9424 × 103 2.9285 × 103 2.9448 × 103

STD 8.0811 8.1623 × 10 2.8419 × 10 2.2054 × 10 3.8234 × 10 1.8236 × 10 9.5728 1.0122 × 10

BROMLDE still shows excellent performance among all these methods when the
dimension of the problem is increased to 10. The results are provided in Tables 7 and 8.
In detail, the developed BROMLDE is still the winner compared to OMLDE, WDE, PSO,
SA, and IMODE on more than 5 functions based on the Wilcoxon rank-sum test findings
in Table 8 (last line). The percentage of the goodness of BROMLDE on 10 functions is
77.14%. For the AVG and STD of the fitness values in Table 7, we can see that BROMLDE
also maintains the highest ranking with more than 4 best results. Meanwhile, BROMLDE
still has great potential in solving hybrid function problems. Based on the analysis of the
above findings, we can summarize that BROMLDE performs excellently compared to other
tested algorithms.

The convergence plots of BROMLDE and other compared approaches on the 5 and
10-dimensional CEC 2020 functions (F1–F10) are presented in Figures 3 and 4, respectively.
In those plots, the vertical axis is the logarithm of the minimum value of the functions and
the horizontal axis is the functional evaluation numbers. From those figures, we can see
that although PSO and SA converge faster on some functions, the local optimum situation
may occur. Compared with other algorithms, BROMLDE has a faster descent speed and
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better optimization capability in most functions. The reason is that the combination of
the Bernstein search and the ROML strategy allows BROMLDE to reach a better trade-off
between global exploration and local exploitation capabilities. In the early stage, the ROML
strategy can provide strong search abilities and helps to localize the exact search in the
late stage. Moreover, Bernstein search may reduce the difficulty of parameter setting and
improve the convergence accuracy. It reveals that our proposed BROMLDE can reach better
convergence properties and global optimization ability.

Table 8. Wilcoxon rank-sum test of BROMLDE and its competitors on F1–F10 of CEC 2020 benchmark
functions (10D).

BSDE OMLDE WDE PSO SA J2020 IMODE

F1 + + + + − = −
F2 + + + + + − +
F3 + + + + + + +
F4 + + + + = − −
F5 + + + = + − =
F6 + + + + + = +
F7 + + + + + + =
F8 + + + + + + +
F9 = + + + + + +

F10 + + + = + = −
Statistics Number (+/−/=) 9/0/1 10/0/0 10/0/0 8/0/2 8/1/1 4/3/3 5/3/2
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4.2.3. Comparison with IMODE

In this subsection, on the basis of Section 4.1, the 20-dimensional CEC 2020 test func-
tions (F1–F10) are used to compare the performance of BROMLDE and IMODE, the AVG
and STD results are presented in Table 9, and the Wilcoxon rank-sum test findings are also
embedded in it. One can see that IMODE has a greater advantage in solving unimodal
function (F1) and multimodal shifted and rotated functions except for F3. BROMLDE is
superior to IMODE in solving hybrid functions F5–F7. In addition, BROMLDE outperforms
IMODE in solving the composition functions F8 and F10 and is worse in solving F9 of com-
position functions. The Wilcoxon rank-sum test results (+, =, and − denote that BROMLDE
performs better, equal, and worse than IMODE, respectively) display that the average
good rate of BROMLDE is 25% ( statistics number:+

4 × 100%) for the unimodal function and
the multimodal functions, is 66.67% ( statistics number:+

3 × 100%) for hybrid functions, and is
33.33% ( statistics number:+

3 × 100%) for composition functions. Those results also reflect the no
free lunch theorem that no single algorithm can be applied to all optimization problems [33].
Based on the above analysis, one can conclude that BROMLDE is more appropriate for
solving hybrid function problems and it performs worse in solving unimodal functions
and the multimodal shifted and rotated functions as well as composition functions.

Table 9. Results of BROMLDE and IMODE on F1–F10 of CEC 2020 benchmark functions (20D).

No. Metric IMODE BROMLDE

Unimodal Function/Multimodal Shifted and Rotated Functions

F1
AVG 7.7793 × 108

= 8.0666 × 108

STD 2.0501 × 108 4.7072 × 108

F2
AVG 3.5623 × 103

− 3.9156 × 103

STD 2.4748 × 102 2.7165 × 102
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Table 9. Cont.

No. Metric IMODE BROMLDE

F3
AVG 8.3820 × 102

+ 8.2117 × 102

STD 1.1526 × 10 1.8004 × 10

F4
AVG 1.9284 × 103

− 2.1141 × 103

STD 6.3149 5.7483 × 102

Hybrid Functions

F5
AVG 7.9308 × 105

+ 6.3443 × 105

STD 2.7024 × 105 3.6768 × 105

F6
AVG 2.0119 × 103

= 1.9989 × 103

STD 8.9159 × 10 9.4389 × 10

F7
AVG 4.6835 × 105

+ 2.4124 × 105

STD 2.5776 × 105 1.4449 × 105

Composition Functions

F8
AVG 2.7476 × 103

+ 2.5188 × 103

STD 1.5594 × 102 1.2362 × 102

F9
AVG 2.9273 × 103

− 2.9362 × 103

STD 1.2475 × 10 1.4749 × 10

F10
AVG 3.0580 × 103

= 3.0562 × 103

STD 2.4327 × 10 2.6982 × 10

Total Statistics (+/−/=) 4/3/3

4.3. Real-World Engineering Optimization Problems

To further verify the feasibility of our proposed BROMLDE in practical engineering
applications, for the solution of the car side impact (CSI) design problem and the speed
reducer (SR) design problem, BROMLDE, some DE variants (BSDE, OMLDE, and WDE)
and the superior algorithms (PSO and SNS) for solving these problems are used.

4.3.1. CSI Design Problem

The goal of the CSI design problem is to obtain the minimum weight of the door sat-
isfying 10 constraints on 11 influence variables [6]. Those variables are listed in Table 10.
The authors in [49] simplify the analytical formulation of this optimization problem.
Figure 5 [6] shows a model for the CSI design problem. Then, the objective function
of this design problem is Equation (35):

min f (x) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7 (35)

subject to:

Φ1(x) = 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0,
Φ2(x) = 46.36− 9.9x2 − 12.9x1x2 + 0.1107x3x10 − 32 ≤ 0,
Φ3(x) = 33.86 + 2.95x3 + 0.1792x3 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8

+ 22.0x8x9 − 32 ≤ 0,
Φ4(x) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 − 32 ≤ 0,
Φ5(x) = 0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10

+ 0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11 − 0.32 ≤ 0,
Φ6(x) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7 + 0.0208x3x8

+ 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10 + 0.00121x8x11

+ 0.00184x9x10 − 0.02x2
2 − 0.32 ≤ 0,

Φ7(x) = 0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2
2 − 0.32 ≤ 0,

Φ8(x) = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x2
11 − 4 ≤ 0,

Φ9(x) = 10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 − 9.9 ≤ 0,
Φ10(x) = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2

11 − 15.7 ≤ 0,

(36)

in which 0.5 ≤ xi ≤ 1.5, i = 1, . . . , 7, x8, x9 ∈ {0.192, 0.345} and −30 ≤ x10, x11 ≤ 30.
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Table 10. Influence parameters of the weight of the door.

No. Variables Description of Variables

1 x1 Thicknesses of B-pillar Inner
2 x2 B-pillar Reinforcement
3 x3 Floor Side Inner
4 x4 Cross Members
5 x5 Door Beam
6 x6 Door Beltline Reinforcement
7 x7 Roof Rail
8 x8 Materials of B-pillar Inner
9 x9 Floor Side Inner
10 x10 Barrier Height
11 x11 Hitting Position
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Table 11 concludes the best and workable experimental results of BROMLDE and
its competitors after 30 independent runs (where Np = 100, MaxFES = 15, 000). From
Table 11, BROMLDE can get the optimal objective function value, i.e., 22.2372. Furthermore,
our proposed BROMLDE has the smallest AVG and STD, and these are 2.2463 × 10 and
1.4463 × 10−1, respectively, compared to other algorithms tested here. Moreover, based
on the Wilcoxon rank-sum test results (+, =, and − denote that BROMLDE performs
better, equal, and worse than the compared algorithm, respectively), we can obtain that
BROMLDE is better than BSDE, OMLDE, WDE, PSO, and SNS, respectively. It can be
concluded that the effectiveness and reliability of the proposed BROMLDE are superior to
other tested algorithms.

Table 11. Comparison results of the BROMLDE and its competitors for CSI design problem.

BSDE OMLDE WDE PSO SNS BROMLDE

x1 0.5026 0.5943 0.5213 0.5000 0.5400 0.5042
x2 1.0778 0.9961 1.0271 1.0302 0.9027 0.9831
x3 0.5219 0.5475 0.5115 0.5000 0.5400 0.5178
x4 1.2211 1.2961 1.2723 1.2807 1.3599 1.3132
x5 0.5648 0.5011 0.5068 0.5724 0.5400 0.5121
x6 1.1337 1.3552 1.4657 1.5000 0.5400 1.4363
x7 0.5311 0.5754 0.5645 0.5532 0.5400 0.5266
x8 0.1920 0.1920 0.1920 0.1920 0.3450 0.1920
x9 0.1920 0.1920 0.1920 0.1920 0.3450 0.1920
x10 3.3461 −4.9938 −3.5587 1.2682 5.9180 −11.1769
x11 7.0345 4.9287 −3.3178 7.0414 20.8016 2.7355

Φ1(x) −0.3603 −0.4153 −0.4093 −0.3635 −0.3933 −0.4813
Φ2(x) −3.1044 −3.4401 −2.9162 −2.4132 −0.5110 −2.4075
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Table 11. Cont.

BSDE OMLDE WDE PSO SNS BROMLDE

Φ3(x) −1.7696 −1.7616 −1.6480 −1.6206 −1.6504 −1.1776
Φ4(x) −2.3997 −2.9000 −2.5406 −2.0899 −2.4854 −2.8803
Φ5(x) −0.0710 −0.0771 −0.0733 −0.0661 −0.0771 −0.0737
Φ6(x) −0.1024 −0.0997 −0.0963 −0.0921 −0.1105 −0.0939
Φ7(x) −0.0049 −0.0012 −0.0033 −1.6653 × 10−16 −0.0030 −4.1458 × 10−4

Φ8(x) −0.0025 −0.0112 −0.0073 −0.0108 −0.0383 −0.0025
Φ9(x) −0.0274 −0.2094 −0.1592 −0.0187 −0.2601 −0.2999
Φ10(x) −0.0116 −0.0897 −0.0201 −0.2127 −0.2893 −0.1312

Optimal f (x) 22.6264 23.0179 22.5002 22.4562 22.3046 22.2372
AVG 2.3078 × 10 2.4141 × 10 2.3283 × 10 2.4435 × 10 2.3069 × 10 2.2463× 10
STD 2.3420 × 10−1 4.8138 × 10−1 3.9897 × 10−1 1.0472 4.4591 × 10−1 1.4463× 10−1

+/−/= + + + + +

4.3.2. SR Design Problem

SR design problem (see Figure 6) aims to design the speed reducer subject to 11 con-
straints. One has 7 variables (see Table 12). The mathematical expression of this problem is
given in Equation (37) [6]:

min f (x) = 0.7854 · x1 · x2
2 ·
(
3.3333 · x2

3 + 14.9334 · x3 − 43.0934
)
− 1.508 · x1 ·

(
x2

6 + x2
7
)

+ 7.4777 ·
(
x2

6 + x2
7
)
+ 0.78054 ·

(
x4 · x2

6 + x5 · x2
7
)
,

(37)

subject to:
Φ1(x) = 27

x1·x2
2 ·x3
− 1 ≤ 0,

Φ2(x) = 397.5
x1·x2

2 ·x2
3
− 1 ≤ 0,

Φ3(x) = 1.93·x3
4

x2·x3·x4
6
− 1 ≤ 0,

Φ4(x) = 1.93·x3
5

x2·x3·x4
7
− 1 ≤ 0,

Φ5(x) =

√(
745.0·x4

x2·x3

)2
+ 16.9× 106/(110x3

6 )− 1 ≤ 0,

Φ6(x) =

√(
745.0·x5

x2·x3

)2
+ 157.5× 106/(85x3

7) − 1 ≤ 0,

Φ7(x) = x2·x3
40 − 1 ≤ 0,

Φ8(x) = 5x2
x1
− 1 ≤ 0,

Φ9(x) = x1
12x2
− 1 ≤ 0,

Φ10(x) = 1.5x6+1.9
x4

− 1 ≤ 0,
Φ11(x) = 1.1x7+1.9

x5
− 1 ≤ 0,

(38)

in which the bounds are as follows:

2.6 ≤ x1 ≤ 3.6
0.7 ≤ x2 ≤ 0.8
17 ≤ x3 ≤ 28
7.3 ≤ x4 ≤ 8.3
7.3 ≤ x5 ≤ 8.3
2.9 ≤ x6 ≤ 3.9
5.0 ≤ x7 ≤ 5.5

(39)

Table 13 records the optimal and feasible experimental results of BROMLDE and
the tested algorithms after 30 independent runs (where Np = 100, MaxFES = 15, 000).
According to Table 13, BROMLDE can obtain the optimal fitness value, i.e., 5.4421 × 103.
Meanwhile, the proposed BROMLDE has the minimum AVG (5.4660× 103) compared with
other competitors. Through the Wilcoxon rank-sum test results (+, =, and − denote that
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BROMLDE performs better, equal, and worse than the compared algorithm, respectively),
we can observe that BROMLDE is still better than most algorithms. This further shows that
our proposed algorithm is workable in solving practical problems.
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Table 12. Influence variables of the SR problem.

No. Variables Descriptions

1 b(= x1) Face Width
2 m(= x2) Module of Teeth
3 z(= x3) The Number of Teeth in the Pinion
4 l1(= x4) Length of the First Shaft Between Bearings
5 l2(= x5) Length of the Second Shaft Between Bearings
6 d1(= x6) The Diameter of First Shafts
7 d2(= x7) The Diameter of Second Shafts

Table 13. Comparison results of the BROMLDE and its competitors for SR design problem.

BSDE OMLDE WDE PSO SNS BROMLDE

x1 3.5031 3.5183 3.5027 3.5050 3.5122 3.5022
x2 0.7003 0.7000 0.7000 0.7000 0.7010 0.7001
x3 28 28 28 28 28 28
x4 7.4203 8.0487 7.3417 7.8632 7.3010 7.3106
x5 7.7615 7.7408 7.7770 7.7717 7.7685 7.7838
x6 3.3619 3.3534 3.3479 3.3501 3.3599 3.3464
x7 5.2912 5.2889 5.3032 5.2858 5.2878 5.2864

Φ1(x) −21.1076 −21.2716 −21.0613 −21.0881 −21.3246 −21.0638
Φ2(x) −949.5132 −954.1054 −948.2157 −948.9666 −955.5880 −948.2858
Φ3(x) −4.2014 −2.8237 −4.2928 −3.1479 −4.4976 −4.3613
Φ4(x) −30.9423 −31.1344 −31.0309 −30.6659 −30.7999 −30.5336
Φ5(x) −15.2784 −6.5270 −1.6458 −3.4119 −13.4128 −0.1271
Φ6(x) −2.5637 −1.4703 −8.3399 −3.2401 × 10−11 −0.9238 −0.2888
Φ7(x) −20.3907 −20.4000 −20.3991 −20.4000 −20.3720 −20.3972
Φ8(x) −0.0020 −0.0262 −0.0036 −0.0071 −0.0102 −0.0024
Φ9(x) −6.9980 −6.9738 −6.9964 −6.9929 −6.9898 −6.9976
Φ10(x) −0.4774 −1.1185 −0.4198 −0.9381 −0.3611 −0.3911
Φ11(x) −0.0412 −0.0230 −0.0435 −0.0573 −0.0520 −0.0687

Optimal f (x) 5.4532 × 103 5.4675 × 103 5.4531 × 103 5.4491 × 103 5.4672 × 103 5.4421× 103

AVG 5.4666 × 103 5.5240 × 103 5.4708 × 103 5.5495 × 103 5.4829 × 103 5.4660× 103

STD 8.1468 3.4116 × 10 9.5649 8.1021 × 10 5.6624 1.7858 × 10

+/−/= = + = + +
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5. Conclusions and Future Work

In this paper, a DE algorithm based on the Bernstein operator and refracted oppositional-
mutual learning strategy is proposed to enhance the optimization effect of the algorithm.
More specifically, a random switching scheme allows the selection of ROL and ML for all
individuals in the ROML initialization phase and the ROML generation jumping phase,
which helps to balance the exploration and exploitation. A dynamic adjustment factor
varying with the number of evaluations in the ROML strategy is proposed, contributing
to the tuning of the search space and jumping out of the local optimum. Moreover, a
Bernstein operator is introduced to control the mutation and crossover phases, improving
the convergence accuracy of the algorithm, and making it more efficient. Experiments are
performed on CEC 2019 and CEC 2020 benchmark functions, and the experimental results
show that the proposed BROMLDE outperforms the compared algorithm. Meanwhile, the
Wilcoxon rank-sum test and convergence analysis reveal that the BROMLDE is considerably
better than other tested algorithms. Particularly, BROMLDE is superior to IMODE in
solving hybrid function problems from CEC 2020 (20D). Additionally, BROMLDE and the
tested algorithms (BSDE, OMLDE, WDE, PSO, and SNS) are used on a practical engineering
problem, and the result further verifies the applicability of the algorithm in solving real-
life engineering issues. Therefore, it is worth recommending ROML strategies to other
algorithms to enhance their performance. However, when BROMLDE is compared with
IMODE for the CEC 2020 test functions, BROMLDE is only superior in solving hybrid
function problems and performs inferiorly in other problems. Given this, we will explore
new learning strategies to further improve the performance of the algorithm in future
research work.
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