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Abstract: Gate-model quantum computer architectures represent an implementable model used to
realize quantum computations. The mathematical description of the dynamical attributes of adaptive
problem solving and iterative objective function evaluation in a gate-model quantum computer
is currently a challenge. Here, a mathematical model of adaptive problem solving dynamics in a
gate-model quantum computer is defined. We characterize a canonical equation of adaptive objective
function evaluation of computational problems. We study the stability of adaptive problem solving
in gate-model quantum computers.
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1. Introduction

As the development of quantum computers evolves significantly [1–27], a fundamental
need to characterize the attributes of problem solving in quantum computers has arisen.
Gate-model quantum computers have particular relevance since most of these architectures
allow for practical solutions to be implemented on near-term settings. Another fundamental
application of gate-model quantum computers lies in the quantum devices of the quantum
Internet [28]. In a gate-model quantum computer, the computational steps are realized via
unitary gates. The gates are associated with a gate parameter value, while the computational
problem fed into the quantum computer identifies an objective function [6–10,29] (objective
function examples can be found in [7,9–11,14,15]). The aim of problem solving is to
maximize the objective function value via several iteration steps. Each iteration step
includes the application of unitary gates as well as a measurement of the resulting quantum
states. From the measurement results, an averaged value can be determined to estimate the
actual objective function value [7]. The problem solving method, therefore, is identified
via a series of well-defined computational steps. However, the dynamical attributes of a
procedure for adaptive problem solving and objective function evaluation in a gate-model
quantum computer environment are still not well defined.

Many hybrid quantum variational circuits also use gate-model circuits and classi-
cal objective functions [30–33]. Particularly, our system model utilizes the quantum ap-
proximate optimization algorithm (QAOA) [6,7], which is a variational quantum algo-
rithm, such as [31,34,35]. Variational quantum algorithms are useful for machine learning
problems [11,36] or combinatorial optimization [37,38]. The problem resolution dynamics
of these quantum variational circuits also identifies an adaptive model; therefore, a per-
spective of adaptive models will be useful for investigating and optimizing variational
quantum algorithms in near-term implementations. In a general approach, the aim of a
variational quantum algorithm is to produce an entangled output quantum state via a
quantum computer, the state of which represents the answer to an input computational
problem. An input quantum state fed into the quantum computer evolves via the quantum
circuit of the quantum computer where the quantum gates are unitary operators with a
particular gate parameter value (control parameters). In the quantum computer, these gate
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parameter values change dynamically, and these values adapt to the particular objective
function value of the input problem in each iteration step (therefore, “varied” dynamically
and adaptively).

Here, we define a mathematical model of adaptive problem solving dynamics in gate-
model quantum computers. Adaptive dynamics (AD) [39–43] is a quantitative approach to
analyzing evolutionary processes with several application areas. The aim of the proposed
model is to characterize the dynamical attributes of adaptive problem solving via iterative
objective function maximization, by utilizing the framework of adaptive dynamics [39]. The
model defines the stability of the objective function evolution procedure in each iteration
step. The objective function stability evaluates the convergence of an objective function
component associated with a given unitary to a target value. For a stable objective function
component, the iteration converges to an optimal (maximized) value that results in the
maximization of an objective function of the computational problem fed into the quantum
computer. We show that, in the computational stage (i.e., before a measurement), the
stability function of the objective function is in a superposition of stable and unstable states.
We reveal the dynamical attributes of the stability of the objective function components.
We define a canonical equation of adaptive problem solving dynamics in a gate-model
quantum computer. The canonical equation describes the evolution of the objective function
components in the dynamical model as a selection gradient toward an optimal solution.

From a physical and engineering perspective, the proposed results are interpreted as
follows. In an experimental gate-model quantum computer setting, the aim of the problem
solving is to find the gate parameter values of the quantum computer’s unitaries. The
evolution of the output quantum state of the quantum computer represents the answer
to the problem if the objective function value associated with a particular input problem
is high enough. Alternatively, the maximization of an objective function is analogous to
the minimization of a Hamiltonian, and the output quantum state can be a ground state
of a Hamiltonian model in near-term experimental settings. Our results reveal that the
adaptive problem solving dynamics can be defined via the canonical equations of the
quantum computer’s unitaries, since an objective function component is determined by
the gate parameter of a given unitary. The adaptive procedure for generating the output
quantum state of a gate-model quantum computer can be characterized by a set of classical
control parameters that are varied dynamically and adaptively during the iteration steps.
The proposed results are, therefore, directly applicable to near-term quantum computer
implementations and gate-model quantum devices, allowing for a widespread application
of our model in different physical and engineering problems.

The novel contributions of our manuscript are as follows:

1. A mathematical model of adaptive problem solving dynamics is defined for gate-
model quantum computers. The proposed model characterizes the dynamical at-
tributes of adaptive problem solving via iterative objective function maximization.

2. A canonical equation of adaptive problem solving dynamics is derived for objective
function maximization in a gate-model quantum computer (variational quantum
algorithm).

3. We define the stability of the problem solving steps to reach a maximized target value
of the objective function. The stability of the objective function evaluation is associated
with the gate errors in the hardware level of the gate-model quantum computer.

This paper is organized as follows. Section 2 proposes the problem statement and the
system model. Section 3 defines the stability function of the objective function evaluation.
Section 4 derives the canonical equation of adaptive objective function evaluation. Section 5
studies the superposition of the stability functions. Finally, Section 6 concludes the results.
Supplemental information is included in Appendix A.

2. Problem Statement and System Model
2.1. Problem Statement

The problems to be solved are summarized in Problems 1–3.
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Problem 1. Let R be the number of measurement rounds needed to evaluate the averaged objective
function C̃ = 1

R ∑R
r=1 C(zr), where r is the measurement round, r = 1, . . . , R; C(zr) is the objective

function associated with an r-th measurement round; and zr is an n-length bit string. In a particular
r-th measurement round, an |s〉 input quantum state is prepared and fed into the quantum computer,
and the |φ〉 output state of the quantum computer is measured via a measurement M to determine
C(zr). Define the stability of the objective function evaluation in a measurement round r. Show that,
if the objective function is stable for an objective function component, then the objective function
component converges to an optimum in the r-th iteration step.

Problem 2. Let Cr−1
i = Cr−1(Ui) be an objective function component associated with an i-th

unitary Ui in an (r− 1)-th measurement round, defined as Cr−1
i = 1

2

(
1− zr−1

i

)
, where zr−1

i

refers to an i-th bit of zr−1, zr−1
i ∈ {−1, 1}. Then, let fε(·) be a function, and fε

(
Cr−1(Ui)

)
be a

canonical equation that describes the evolution of the Cr−1(Ui) objective function component in the
dynamical model as a selection gradient toward an optimal solution. Find the canonical equation of
fε

(
Cr−1(Ui)

)
.

Problem 3. Prove that, in a gate-model quantum computer, the stability functions formulate a
superposition in the computational stage.

The solutions to Problems 1–3 are proposed in Theorems 1–3.

2.2. System Model

The sequence of L unitaries [7] of the quantum computer is defined as

U(~θ) = UL(θL)UL−1(θL−1) . . . U1(θ1), (1)

where~θ is the L-dimensional vector of the gate parameters of the unitaries (gate parameter
vector),

~θ = (θ1, . . . , θL)
T , (2)

and an i-th unitary gate Ui(θi) is evaluated as

Ui(θi) = exp(−iθiPi), (3)

where Pi is a generalized Pauli operator acting on a few quantum states (qubits in an
experimental setting) formulated by the tensor product of Pauli operators

{
σx, σy, σz

}
[7].

Note that U(~θ) in (1) identifies a unitary resulting from the serial application of the L
unitary operators UL(θL)UL−1(θL−1) . . . U1(θ1) and for an input quantum state |ϕ〉:

U(~θ)|ϕ〉 = UL(θL)UL−1(θL−1) . . . U1(θ1)|ϕ〉. (4)

In a qubit setting, the gate structure of the quantum computer integrates a single-qubit
and b two-qubit unitaries, L = a + b, where a j-th single-qubit gate implements an Xj = σ

j
x

operator, while a two-qubit gate between qubits j and k realizes a ZjZk = σ
j
zσk

z operator [7].
Let C be a particular objective function of an optimization problem subject of a maxi-

mization via the quantum computer. Then, the U(~θ) sequence from (1) can be evaluated as

U(~θ) = U(B,~β)U(C,~γ), (5)

where

U(B,~β) = ∏
j

U
(

Bj, β j
)
=

a

∏
j=1

U
(

Bj, β j
)
, (6)
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where ~β is the gate parameter vector of the a single-qubit unitaries,

~β = (β1, . . . , βa)
T , (7)

while B is defined as a sum

B =
a

∑
j=1

Xj =
a

∑
j=1

σ
j
x, (8)

where Xj refers the Pauli X operator, σx, in a j-th 1-qubit gate. Thus, U(Bj, β j) from (6) can
be defined as

U
(

Bj, β j
)
= exp

(
−iβ jXj

)
, (9)

where Bj = Xj, while the two-qubit unitaries are defined as

U(C,~γ) = ∏
〈jk〉

U
(

Cjk, γjk

)
=

b

∏
〈jk〉=1

U
(

Cjk, γjk

)
, (10)

where 〈jk〉 is a physical connection between qubits j and k in the hardware-level of the
quantum computer, γjk is the gate parameter of the two-qubit gate ZjZk = σ

j
zσk

z between
qubits j and k. Then, the ~γ gate parameter vector of the b two-qubit unitaries is as

~γ = (γ1, . . . , γb)
T , (11)

where Cjk is a component of the objective function and unitary U
(

Cjk, γjk

)
for a given 〈jk〉

is defined as
U
(

Cjk, γjk

)
= U

(
ZjZk, γjkCjk

)
= exp

(
−iγjkCjkZjZk

)
, (12)

where
ZjZk = σ

j
zσk

z . (13)

At a particular physical connectivity of the quantum computer, C(z) is defined as the
sum of all objective function components between all 〈jk〉, as

C(z) = ∑
∀〈jk〉

Cjk(z), (14)

where Cjk(z) is the objective function component evaluated for a given 〈jk〉 (objective
function component Cjk(z) is a part of the objective function C(z), which is also part of
the parametrized quantum circuits (PQC), such that 〈jk〉 identifies a physical connection
between qubits j and k in the hardware of the gate-model quantum computer), while z is
an n-length bitstring,

z = z1z2 . . . zn, (15)

where zi identifies an i-th bit, zi ∈ {−1, 1}.
For a given z, a n qubit length |z〉 computational basis state is defined as

|z〉 = |z1z2 . . . zn〉, (16)

from which the |s〉 input state of the quantum computer is set as

|s〉 = 1√
2n ∑

z
|z〉. (17)

The n qubit length |φ〉 output state of the quantum computer is as

|φ〉 = U(~θ)|s〉
= U(B,~β)U(C,~γ)|s〉.

(18)
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The output state (18) is measured via a measurement array M to determine C(z) (14).
In the space–time volume of a gate-model quantum computer, we assume that an

array of qubits is arranged on a grid of a particular size. In the gate structure, a layer of
1-qubit gates and a layer of 2-qubit gates act on the qubits (see also (5)). These 1-qubit and
2-qubit layers can be applied in p rounds, formulating a p-level quantum circuit.

For a level-p circuit, a set of p gate parameter vectors, ~β and ~γ, are set, as

~β(1), . . . ,~β(p), (19)

and
~γ(1), . . . ,~γ(p); (20)

therefore, a p-level circuit U is defined as

U = U
(

B(p),~β(p)
)

U
(

C(p),~γ(p)
)
· · ·U

(
B(1),~β(1)

)
U
(

C(1),~γ(1)
)

. (21)

For simplicity, in (18), we used p = 1; however, the results can be extended for an arbitrary
p [7].

For a p-level quantum circuit, the unitaries of the layers are set via gate parameter
vectors (19) and (20), respectively. By using the state |s〉 (17) as input of the quantum
computer, the 1-qubit gates in (5) are set to the Pauli X operators [7], since the input state
|s〉 is an eigenstate of each X with eigenvalue 1.

The system model at p = 1 is depicted in Figure 1.

s
U M

C z

Figure 1. System model. An n-length input quantum state |s〉 (17) is fed into the U(~θ) unitary
structure (5) of the gate-model quantum computer. The |φ〉 output quantum state (18) is measured via
a measurement array M. The M measurement array represents a measurement in the computational
basis to produce the n-length string z (15) from the n qubit length output state |φ〉 (18) to evaluate the
objective function value C(z) (14).

2.3. Objective Function

The aim of running the quantum computer is to produce an output state |φ〉 with a
high value of some classical objective function C. The maximization of C is made via the
selection of the gate parameters of the unitaries of the QG quantum gate structure of the
gate-model quantum computer.

The C classical objective function can be interpreted as a sum of over individual terms,
defined on n-bit bit strings z = z1z2 · · · zn, as

C(z) =
m

∑
α=1

Cα(z), (22)

where Cα(z) is clause; m is the number of clauses; and Cα(z) acts on a small subset of the
bits, defined as

Cα(z) =
{

1, if z satisfies clause α
0, otherwise

. (23)
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Let |s〉 be the input state of the quantum computer from (17). Since |s〉 is an eigenstate
of X1X2 . . . Xn and operator X commutes with all of the unitaries in the system model, the
|φ〉 output state in (18) formulates an n-qubit entanglement [7], that can be rewritten as

|φ〉 = |w〉+ |w̄〉, (24)

where w is an n-length bit string, while w̄ is the inverse (bit-flip) of w.
Let w be an arbitrary n-length bit string. Then, for a particular z, the C(z) objective

function subject of a maximization can be defined as

C(z) = −Ham(z, w)(n−Ham(z, w)) +
( n

2
)2, (25)

where Ham(·) is the Hamming distance [7], defined between binary strings z and w, as
follows:

Ham(z, w) = fc(z⊕ w), (26)

where ⊕ is the XOR operation, while fc(·) is a function that returns the total number of
ones in the resultant string (z⊕ w).

For a p-level circuit (for a p-level quantum circuit, the 1-qubit and 2-qubit gate layers
are applied for p rounds), the C(z) objective function in (25) can be maximized via the
selection of the gate parameter vectors (19) and (20). If p = 1, the maximization is made via
gate parameter vectors (7) and (11), while for p > 1, the gate parameter vectors are defined
(19) and (20).

3. Stability of Objective Function Evaluation

In the system model, the stability of the objective function evaluation is associated
with the gate errors in the hardware level of the gate-model quantum computer. If gate
errors occur, then the actual quantum gates do not correspond perfectly to the desired gate
parameter values, and the output state of the quantum computer becomes distorted. In our
system model, the error of the gate parameter values also models the decoherence on the
hardware level of the quantum computer, since the decoherence also leads to degradation of
the actual output state of the quantum computer. Due to physical-level errors, the measured
string values and the objective function values become distorted. In the mathematical
model, the errors and noise are associated with the errors in the gate parameter values of
the unitaries; therefore, the physical-level source of the actual error is irrelevant.

Theorem 1. (Stability of the objective function evaluation). The stability of the objective function
components determines the convergence of the objective function to a target value. The stability
depends on the gate parameters of the unitaries of the gate-model quantum computer.

Proof. Let C(zr) be the objective function evaluated via a string zr of an r-th measurement
round, r = 1, . . . , R, as

C(zr) = ∑
∀〈ij〉

Cr
〈ij〉(z

r), (27)

where Cr
〈ij〉(z

r) is an objective function component associated with unitaries Ui and Uj, as

Cr
〈ij〉(z

r) = 1
2

(
1− zr

i zr
j

)
, (28)

where zr
i , zr

j refer to an i-th and j-th bit of zr, zr
i ∈ {−1, 1}, zr

j ∈ {−1, 1}; which is decom-
posable as

Cr
〈ij〉(z

r) =
(

1
2 −

1
2 zr

i

)
+ zr

i
1
2

(
1− zr

j

)
= Cr

i + zr
i Cr

j , (29)

where Cr
i is an objective function component associated with Ui in an r-th measurement

round, as
Cr

i =
1
2 (1− zr

i ) = Cr(Ui) (30)
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and Cr
j is an objective function component defined for Uj in an r-th measurement round, as

Cr
j =

1
2

(
1− zr

j

)
= Cr(Uj

)
. (31)

By utilizing the framework of adaptive dynamics [39], for a particular unitary sequence

U(~θr−1) = Ur−1
L

(
θr−1

L

)
Ur−1

L−1

(
θr−1

L−1

)
. . . Ur−1

1

(
θr−1

1

)
(32)

of L unitaries in an (r− 1)-th measurement round, we define the αr−1(~θr−1) objective
function component vector, as

αr−1(~θr−1) =
(

Cr−1(U1), . . . , Cr−1(UL)
)T

, (33)

while for
U(~θr) = Ur

L(θ
r
L)U

r
L−1
(
θr

L−1
)

. . . Ur
1(θ

r
1), (34)

the objective function components are set in the vector

βr(~θr) = (Cr(U1), . . . , Cr(UL))
T . (35)

Let Nr−1
QG be the vector of the total nQG, nQG ≥ L objective function components (equals the

total unitary operators of the quantum computer) at an (r− 1)-th measurement round,

Nr−1
QG =

(
Cr−1(U1), . . . , Cr−1

(
UnQG

))T
, (36)

from which κr−1 is defined as

κr−1 = Nr−1
QG − αr−1(~θr−1), (37)

while for an r-th measurement round, we set τr as

τr = Nr
QG − βr(~θr), (38)

for the remaining objective function components of QG.
Then, let θr

i ∈ [0, π] be the gate parameter of unitary Ui in an r-th measurement round,
and let Cr(Ui) the objective function component associated with Ui in an r-th measurement
round, updated via function f (Cr(Ui)) as

f (Cr(Ui)) = pr
i Cr−1(Ui) + (1− pr

i )C
r(Ui), (39)

where Cr−1(Ui) is the objective function component if Ui = I, while Cr(Ui) is an updated
objective function component if Ui 6= I, and

pr
i = cos2(θr

i ) (40)

and
1− pr

i = sin2(θr
i ). (41)

Then, using (40) and (41), the formula of (39) can be rewritten as

f (Cr(Ui)) = cos2(θr
i )A + sin2(θr

i )B, (42)

where
A = Cr−1(Ui) = X̄r−1

i + ρr−1
i cos(θr

i ) (43)

and
B = Cr(Ui) = X̄r

i + ρr
i sin(θr

i ), (44)
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where X̄ and ρ are some constants.
To evaluate the objective function component stability, some basic terms are defined

as follows.
Let J

(
Cr−1(Ui), τr) be a Jacobian matrix [39] at a particular Cr−1(Ui) and τr, defined

as

J
(

Cr−1(Ui), τr
)
=

(
Ja Jb
Jc Jd

)
, (45)

where
Ja = α̃r−1(~θr−1) ∂

∂αr−1(~θr−1)
f
(

αr−1(~θr−1), 0, κ̃r−1, Cr−1(Ui), ·, τr
)

(46)

Jb = α̃r−1(~θr−1) ∂
∂κr−1 f

(
α̃r−1(~θr−1), 0, κr−1, Cr−1(Ui), ·, τr

)
(47)

Jc =
∂

∂αr−1(~θr−1)
F
(

αr−1(~θr−1), 0, κ̃r−1, Cr−1(Ui), ·, τr
)

(48)

and
Jd = ∂

∂κr−1 F
(

α̃r−1(~θr−1), 0, κr−1, Cr−1(Ui), ·, τr
)

, (49)

where α̃r−1(~θr−1) and κ̃r−1 refer to vectors αr−1(~θr−1) and κr−1 at equilibrium states of the

αr−1
(
~θr−1

)′
and κr−1′ derivatives of αr−1(~θr−1) and κr−1, such that relations

αr−1
(
~θr−1

)
= α̃r−1

(
~θr−1

)
κr−1 = κ̃r−1

(50)

hold for (45), while · refers to any objective function component value, while functions f (·)
and F(·) evaluate the αr−1

(
~θr−1

)′
and κr−1′ derivatives of αr−1(~θr−1) and κr−1, as

f
(

αr−1
(
~θr−1

)
, βr
(
~θr
)

, κ̃r−1, Cr−1(Ui), Cr(Ui), τr
)

≡ 1
L (λ1 − λ2),

(51)

where
λ1 =

∣∣∣Cr−1(~θr−1) > 0
∣∣∣ (52)

identifies the number of non-zero Cr−1(U1, . . . , UL) objective function components in an
(r− 1)-th measurement round taken over unitaries U1, . . . , UL, while

λ2 =
∣∣∣Cr−1(~θr−1) = 0

∣∣∣, (53)

refers to the number of zero Cr−1(U1, . . . , UL) objective function components of an (r− 1)-
th measurement round taken over U1, . . . , UL, while function

F
(

αr−1
(
~θr−1

)
, βr
(
~θr
)

, κ̃r−1, Cr−1(Ui), Cr(Ui), τr
)
= κr−1′ (54)

returns the derivate κr−1′.
Then, let S be the state space defined as

S .
=
(

αr−1(~θr−1), βr(~θr), κr−1
)

, (55)

with an equilibrium state S̃ , as

S̃ .
=
(

α̃r−1(~θr−1), 0, κ̃r−1
)

, (56)
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which at αr−1(~θr−1) = 0 results in

βr
(
~θr
)′

= βr
(
~θr
)

f
(

βr
(
~θr
)

, 0, κr−1, Cr(Ui), ·, τr
)

(57)

and
κr−1′ = F

(
0, βr

(
~θr
)

, κr−1, ·, Cr(Ui), τr
)

. (58)

Then, the JS̃
(
Cr−1(Ui), Cr(Ui), τr) Jacobian matrix [39] at the equilibrium of (56) can be

defined as

JS̃
(

Cr−1(Ui), Cr(Ui), τr
)
=

[
J
(
Cr−1(Ui), τr) . . .

0 f
(

0, α̃r−1(~θr−1), , κ̃r−1, Cr(Ui), Cr−1(Ui), τr
) ] (59)

with an eigenvalue

λ
(

Cr−1(Ui), Cr(Ui), τr
)
= f

(
0, α̃r−1(~θr−1), κ̃r−1, Cr(Ui), Cr−1(Ui), τr

)
, (60)

which identifies the fitness function, while J
(
Cr−1(Ui), τr) is given in (45).

Then, from (60), the S(Cr(Ui)) stability of objective function component Cr(Ui) is
defined as

S(Cr(Ui)) = sign
(

λ
(

Cr−1(Ui), Cr(Ui), τr
))

, (61)

such that

S(Cr(Ui)) =

{
S−(Cr(Ui)), if sign

(
λ
(
Cr−1(Ui), Cr(Ui), τr)) < 0

S+(Cr(Ui)), if sign
(
λ
(
Cr−1(Ui), Cr(Ui), τr)) > 0

. (62)

The function S(Cr(Ui)) is stable if only

S(Cr(Ui)) = S−(Cr(Ui)), (63)

and unstable as
S(Cr(Ui)) = S+(Cr(Ui)). (64)

The proof is concluded here.

The main components of the evolutionary model are depicted in Figure 2.
A summary of the notations of the adaptive dynamics model is included in Table A2

of the Appendix A.

1r
QGN

1 1r r

1r

r
QGN

r r

r

(a) (b)

Figure 2. Components of the evolutionary model. (a) Model components in an (r− 1)-th measure-
ment round. For an (r− 1)-th measurement round, vector Nr−1

QG contains of the total nQG , nQG ≥ L
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objective function components, where nQG is the total number of unitary gates of the quantum

computer and Nr−1
QG =

(
Cr−1(U1), . . . , Cr−1(UnQG

))T , where Cr−1(Ui) is an objective function com-
ponent associated with an i-th unitary Ui in an (r− 1)-th measurement round, while κr−1 is de-
fined as κr−1 = Nr−1

QG − αr−1(~θr−1), where αr−1(~θr−1) is the objective function component vector at

U(~θr−1), defined as αr−1(~θr−1) =
(
Cr−1(U1), . . . , Cr−1(UL)

)T , while U(~θr−1) is a unitary sequence

of an (r− 1)-th measurement round, defined as U(~θr−1) = Ur−1
L

(
θr−1

L

)
Ur−1

L−1

(
θr−1

L−1

)
. . . Ur−1

1

(
θr−1

1

)
.

(b) Model components in an r-th measurement round. The sets depict the ratio of the components.
For an r-th measurement round, Nr

QG contains of the total nQG objective function components as

Nr
QG =

(
Cr(U1), . . . , Cr(UnQG

))T , where Cr(Ui) is an objective function component associated with

an i-th unitary Ui in an r-th measurement round, while τr is defined as τr = Nr
QG − βr1(~θr), where

βr(~θr) is the objective function component vector at U(~θr), βr(~θr) = (Cr(U1), . . . , Cr(UL))
T , while

U(~θr) is a unitary sequence of an r-th measurement round, U(~θr) = Ur
L
(
θr

L
)
Ur

L−1
(
θr

L−1
)

. . . Ur
1
(
θr

1
)
.

4. Canonical Equation

Theorem 2. (Canonical equation of adaptive objective function evaluation). An adaptive problem
solving dynamics for a gate-model quantum computer is set via the canonical equation of objective
function components.

Proof. Let αr−1(~θr−1), τr, Cr−1(Ui), Cr(Ui), and λ
(
Cr−1(Ui), Cr(Ui), τr) as defined in (33),

(38), (43), (44) and (60), respectively. Then, by utilizing the framework of adaptive dynam-
ics [39], the fε

(
Cr−1(Ui)

)
evolution function (canonical equation [39–41]) of an objective

function component Cr−1(Ui) is defined as

fε

(
Cr−1(Ui)

)
= 1

2 µ
(

Cr−1(Ui)
)

σ2
(

Cr−1(Ui)
)

α̃r−1(~θr−1)X (Cr(Ui)), (65)

where

X (Cr(Ui)) =
∂

∂Cr(Ui)
λ
(

Cr−1(Ui), Cr(Ui), τr
)∣∣∣

A=B

= ∂
∂Cr(Ui)

λ
(

Cr−1(U1), Cr−1(U2), . . . , Cr−1
(

UnQG−L

)
, Cr(Ui), τr

)∣∣∣
A=B

,
(66)

while µ
(
Cr−1(Ui)

)
and σ2(Cr−1(Ui)

)
are derived as follows. Term µ

(
Cr−1(Ui)

)
is defined

as a ratio of probabilities [39],

µ
(

Cr−1(Ui)
)
=

Pr∗(Cr(Ui) 6=Cr−1(Ui))−Pr(dt2)
Pr(S̃ ,Cr−1(Ui)>0)

, (67)

where Pr∗
(
Cr(Ui) 6= Cr−1(Ui)

)
is the probability of relation Cr(Ui) 6= Cr−1(Ui) in a time

interval [t, t + dt], Pr
(
S̃ , Cr−1(Ui) > 0

)
is the probability of a non-zero objective function

component Cr−1(Ui) in an (r− 1)-th measurement round for a unitary Ui at an equilibrium
state S̃ (see (56)) [39], defined as

Pr
(
S̃ , Cr−1(Ui) > 0

)
= fb

(
α̃r−1(~θr−1), 0, κ̃r−1, Cr−1(Ui), ·, τr

)r−1
α̃r−1(~θr−1)dt, (68)

where fb(·) is a rate function, while Pr
(
dt2) is a probability [39] of that Cr(Ui) 6= Cr−1(Ui)

holds for more than one objective function components in an r-th measurement round.
The term σ2(Cr−1(Ui)

)
in (65) is defined as
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σ2
(

Cr−1(Ui)
)
=

(
E
[(

Cr(Ui)− Cr−1(Ui)
)2
]

1
ε2

)

=

+∞∫
−∞

(
(Cr(Ui)−Cr−1(Ui))

ε

)2
D
(

Cr−1(Ui),
(

Cr(Ui)− Cr−1(Ui)
)

/ε
)

d
(
(Cr(Ui)−Cr−1(Ui))

ε

)
,

(69)

where ε is a constant, such that a F
(
Cr−1(Ui), Cr(Ui)− Cr−1(Ui)

)
distribution family is

set as

F
(

Cr−1(Ui), Cr(Ui)− Cr−1(Ui)
)
=

D
(

Cr−1(Ui),(Cr(Ui)−Cr−1(Ui))
/

ε
)

ε , (70)

where D
(
Cr−1(Ui), Cr(Ui)− Cr−1(Ui)

)
is a probability distribution with a standard devia-

tion σ = σ
(
Cr−1(Ui)

)
, such that

F
(

Cr−1(Ui), Cr(Ui)− Cr−1(Ui)
)
= F

(
Cr−1(Ui), Cr−1(Ui)− Cr(Ui)

)
, (71)

by theory.
Then, the role of X (Cr(Ui)) from (66) can be interpreted as follows:

X (Cr(Ui)) =

{
X (Cr(Ui)) ≥ 0, if |Cr(Ui)− C∗(Ui)| < ∆ε

X (Cr(Ui)) < 0, if |Cr(Ui)− C∗(Ui)| ≥ ∆ε
, (72)

where ∆ε is the distance between the objective function component Cr(Ui) from a target
value C∗(Ui), from which a condition on the update mechanism of Cr−1(Ui) to Cr(Ui) can
be defined as

Cr−1(Ui) =

{
Cr(Ui), if X (Cr(Ui)) ≥ 0
Cr−1(Ui), if X (Cr(Ui)) < 0

, (73)

since Cr−1(Ui) updates to Cr(Ui) only if |Cr(Ui)− C∗(Ui)| < ∆ε holds, while Cr−1(Ui) is
not updated otherwise.

Since it is assumed that a greater value of the objective function component means
that the objective function component is closer to the target value (since the aim is the
maximization of a particular objective function of a computational problem fed in to the
quantum computer), the conditions in (72) and (73) can be rewritten as follows:

X (Cr(Ui)) =

{
X (Cr(Ui)) ≥ 0, if Cr(Ui) > Cr−1(Ui)
X (Cr(Ui)) < 0, if Cr(Ui) ≤ Cr−1(Ui)

, (74)

and

Cr−1(Ui) =

{
Cr(Ui), if Cr(Ui) > Cr−1(Ui)
Cr−1(Ui), if Cr(Ui) ≤ Cr−1(Ui)

, (75)

respectively.
By using the notation Cr−1(Ui(t)) for the objective function component value at a

particular t, the result in (65) can also be rewritten as [39]

fε

(
Cr−1(Ui)

)
= lim

dt→0

E[Cr−1(Ui(t+dt))−Cr−1(Ui(t))]
dt , (76)

where t is between t ∈ [0, T], where T is the total evolution time of the quantum computer.
Let us assume that the relation of Cr(Ui) > Cr−1(Ui) holds with probability Pr(Cr(Ui) >

Cr−1(Ui)), defined at some constant ζ, as

Pr
(

Cr(Ui) > Cr−1(Ui)
)
=

{
λ(Cr−1(Ui),Cr(Ui),τr)

ζ , if X (Cr(Ui))
∣∣Cr(Ui)− Cr−1(Ui)

∣∣ > 0
0, otherwise

, (77)



Entropy 2022, 24, 1196 12 of 21

while Pr(Cr(Ui), Cr(Ui) + dCr(Ui)) is the probability that Cr(Ui) is in the interval of
[Cr(Ui), Cr(Ui) + dCr(Ui)], defined via (70) at a particular ε, as

Pr(Cr(Ui), Cr(Ui) + dCr(Ui))

= F
(

Cr−1(Ui), Cr(Ui)− Cr−1(Ui)
)

=
D(Cr−1(Ui),(Cr(Ui)−Cr−1(Ui))/ε )

ε .

(78)

Then, (76) can be evaluated as

fε

(
Cr−1(Ui)

)
= lim

dt→0
1
dt

+∞∫
−∞

(
Cr(Ui)− Cr−1(Ui)ϕ

(
Cr−1(Ui)

)
dCr(Ui)

)
, (79)

where ϕ
(
Cr−1(Ui)

)
is a probability that the objective function component is updated from

Cr−1(Ui) to Cr(Ui) such that the value of Cr(Ui) at an time interval [t, t + dt] is in the
interval of [Cr(Ui), Cr(Ui) + dCr(Ui)], defined as

ϕ
(

Cr−1(Ui)
)

= Pr∗
(

Cr(Ui) 6= Cr−1(Ui)
)
· Pr
(

Cr(Ui) > Cr−1(Ui)
)
· Pr(Cr(Ui), Cr(Ui) + dCr(Ui)),

(80)

where Pr∗
(
Cr(Ui) 6= Cr−1(Ui)

)
is as used in (67).

After some calculations, the term ϕ
(
Cr−1(Ui)

)
dCr(Ui) in (79) can be evaluated in a

closed-form [39], as

ϕ
(

Cr−1(Ui)
)

dCr(Ui)dCr(Ui)

= µ
(

Cr−1(Ui)
)

ζαr−1
(
~θr−1

)
Pr
(

Cr(Ui) > Cr−1(Ui)
)

F
(

Cr−1(Ui), Cr(Ui)− Cr−1(Ui)
)

dCr(Ui)dt,
(81)

where µ
(
Cr−1(Ui)

)
is defined in (67), αr−1(~θr−1) is given in (33), F(Cr−1(Ui), Cr(Ui)−

Cr−1(Ui)) is defined in (70), while Pr
(
Cr(Ui) > Cr−1(Ui)

)
is given in (77).

Then, by putting (81) into (79), after some additional steps leads to (65) from (79),
the probability functions of (80) determine the evolution of a particular objective function.
The adaptive problem solving dynamics in a gate-model quantum computer is therefore
characterized via the evolution function fε

(
Cr−1(Ui)

)
, which function identifies a canonical

equation.
The proof is concluded here.

5. Superposition of Stability Functions

Theorem 3. (Superposition stability functions). In the computational stage, the objective function
stabilities formulate a superposition in a gate-model quantum computer.

Proof. Let A and B as defined in (43) and (44), and let us assume that

X̄ = X̄r−1
i = X̄r

i , (82)

and
ρ = ρr−1

i = ρr
i , (83)

respectively.
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Then, let λ(A, B, W) be the fitness function, as

λ(A, B, W) = 1
2 Ψ
(

Cr−1(Ui)
)
(A− X̄)

2

+ ∂2

∂A∂B λ (A, B, W)|A=B=X̄(A− X̄)(B− X̄)

+ 1
2 Ψ(Cr(Ui))(B− X̄)

2 + O
(
‖(A− X̄, B− X̄)‖3

)
,

(84)

where W refers to τr in an equilibrium state, as

W = τ̃r, (85)

while Ψ
(
Cr−1(Ui)

)
is defined as

Ψ
(

Cr−1(Ui)
)
= ∂2

∂A2 λ (A, X̄, W)|A=X̄ , (86)

while Ψ(Cr(Ui)) is defined as

Ψ(Cr(Ui)) =
∂2

∂B2 λ (X̄, B, W)|B=X̄ , (87)

and (
∂

∂A λ(A, A, W) = X̃
(

Cr−1(Ui)
))

+
(
X̃ (Cr(Ui))

)
= 0. (88)

where
X̃
(

Cr−1(Ui)
)
= ∂

∂A λ (A, B, W)|B=A, (89)

and
X̃ (Cr(Ui)) =

∂
∂B λ (A, B, W)|B=A. (90)

Using (43) and (44), the result in (84) can be rewritten as

λ(A, B, W) =
ρ2

2 (Ψ
(

Cr−1(Ui)
)

cos2(θr
i )

+ 2 ∂2

∂A∂B λ (A, B, W)|A=B=X̄ cos(θr
i ) sin(θr

i )

+ Ψ(Cr(Ui)) sin2(θr
i )
)
+ O

(
ρ3
)

.

(91)

with relation (
∂2

∂A2 λ(A, A, W) = ∂2

∂A2 λ (A, B, W)|B=A

)
+2 ∂2

∂A∂B λ (A, B, W)|B=A

+ ∂2

∂B2 λ (A, B, W)|B=A

= 0,

(92)

where

2 ∂2

∂A∂B λ (A, B, W)|B=A = − ∂2

∂A2 λ (A, B, W)|B=A − ∂2

∂BA2 λ (A, B, W)|B=A. (93)

Then, by utilizing (92) and (93), (91) can be simplified as

λ(A, B, W) =Ψ
(

Cr−1(Ui)
)

cos(θr
i )−Ψ(Cr(Ui)) sin(θr

i ))

· ρ2

2 (cos(θr
i )− sin(θr

i )) + O
(

ρ3
)

.
(94)

The function λ(A, B, W) in (94) changes sign if

θr
i ∈

{
π
4 , ζr

i
}

, (95)
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where ζr
i is a gate parameter value, defined as

ζr
i = tan−1

(
Ψ(Cr−1(Ui))

Ψ(Cr(Ui))

)
. (96)

For a given Cr(Ui), the S(Cr(Ui)) stability function is defined as

S(Cr(Ui)) = sign(λ(A, B, W)), (97)

such that S(Cr(Ui)) is stable if S(Cr(Ui)) < 0, and unstable otherwise, denoted by

S(Cr(Ui)) =

{
S−(Cr(Ui)), if sign(λ(A, B, W)) < 0
S+(Cr(Ui)), if sign(λ(A, B, W)) > 0

. (98)

In the computational procedure, both outcomes of S(Cr(Ui)) exist in parallel in the quan-
tum computer for a given θr

i ; thus, the stability functions formulate a superposition
S′(Cr(Ui)) with respect to a particular objective function component Cr(Ui), as

S′(Cr(Ui)) = pS+(Cr(Ui)) + (1− p)S−(Cr(Ui)), (99)

where p is the probability of an unstable stability function S+(Cr(Ui)). The M measurement
sets S′(Cr(Ui)) to a determined value (stable or unstable) according to (99).

It can be straightforwardly verified that, for the components of the superposed
S′(Cr(Ui)), the sum of fitness function derivatives is

S′(Cr(Ui)) = pF
(
S+(Cr(Ui))

)
+ (1− p)F

(
S−(Cr(Ui))

)
, (100)

where function F(S−(Cr(Ui))) is defined for the stable components, as

F
(
S−(Cr(Ui))

)
= Ψ

(
Cr−1(Ui)

)
+ Ψ(Cr(Ui)) < 0, (101)

while function F(S+(Cr(Ui))) is defined for the for the unstable components, as

F
(
S+(Cr(Ui))

)
= Ψ

(
Cr−1(Ui)

)
+ Ψ(Cr(Ui)) > 0. (102)

Then, using (93) with (101) yields

F
(
S−(Cr(Ui))

)
= ∂2

∂A∂B λ (A, B, W)|A=B=X̄ > 0, (103)

while (93) with (102) yields

F
(
S+(Cr(Ui))

)
= ∂2

∂A∂B λ (A, B, W)|A=B=X̄ < 0. (104)

Then, the superposition in (100) can be rewritten:

S′(Cr(Ui)) = p
(

∂2

∂A∂B λ (A, B, W)|A=B=X̄ > 0
)
+ (1− p)

(
∂2

∂A∂B λ (A, B, W)|A=B=X̄ < 0
)

, (105)

Since the value of λ(A, B, W) in (94) depends on the gate parameter θr
i , the stability

in (99) can be satisfied via the selection of θr
i , such that sign(λ(A, B, W)) < 0 holds, which

results in a stable objective function in an r-th iteration with a unit probability in S′(Cr(Ui)),
p = 0,

S′(Cr(Ui)) =
(

∂2

∂A∂B λ (A, B, W)|A=B=X̄ < 0
)
= S−(Cr(Ui)), (106)
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As follows, the gate parameters of the unitaries can be set such that a M measurement
results stable components with a probability

pM
suc
(
S′(Cr(Ui)) = S−(Cr(Ui))

)
= (1− p)(1− pr

i )

= sin2(θr
i ),

(107)

where pr
i is given in (40).

The proof is concluded here.

The S′(Cr(Ui)) superposition of the objective function stability functions for a particu-
lar θr

i is depicted in Figure 3.

Figure 3. (a) Stability function S(Cr(Ui)) of an unstable objective function component Cr(Ui)

in the space of
{

Cr−1(Ui), Cr(Ui)
}

, Cr−1(Ui) = X̄r−1
i + ρr−1

i cos
(
θr

i
)
, Cr(Ui) = X̄r

i + ρr
i sin

(
θr

i
)
,

θr
i ∈ [0, π] is the gate parameter of a unitary Ui in an r-th measurement round; Cr(Ui) is the

objective function component associated with Ui in an r-th measurement round; and ρ and X̄
are constants, set as X̄ = X̄r−1

i = X̄r
i , ρ = ρr−1

i = ρr
i . The points

(
Cr−1(Ui), Cr(Ui)

)
are domi-

nate in the white region, where the stability function is positive, S(Cr(Ui)) = S+(Cr(Ui)), while
it is negative in the green region. (b) Stability function S(Cr(Ui)) of a stable objective function
component Cr(Ui) in the space of

{
Cr−1(Ui), Cr(Ui)

}
. The points

(
Cr−1(Ui), Cr(Ui)

)
dominate

in the green region, where the stability function is negative, S(Cr(Ui)) = S−(Cr(Ui)), and X̄
is a constant. (c) Superposition S′(Cr(Ui)) = pS+(Cr(Ui)) + (1− p)S−(Cr(Ui)) of the stability
functions S+(Cr(Ui)) and S−(Cr(Ui)) (gray regions) in the quantum computer before a mea-
surement, in the space of

{
Ψ
(
Cr−1(Ui)

)
, Ψ(Cr(Ui))

}
, Ψ
(
Cr−1(Ui)

)
= ∂2

∂A2 λ (A, X̄, W)|A=X̄ , and

Ψ(Cr(Ui)) =
∂2

∂B2 λ (X̄, B, W)|B=X̄ .
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6. Conclusions

Here, we defined a mathematical model of adaptive problem solving dynamics in
gate-model quantum computers. The objective function to be maximized by the gate-
model quantum computer is associated with an optimization problem. We characterized
a canonical equation of adaptive problem solving dynamics. As future work, our aim is
to implement the proposed model with particular input problems to verify the theoretical
results.
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Appendix A

Appendix A.1. Abbreviations

AD Adaptive Dynamics

QAOA Quantum Approximate Optimization Algorithm

Appendix A.2. Notations

The notations of the manuscript are summarized in Table A1.

Table A1. Summary of notations.

Notation Description

Ui(θi)
An i-th unitary gate, Ui(θi) = exp(−iθiP), where P is a generalized Pauli opera-
tor formulated by a tensor product of Pauli operators {X, Y, Z}, while θi is the
gate parameter associated with Ui(θi).

θi Gate parameter of Ui.

U(~θ)
System state, U(~θ) = UL(θL)UL−1(θL−1) . . . U1(θ1), where Ui(θi) identifies an
i-th unitary gate.

~θ Gate parameter vector of the L unitaries,~θ = (θ1, . . . , θL)
T .

C(z)

Classical objective function of a computational problem fed into the quantum
computer, C(z) = ∑∀〈ij〉 C〈ij〉(z), where C〈ij〉(z) is an objective function compo-
nent evaluated between quantum qubits ij in the QG structure of the gate-model
quantum computer.

L Number of unitaries of the quantum computer.

n Number of qubits of input state |s〉; bit length of string z.

nQG Total number of unitary gates of the quantum computer.

X Pauli X operator.

Z Pauli Z operator.

Y Pauli Y operator.

L Number of unitaries in a particular unitary sequence.

R Number of total measurement rounds set for the optimization problem fed into
the quantum computer.
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Table A1. Cont.

Notation Description

C∗ Optimal (target) objective function value.

r An r-th measurement round, r = 1, . . . , R.

zr A string resulting from a measurement in an r-th measurement round, r =
1, . . . , R.

C(zr)
Objective function evaluated via a string zr of an r-th measurement round,
r = 1, . . . , R.

Cr
〈ij〉(z

r)
Objective function component in C(zr) associated with a connection between
unitaries Ui and Uj.

zr
i An i-th bit of zr, zr

i ∈ {−1, 1}.

Cr
i Objective function component defined for Ui in an r-th measurement round.

Cr
j Objective function component defined for Uj in an r-th measurement round.

θr
i Gate parameter of unitary Ui in an r-th measurement round.

Cr(Ui) Objective function component associated with Ui in an r-th measurement round

f (Cr(Ui))
Objective function update function, f (Cr(Ui)) = pr

i Cr−1(Ui) +
(
1− pr

i
)
Cr(Ui),

where Cr−1(Ui) is the objective function component at Ui = I, while Cr(Ui) is
an updated objective function component if Ui 6= I.

A A = Cr−1(Ui) = X̄r−1
i + ρr−1

i cos
(
θr

i
)
, where X̄ and ρ are some constants.

B B = Cr(Ui) = X̄r
i + ρr

i sin
(
θr

i
)
, where X̄ and ρ are some constants.

C∗ Target objective function value subject to be reached in R measurement rounds.

C∗i Target objective function component set for Ui.

U(~θr−1)
A unitary sequence of an (r− 1)-th measurement round,

U(~θr−1) = Ur−1
L

(
θr−1

L

)
Ur−1

L−1

(
θr−1

L−1

)
. . . Ur−1

1

(
θr−1

1

)
.

αr−1(~θr−1)
Objective function component vector at U(~θr−1), αr−1(~θr−1) =(
Cr−1(U1), . . . , Cr−1(UL)

)T .

βr(~θr) Objective function component vector at U(~θr), βr(~θr) = (Cr(U1), . . . , Cr(UL))
T .

Nr−1
QG

Vector of the total nQG, nQG ≥ L objective function components at an (r− 1)-th

measurement round, Nr−1
QG =

(
Cr−1(U1), . . . , Cr−1(UnQG

))T .

κr−1 A vector in an (r− 1)-th measurement round, defined as κr−1 = Nr−1
QG −

αr−1(~θr−1).

τr An r-th measurement round, τr = Nr
QG − βr(~θr).

J
(
Cr−1(Ui), τr) A Jacobian matrix at a particular Cr−1(Ui) and τr.

α̃r−1(~θr−1) A vector identifying αr−1(~θr−1) at an equilibrium state.

κ̃r−1 A vector referring to vector κr−1 at an equilibrium state.

f (·) A function evaluating the αr−1
(
~θr−1

)′
derivative of αr−1(~θr−1).

F(·) A function evaluating the κr−1′ derivative of κr−1.

λ1

A coefficient identifying the number of non-zero Cr−1(U1, . . . , UL) objective
function components in an (r− 1)-th measurement round taken over unitaries
U1, . . . , UL.

λ2
A coefficient referring to the number of zero Cr−1(U1, . . . , UL) objective function
components of an (r− 1)-th measurement round taken over U1, . . . , UL.

S State space, S .
=
(

αr−1(~θr−1), βr(~θr), κr−1
)

.
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Table A1. Cont.

Notation Description

S̃ Equilibrium state S̃ , S̃ .
=
(

α̃r−1(~θr−1), 0, κ̃r−1
)

.

JS̃ (·) Jacobian matrix at the equilibrium S̃ , JS̃
(
Cr−1(Ui), Cr(Ui), τr).

λ(·) An eigenvalue of JS̃
(
Cr−1(Ui), Cr(Ui), τr), λ

(
Cr−1(Ui), Cr(Ui), τr).

S(Cr(Ui))
Stability of objective function component Cr(Ui), S(Cr(Ui)) =
sign

(
λ
(
Cr−1(Ui), Cr(Ui), τr)).

S−(Cr(Ui)) A stable S(Cr(Ui)) function.

S+(Cr(Ui)) An unstable S(Cr(Ui)) function.

fε
(
Cr−1(Ui)

) Evolution function (canonical equation) of an objective function component
Cr−1(Ui).

X (Cr(Ui))
Coefficient defined for Cr(Ui),
X (Cr(Ui)) =

∂
∂Cr(Ui)

λ
(
Cr−1(Ui), Cr(Ui), τr)∣∣

A=B.

µ
(
Cr−1(Ui)

)
A ratio of probabilities.

fb(·) A rate function.

σ2(Cr−1(Ui)
)

A term in the canonical equation.

ε A constant.

F (·) A distribution family, F
(
Cr−1(Ui), Cr(Ui)− Cr−1(Ui)

)
.

D(·) A probability distribution with a standard deviation σ = σ
(
Cr−1(Ui)

)
,

D
(
Cr−1(Ui), Cr(Ui)− Cr−1(Ui)

)
.

∆ε
Distance between the objective function component Cr(Ui) from a target value
C∗(Ui).

ζ A constant.

ϕ
(
Cr−1(Ui)

) Probability that the objective function component is updated from Cr−1(Ui) to
Cr(Ui) such that the value of Cr(Ui) at an time interval [t, t + dt] is in the interval
of [Cr(Ui), Cr(Ui) + dCr(Ui)].

W A vector referring to τr in an equilibrium state as
W = τ̃r.

Ψ
(
Cr−1(Ui)

)
Coefficient for Cr−1(Ui), Ψ

(
Cr−1(Ui)

)
= ∂2

∂A2 λ (A, X̄, W)|A=X̄ .

Ψ(Cr(Ui)) Coefficient for Cr(Ui), Ψ(Cr(Ui)) =
∂2

∂B2 λ (X̄, B, W)|B=X̄ .

X̃
(
Cr−1(Ui)

)
Coefficient for Cr−1(Ui) at an equilibrium, X̃

(
Cr−1(Ui)

)
= ∂

∂A λ (A, B, W)|B=A.

X̃ (Cr(Ui))
Coefficient for Cr(Ui) at an equilibrium,
X̃ (Cr(Ui)) =

∂
∂B λ (A, B, W)|B=A.

ζr
i A gate parameter value defined for a unitary Ui in an r-th measurement round.

S′(Cr(Ui))

Superposition of stability functions with respect to a particular objective function
component Cr(Ui),
S′(Cr(Ui)) = pS+(Cr(Ui)) + (1− p)S−(Cr(Ui)), where p is the probability of
an unstable stability function S+(Cr(Ui)).

F
(
S+(Cr(Ui))

) A function, defined for the for the S+(Cr(Ui)) unstable component,
F
(
S+(Cr(Ui))

)
= Ψ

(
Cr−1(Ui)

)
+ Ψ(Cr(Ui)) > 0.

F
(
S−(Cr(Ui))

) A function, defined for the for the stable component S−(Cr(Ui)), as
F
(
S−(Cr(Ui))

)
= ∂2

∂A∂B λ (A, B, W)|A=B=X̄ > 0.

The notations of the adaptive dynamics model are included in Table A2.
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Table A2. Summary of adaptive dynamics model notations.

Notation Description

θr
i Gate parameter of unitary Ui in an r-th measurement round.

Cr(Ui) Objective function component associated with Ui in an r-th measurement round

f (Cr(Ui))
Objective function update function, f (Cr(Ui)) = pr

i Cr−1(Ui) +
(
1− pr

i
)
Cr(Ui),

where Cr−1(Ui) is the objective function component at Ui = I, while Cr(Ui) is
an updated objective function component if Ui 6= I.

A A = Cr−1(Ui) = X̄r−1
i + ρr−1

i cos
(
θr

i
)
, where X̄ and ρ are some constants.

B B = Cr(Ui) = X̄r
i + ρr

i sin
(
θr

i
)
, where X̄ and ρ are some constants.

C∗ Target objective function value subject to be reached in R measurement rounds.

C∗i Target objective function component set for Ui.

U(~θr−1)
A unitary sequence of an (r− 1)-th measurement round,

U(~θr−1) = Ur−1
L

(
θr−1

L

)
Ur−1

L−1

(
θr−1

L−1

)
. . . Ur−1

1

(
θr−1

1

)
.

αr−1(~θr−1)
Objective function component vector at U(~θr−1), αr−1(~θr−1) =(
Cr−1(U1), . . . , Cr−1(UL)

)T .

βr(~θr) Objective function component vector at U(~θr), βr(~θr) = (Cr(U1), . . . , Cr(UL))
T .

Nr−1
QG

Vector of the total nQG, nQG ≥ L objective function components at an (r− 1)-th

measurement round, Nr−1
QG =

(
Cr−1(U1), . . . , Cr−1(UnQG

))T .

κr−1 A vector in an (r− 1)-th measurement round, defined as κr−1 = Nr−1
QG −

αr−1(~θr−1).

τr An r-th measurement round, τr = Nr
QG − βr(~θr).

J
(
Cr−1(Ui), τr) A Jacobian matrix at a particular Cr−1(Ui) and τr.

α̃r−1(~θr−1) A vector, identifies αr−1(~θr−1) at an equilibrium state.

κ̃r−1 A vector referring to vector κr−1 at an equilibrium state.

f (·) A function evaluating the αr−1
(
~θr−1

)′
derivative of αr−1(~θr−1).

F(·) A function evaluating the κr−1′ derivative of κr−1.

λ1

A coefficient identifying the number of non-zero Cr−1(U1, . . . , UL) objective
function components in an (r− 1)-th measurement round taken over unitaries
U1, . . . , UL.

λ2
A coefficient referring to the number of zero Cr−1(U1, . . . , UL) objective function
components of an (r− 1)-th measurement round taken over U1, . . . , UL.

S State space, S .
=
(

αr−1(~θr−1), βr(~θr), κr−1
)

.

S̃ Equilibrium state S̃ , S̃ .
=
(

α̃r−1(~θr−1), 0, κ̃r−1
)

.

JS̃ (·) Jacobian matrix at the equilibrium S̃ , JS̃
(
Cr−1(Ui), Cr(Ui), τr).

λ(·) An eigenvalue of JS̃
(
Cr−1(Ui), Cr(Ui), τr), λ

(
Cr−1(Ui), Cr(Ui), τr).

S(Cr(Ui))
Stability of objective function component Cr(Ui), S(Cr(Ui)) =
sign

(
λ
(
Cr−1(Ui), Cr(Ui), τr)).

S−(Cr(Ui)) A stable S(Cr(Ui)) function.

S+(Cr(Ui)) An unstable S(Cr(Ui)) function.

fε
(
Cr−1(Ui)

) Evolution function (canonical equation) of an objective function component
Cr−1(Ui).

X (Cr(Ui))
Coefficient defined for Cr(Ui),
X (Cr(Ui)) =

∂
∂Cr(Ui)

λ
(
Cr−1(Ui), Cr(Ui), τr)∣∣

A=B.
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Table A2. Cont.

Notation Description

µ
(
Cr−1(Ui)

)
A ratio of probabilities.

fb(·) A rate function.

σ2(Cr−1(Ui)
)

A term in the canonical equation.

ε A constant.

F (·) A distribution family, F
(
Cr−1(Ui), Cr(Ui)− Cr−1(Ui)

)
.

D(·) A probability distribution with a standard deviation σ = σ
(
Cr−1(Ui)

)
,

D
(
Cr−1(Ui), Cr(Ui)− Cr−1(Ui)

)
.

∆ε
Distance between the objective function component Cr(Ui) from a target value
C∗(Ui).

ζ A constant.

ϕ
(
Cr−1(Ui)

) Probability that the objective function component is updated from Cr−1(Ui) to
Cr(Ui) such that the value of Cr(Ui) at an time interval [t, t + dt] is in the interval
of [Cr(Ui), Cr(Ui) + dCr(Ui)].

W A vector referring to τr in an equilibrium state as
W = τ̃r.

Ψ
(
Cr−1(Ui)

)
Coefficient for Cr−1(Ui), Ψ

(
Cr−1(Ui)

)
= ∂2

∂A2 λ (A, X̄, W)|A=X̄ .

Ψ(Cr(Ui)) Coefficient for Cr(Ui), Ψ(Cr(Ui)) =
∂2

∂B2 λ (X̄, B, W)|B=X̄ .

X̃
(
Cr−1(Ui)

)
Coefficient for Cr−1(Ui) at an equilibrium, X̃

(
Cr−1(Ui)

)
= ∂

∂A λ (A, B, W)|B=A.

X̃ (Cr(Ui))
Coefficient for Cr(Ui) at an equilibrium,
X̃ (Cr(Ui)) =

∂
∂B λ (A, B, W)|B=A.

ζr
i A gate parameter value defined for a unitary Ui in an r-th measurement round.

S′(Cr(Ui))

Superposition of stability functions with respect to a particular objective function
component Cr(Ui),
S′(Cr(Ui)) = pS+(Cr(Ui)) + (1− p)S−(Cr(Ui)), where p is the probability of
an unstable stability function S+(Cr(Ui)).

F
(
S+(Cr(Ui))

) A function, defined for the for the S+(Cr(Ui)) unstable component,
F
(
S+(Cr(Ui))

)
= Ψ

(
Cr−1(Ui)

)
+ Ψ(Cr(Ui)) > 0.

F
(
S−(Cr(Ui))

) A function, defined for the for the stable component S−(Cr(Ui)), as
F
(
S−(Cr(Ui))

)
= ∂2

∂A∂B λ (A, B, W)|A=B=X̄ > 0.
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