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Abstract: We consider information-theoretic bounds on the expected generalization error for statis-
tical learning problems in a network setting. In this setting, there are K nodes, each with its own
independent dataset, and the models from the K nodes have to be aggregated into a final centralized
model. We consider both simple averaging of the models as well as more complicated multi-round
algorithms. We give upper bounds on the expected generalization error for a variety of problems,
such as those with Bregman divergence or Lipschitz continuous losses, that demonstrate an improved
dependence of 1/K on the number of nodes. These “per node” bounds are in terms of the mutual
information between the training dataset and the trained weights at each node and are therefore
useful in describing the generalization properties inherent to having communication or privacy
constraints at each node.

Keywords: generalization error; information-theoretic bounds; distribution and federated learning

1. Introduction

A key feature of machine learning systems is their ability to generalize new and
unknown data. Such a system is trained on a particular set of data but must then perform
well even on new data points that have not previously been considered. This ability,
deemed generalization, can be formulated in the language of statistical learning theory
by considering the generalization error of an algorithm (i.e., the difference between the
population risk of a model trained on a particular dataset and the empirical risk for
the same model and dataset). We say that a model generalizes well if it has a small
generalization error, and because models are often trained by minimizing empirical risk or
some regularized version of it, a small generalization error also implies a small population
risk, which is the average loss over new samples taken randomly from the population. It is
therefore of interest to find an upper bound on the generalization error and understand
which quantities control it so that we can quantify the generalization properties of a machine
learning system and offer guarantees about its performance.

In recent years, it has been shown that information-theoretic measures such as mutual
information can be used for generalization error bounds under the assumption of the
tail of the distribution of the loss function [1—4]. In particular, when the loss function is
sub-Gaussian, the expected generalization error can scale at most with the square root
of the mutual information between the training dataset and the model weights [2]. Such
bounds offer an intuitive explanation for generalization and overfitting: if an algorithm
uses only limited information from its training data, then this will bound the expected
generalization error and prevent overfitting. Conversely, if an algorithm uses all of the
information from its training set, in the sense that the model is a deterministic function of
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the training set, then this mutual information can be infinite, and there is the possibility
of overfitting.

Another modern focus of machine learning systems has been that of distributed and
federated learning [5-7]. In these systems, data are generated and processed in a distributed
network of machines. The main differences between the distributed and centralized settings
are the information constraints imposed by the network. There has been considerable
interest in understanding the impact of both communication constraints [8,9] and privacy
constraints [10-13] on the performance of machine learning systems, as well as designing
protocols that efficiently train the systems under these constraints.

Since both communication and local differential privacy constraints can be thought of
as special cases of mutual information constraints, they should pair naturally with some
form of information theoretic generalization bounding in order to induce control over
the generalization error of the distributed machine learning system. The information con-
straints inherent to the network can themselves give rise to tighter bounds on generalization
error and thus provide better guarantees against overfitting. Along these lines, in a recent
work [14], a subset of the present authors introduced the framework of using information
theoretic quantities for bounding both the expected generalization error and a measure of
privacy leakage in distributed and federated learning systems. The generalization bounds
in this work, however, are essentially the same as those obtained by thinking of the entire
system, from the data at each node in the network to the final aggregated model, as a single,
centralized algorithm. Any improved generalization guarantees from these bounds would
remain implicit in the mutual information terms involved.

In this work, we develop improved bounds on the expected generalization error for
distributed and federated learning systems. Instead of leaving the differences between these
systems and their centralized counterparts implicit in the mutual information terms, we
bring analysis of the structure of the systems directly to the bounds. By working with the
contribution from each node separately, we are able to derive upper bounds on the expected

generalization error that scale with the number of nodes K as O % instead of O (ﬁ)
This improvement is shown to be tight for certain examples, such as learning the mean of a
Gaussian distribution with quadratic loss. We develop bounds that apply to distributed
systems in which the submodels from K different nodes are averaged together, as well as
bounds that apply to more complicated multi-round stochastic gradient descent (SGD)
algorithms, such as in federated learning. For linear models with Bregman divergence
losses, these “per node” bounds are in terms of the mutual information between the
training dataset and the trained weights at each node and are therefore useful in describing
the generalization properties inherent to having communication or privacy constraints

at each node. For arbitrary nonlinear models that have Lipschitz continuous losses, the
improved dependence of O (%) can still be recovered but without a description in terms
of mutual information. We demonstrate the improvements given by our bounds over the
existing information theoretic generalization bounds via simulation of a distributed linear
regression example. A preliminary conference version of this paper was presented in [15].
The present paper completes the work by including all of the missing proof details as well
as providing new bounds for noisy SGD in Corollary 4.

Technical Preliminaries

Suppose we have independent and identically distributed (i.i.d.) data Z;~m for
i=1,...,n,andlet S = (Zy,...,Zy,). Suppose further that W = A(S) is the output of a
potentially stochastic algorithm. Let £(W, Z) be a real-valued loss function and define

L(w) = Ex[l(w, Z)]
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to be the population risk for weights (or model) w. We similarly define
1 n
Li(w) = )" f(w,2)

i=1

to be the empirical risk on dataset s for model w. The generalization error for dataset s
is then

Aa(s) = L(A(s)) — Ls(A(s))

In addition, the expected generalization error is
Esrn[Aa(S)] = Esnnn[L(A(S)) = Ls(A(S))] )

where the expectation is also over any randomness in the algorithm. Below, we present
some standard results for the expected generalization error that will be needed:

Theorem 1 (Leave-One-Out Expansion; Lemma 11 in [16]). Let sl = (Z1,....Z],...,2Zy)
be a version of S with Z; replaced by an i.i.d. copy Z]. Denote S' = (Z},...,Z},). Then, we have

Bse [04(5)] = | 1 Bsi 1(A(S). 7)) ~ HA(S9), Z)).

Proof. Observe that

Esm[L(A(S))] = Es s/[((A(S), Z))] %)
for each i and that
Bse L (AS)] = 3 1Bl 0(A(5), 2)
Y Eggm [HAGSD), 20)] ©)

Putting Equations (2) and (3) together with (1) yields the result. [J

In many of the results in this paper, we will use one of the two following assumptions:

Assumption 1. The loss function ((W, Z) satisfies
log E[exp (A (¢(W, Z) - B[¢(W, Z)]) )| < p(-A)

for A € (b,0], p(0) = ¢'(0) = 0, where W and Z are taken independently from the marginals for
W and Z, respectively,

. . . . . 242
The next assumption is a special case of the previous one with (1) = % :

Assumption 2. The loss function £(W, Z) is sub-Gaussian with parameter R? in the sense that

log E[exp (1 (£(W, 2) ~ E[(W, 2))) )| < Rzz)‘z .
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Theorem 2 (Theorem 2 in [3]). Under Assumption 1, we have

Esvar[Aa(S)] < =) ¢* 1 (I(W; Zy))

where w*_l(y) = iane[O,b) (%W) .

For a continuously differentiable and strictly convex function F : R” — R, we define
the associated Bregman divergence [17,18] between two points p,q € R™ to be

Dr(p,q) = E(p) = F(q) = (VF(q),p =),
where (-, -) denotes the usual inner product.

2. Distributed Learning and Model Aggregation

Now suppose that there are K nodes each having n samples. Eachnodek =1,...,K
has a dataset Sy = (Zyx, ..., Z, ), with Z; ; taken i.i.d. from 71. We use S = (Sy,..., Sk) to
denote the entire dataset of size nK. Each node locally trains a model Wy = Ak (Sx) with
algorithm 4. After each node locally trains its model, the models Wj, are then combined to
form the final model W using an aggregation algorithm W = A(Wy, ..., W) (see Figure 1).
In this section, we will assume that Wy, € R? and that the aggregation is performed by
simple averaging (i.e., W= % Zle Wy). Define A to be the total algorithm from the data S
to the final weights W such that W = A(S). In this section, if we say that Assumption 1 or 2
holds, we mean that it holds for each algorithm Aj. As in Theorem 1, we use S(“%) to denote
the entire dataset S with sample Z; ; replaced by an independent copy Zlf,k, and similarly, we
(i)

use S, to refer to the sub-dataset at node k, with sample Z; ; replaced by an independent
copy Z{,k:
O O e ©) ©)
51 Sk
Wi Wik

model aggregation

!

W = A(Wy,..., Wk)

Figure 1. The distributed learning setting with model aggregation.

Theorem 3. Suppose that £(-,z) is a convex function of w € RY for each z and that Ay represents
the empirical risk minimization algorithm on local dataset Sy in the sense that

= Ai(Sx) = argmin ZE w,Zi) -

wo =1
Then, we have

1
E ZAAk Sk)
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Proof.
1
A =Ez :[l(A(s),Z2)]— =) C(A(s),z;
A6) = EealALS)2)) e T UAG) 7
Epn| (LY woz)| - LY e(A(s) 2
Z~TT Kk:1 ks nK — 741k
< LS Bt 2)] - LY (A, 20) @
Kk:l Z~T ks nK T 741k
1 K 1 K n
< X 2 Eznll(wk, Z)] — = 2 min = Zg(w'zl,k) ®)
k=1 k=1 i—1
S
=% L Aa(sp)-

»
Il
—_

In the above display, Equation (4) follows by the convexity of ¢ via Jensen’s inequality, and
Equation (5) follows by minimizing the empirical risk over each node’s local dataset, which
exactly corresponds to what each node’s local algorithm Ay does. [

While Theorem 3 seems to be a nice characterization of the generalization bounds for
the aggregate model (in that the aggregate generalization error cannot be any larger than
the average generalization errors over each node), it does not offer any improvement in the
expected generalization error that one might expect when given nK total samples instead of
just n samples. A naive application of the generalization bounds from Theorem 2, followed
by the data processing inequality I(W; Z; ;) < I(Wj; Z; ), runs into the same problem.

2.1. Improved Bounds

In this subsection, we demonstrate bounds on the expected generalization error that
remedy the above shortcomings. In particular, we would like to demonstrate the following
two properties:

(1) The bound should decay with the number of nodes K in order to take advantage of
the total dataset from all K nodes.

(2) The bound should be in terms of the information theoretic quantities I(Wj; Si), which
can represent (or be bounded from above by) the capacities of the channels over which
the nodes are communicating. This can, for example, represent a communication or
local differential privacy constraint for each node.

At a high level, we will improve on the bound from Theorem 3 by taking into account
the fact that a small change in S will only change W by a fraction + of the amount that
it will change Wy. In the case where W is a linear or location model, and the loss ¢ is a
Bregman divergence, we can obtain an upper bound on the expected generalization error
that satisfies properties (1) and (2) as follows:

Theorem 4 (Linear or Location Models with Bregman Loss). Suppose the loss ¢ takes the form
of one of the following:
(i) L(w,(x,y)) = Dp(wx,y);
(i) {(w,z) = Dp(w,z).
In addition, assume that Assumption 1 holds. Then, we have

K
By ok [84(9)] = g7 1 s (8.4 (50)
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and

Eg mx[8a(S)] < e P I (Wi Zig))
K

1 & 1 1(WeSe)
e i ()

Proof. Here, we restrict our attention to case (ii), but the two cases have nearly identical
proofs. Using Theorem 1, we have

IN

E_ux[84(5)]
= VEss [1(A®) 70 (A, )]
= 2 LEss | PUA(S)) ~ F(Ziy) - (VF(Z}), A(5) - Z3)
— F(A(S)) + F(ZLy) + (VE(Z,), A(SiH) — Zf,kﬂ
~ B | (VF(ZL0. As) —A<s>>} ©
11<2kE55’ [(w (Zix) % Q- Zw ;wjﬂ
1

=L 55/[<VFZ )w“-w@}. @)
ik

In Equation (7), we use W,Ei) to denote Ak(S,Ei)). Equation (6) follows the linearity

of the inner product and cancels the higher order terms F(.A(S)) and F(A(S()), which
have the same expected values. The key step in Equation (7) then follows by noting that
A(S8(5) only differs from .A(S) in the submodel coming from node k, which is multiplied
by a factor of  when averaging all of the submodels. By backing out of Equation (6) and
re-adding the appropriate canceled terms, we get

K
Egmx[Aa(S)] = ;zkzllEsMn [A.4,(S)] -

By applying Theorem 2, this yields

ESNTL’”K [A_A Z Wk/ lk))
ik

Then, by noting that *~! is non-decreasing and concave, we have

1 1 K nOI(W, 2
@%lﬂb*_l(l(wk}zi,k)) < ﬁ Z 1/)*_1 (Z (kn,k)> )

i=1

Using the property that conditioning decreases entropy yields

I(Wi; Zix) < I(Wy; Sk)

M-

I
—
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and we have

1 e[ & I(W Z 1 & (WS
el (B s b (U0

i=1
as desired. [

The result in Theorem 4 is general enough to apply to many problems of interest. For
example, if F(p) = | p||3, then the Bregman divergence Df gives the ubiquitous squared ¢>
loss (i.e., Dr(p,q) = ||p — ql3 ). For a comprehensive list of realizable loss functions, the
interested reader is referred to [19]. Using F above, Theorem 4 can be applied to ordinary
least squares regression, which we will examine in greater detail in Section 4. Other
regression models such as logistic regression have loss functions that cannot be described
with a Bregman divergence without the inclusion of additional nonlinearity. However, the
result in Theorem 4 is agnostic to the algorithm that each node uses to fit its individual
model. In this way, each node could fit a logistic model to its data, and the total aggregate
model would then be an average over these logistic models. Theorem 4 would still control
the expected generalization error for the aggregate model with the extra % factor. However,
critically, the upper bound would only be for the generalization error that is with respect to
a loss of the form Dp(w”x,y), such as quadratic loss.

In order to show that the dependence on the number of nodes K from Theorem 4 is
tight for certain problems, consider the following example from [3]. Suppose that Z~7m =
N (p,021;) and £(w, z) = ||w — z||3 so that we are trying to learn the mean u of a Gaussian
distribution. An obvious algorithm for each node to use is simple averaging of its dataset:

= Ax(sk) Zzlk

For this algorithm, it can be shown that

BN d nK
I(W;Zi) = 5 log TK—1

y1(y) = 2\/d (1 + 1) oty

See Section IV.A. in [3] for further details. If we apply the existing information theoretic
bounds from Theorem 2 in an end-to-end way, such as in the approach from [14], we
would get

and

1\? nk
. < o —
Eg_mx[AA(S)] _(Td\/Z(l—l-nK) log K1

:o(&().

However, for this choice of algorithm at each node, the true expected generalization
error can be computed to be

20%d

B [BA(S)] = S
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By applying our new bound from Theorem 4, we get

o2d 1\?2
Egmx[Aa(S)] < K\/2 <1 + n) log

SO(Ki/ﬁ)
1

which shows the correct dependence on K and improves upon the O (—K) result from

n—1

prior information theoretic methods.

2.2. General Models and Losses

In this section, we briefly describe some results that hold for more general classes of
models and loss functions, such as deep neural networks and other nonlinear models:

Theorem 5 (Lipschitz Continuous Loss). Suppose that ¢(w,z) is Lipschitz continuous as a
function of w in the sense that

|£(w, z) — £(w',2)| < Cllw — /|2
for any z and that E[||Wy, — E[Wg]||,] < oy for each k. Then, we have

2Coy
B mx[Aa(S)] < =2

Proof. Starting with Theorem 1, we have

Eg. o [8.4(5)]
= SREEss[HA(5), Z4) — A, 7))

IN

ES Vo C PO o

S

- e

C .
< gz DEss (I ~ B0 ] + Ess (| —Ewd| ] ©)
ZCO’O
<=2, (10)

where Equation (8) follows from Lipschitz continuity, Equation (9) uses the triangle in-
equality, and Equation (10) is assumed. O

The bound in Theorem 5 is not in terms of the information theoretic quantities
I(Wg; Sg), but it does show that the O(%) upper bound can be shown for much more
general loss functions and arbitrary nonlinear models.

2.3. Privacy and Communication Constraints

Both communication and local differential privacy constraints can be thought of as
special cases of mutual information constraints. Motivated by this observation, Theorem 4
immediately implies corollaries for these types of systems:
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Corollary 1 (Privacy Constraints). Suppose each node’s algorithm Ay is an e-local, differentially

private mechanism in the sense that % < ¢ for each wy, sy, s;.. Then, for losses ¢ of the form
k

in Theorem 4, and under Assumption 2, we have

2R?min{e, (e — 1)e2}
. .

oo (84()] < 1/

Proof. Note that

p(wg|sk)
I(Wy; Sy) = Wy, Sx) lo
( k k) w%kp( k k ng (wk|5k) (Sfc)
p(wglsk)
< Wy, 5¢ ) log — 2787
I rlowslos gt e
< Z p(wy, sp)e = €.
Wi,Sk

Similarly, it is true that

I(Wi; Sk) = KL(Pw,s, |IPs, Pw,)
< KL(Pyw,s, || Ps, Pw, ) + KL(Ps, Py, || Pw,s, )

=) P(wk)P(Sk)(p(wk|Sk) 1) 1ogM

Wi, Sk P(wk) P(wk)
< Y p(wp(se) (e — e < (e —1)e?

where the last inequality is only true for e < 1. Putting these two displays together gives
I(Wg; Sx) < min{e, (e — 1)e?}, and the result follows from Theorem 4. [

Corollary 2 (Communication Constraints). Suppose each node can only transit B bits of infor-
mation to the model aggregator, meaning that each Wy can only take 2B distinct possible values.
Then, for losses £ of the form in Theorem 4, and under Assumption 2, this yields

log2)R?B
B n[8a(5)] < 1y 20B2KE

Proof. The corollary follows immediately from Theorem 4 and
I[(Wi; S) < H(W) < (log2)B
O

3. Iterative Algorithms

We now turn to considering more complicated multi-round and iterative algorithms.
In this setting, after T rounds, there is a sequence of weights w() = (Wl, eeey WT), and
the final model Wy = fr(W(T) is a function of that sequence, where fr gives a linear
combination of the T vectors W1,..., WT. The function fr could represent, for example,
averaging over the T iterates, choosing the last iterate W or some weighted average over
the iterates. For each round t, each node k produces an updated model W} based on its
local dataset Sy and the previous timestep’s global model W!~!. The global model is then
updated via an average over all K updated submodels:
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The particular example that we will consider is that of a distributed SGD, where each
node constructs its updated model W/ by taking one or more gradient steps starting from
W1 with respect to random minibatches of its local data. Our model is general enough to
account for multiple local gradient steps, as are used in so-called federated learning [5-7],
as well as noisy versions of SGDs, such as in [20,21]. If only one local gradient step is taken
for each iteration, then the update rule for this example could be written as

W =W — i Vo (WL, Z, 1) + & (11)

where Z, ; is a data point (or minibatch) sampled from Sy on timestep ¢, #; is the learning
rate, and ¢; is some potential added noise. We assume that the data points Z; ; are sampled
without replacement so that the samples are distinct across different values of t. We will
also assume, for notational simplicity, that Wy = W7, although the more general result
follows in a straightforward manner.

For this type of iterative algorithm, we will consider the following timestep-averaged
empirical risk quantity:

1 T
KT o L LW Zy)
KT =53
and the corresponding generalization error, expressed as
1< 1 &
Asgd(s) = 7 2 EZNTEW(W)EIZ)] T Z e(wt’ Zt,k) . (12)
r= K3

Note that Equation (12) is slightly different from the end-to-end generalization error
that we would get from considering the final model W' and whole dataset S. It is instead an
average over the generalization error we would get from each model, stopping at iteration
t. We perform this so that when we apply the leave-one-out expansion from Theorem 1,
we do not have to account for the dependence of Wy on past samples Zy ;s for t' < t and
k" # k. Since we expect the generalization error to decrease as we use more samples, this
quantity should result in a more conservative upper bound and be a reasonable surrogate
object to study. The next bound follows as a corollary to Theorem 4:

Corollary 3. For losses { of the form in Theorem 4, and under Assumption 2 (for each Wy), we have

K
E[Asga(5)] < ;;sz/ 2R2I(WE Z4y)

In the particular example described in Equation (11), where Gaussian noise §; ~
N (0, I;07) is added to each iterate, Corollary 3 yields the following. As in [20], we assume
that the updates are magnitude-bounded (i.e., sup,, , [[Vwl(w,z)|2 < L), the stepsizes
satisfy 77; = £ for a constant ¢ > 0, and that 0; = VTt

Corollary 4. Under the assumptions above, we have

B[0ugs(5)] < 205
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Proof. The mutual information terms in Corollary 3 satisfy

(WS Zig) < I(WE WL Z40) (13)

= I(WE Zie W) + I(WHL; 2, 1) (14)

= I(Wf; Zii [ W) (15)
d 7?12

< Zlog|1+ = 16

=5 og( + daf) (16)
212 2
niL cL

< =

- 2‘7t2 2t (17)

Equation (13) follows from the data-processing inequality, Equation (14) is the chain
rule for mutual information, and Equation (15) follows from the independence of Z; ; and
W=, Equation (16) is due to the capacity of the additive white Gaussian noise channel,
and Equation (17) just uses the approximation log(1 + x) < x. Thus, we have

1 & ¢ _2RL /¢
B{aee(5)] < 7 ALY F < 5

O

4. Simulations

We simulated a distributed linear regression example in order to demonstrate the
improvement in our bounds over the existing information-theoretic bounds. To accom-
plish this, we generated n = 10 synthetic datapoints at each of K different nodes for
various values of K. Each datapoint consisted of a pair (x,y), where y = xwy + n with
x,n~N(0,1), and wy~N (0, 1) was the randomly generated true weight that was common
to all datapoints. Each node constructed an estimate @y of wy using the well-known normal
equations which minimize the quadratic loss (i.e., @y = argmin,, Y ; (wx;x — yix)?). The
aggregate model was then the average w = % YK | @. In order to estimate the old and
new information-theoretic generalization bounds (i.e., the bounds from Theorems 2 and 4,
respectively), this procedure was repeated M = 10° times, and the datapoint and model
values were binned in order to estimate the mutual information quantities. The value of M
was increased until the mutual information estimates were no longer particularly sensitive
to the number and widths of the bins. In order to estimate the true generalization error,
the expectations for both the population risk and the dataset were estimated by Monte
Carlo experimentation, with 10* trials each. The results can be seen in Figure 2, where it
is evident that the new information theoretic bound is much closer to the true expected
generalization error and decays with an improved rate as a function of K.

1-D Linear Regression with n=10 Samples per Node

0.6
3 —=—= New Upper Bound
_ \. —— simulated True Value
S 0.5 N, —-- Old Upper Bound
e} N
IS N\
2 0.4+ ‘\.\
g ~_
S —.
g 034 ~—
~ T~
8 N~ T ——
S <
bl S~
2 0.1 TS
0.0 1
5 10 15 20 25 30 35 40

Number of Nodes K

Figure 2. Cont.
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1-D Linear Regression with n=10 Samples per Node

w04 TTTe—

Expected Generalization Error

1 --- New Upper Bound
—— Simulated True Value
—-= Old Upper Bound

6 % 10° 10? 2 x10* 3x10* 4x10*
Number of Nodes K

Figure 2. Information-theoretic upper bounds and expected generalization error for a simulated
linear regression example in linear (top) and log (bottom) scales.
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