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Abstract: In this work, a unified lattice Boltzmann model is proposed for the fourth order partial dif-
ferential equation with time-dependent variable coefficients, which has the form ut + α(t)(p1(u))x +

β(t)(p2(u))xx + γ(t)(p3(u))xxx + η(t)(p4(u))xxxx = 0. A compensation function is added to the
evolution equation to recover the macroscopic equation. Applying Chapman-Enskog expansion and
the Taylor expansion method, we recover the macroscopic equation correctly. Through analyzing the
error, our model reaches second-order accuracy in time. A series of constant-coefficient and variable-
coefficient partial differential equations are successfully simulated, which tests the effectiveness and
stability of the present model.

Keywords: unified lattice Boltzmann model; partial differential equations; variable coefficients;
numerical simulations; soliton solutions

1. Introduction

The analytical solution, also known as the exact solution, can accurately solve the
partial differential equations( PDEs) [1–4], but it is quite difficult for us to obtain analytical
solutions. The analytical solution may even be limited to some special types of PDEs.
In such a context, it is very necessary and significant to study the numerical solution of
PDEs. Compared with traditional numerical methods such as the finite difference method,
finite volume method, finite element method, spectral method and so on, lattice Boltzmann
method (LBM) is a novel numerical method with unique advantages, such as simple
programming, easy treatment of boundary conditions and fit for parallel computing.

As a mesoscopic numerical simulation method, LBM has made some progress in
the past 30 years [5,6]. With time and space made discrete, LBM is macroscopically dis-
crete. However, LBM is microscopically continuous, which satisfies the conservation of
mass, momentum conservation and energy conservation. The macroscopic equation can
be correctly recovered by LBM. LBM attracts more and more experts and scholars’ atten-
tion internationally. Researchers mainly use LBM to simulate fluid flow [7,8] and solve
PDEs [9–14].

Lai and Ma [9] presented a lattice Boltzmann (LB) model for fourth order generalized
Kuramoto-Sivashinsky (GKS) equation, in which an amending function assumed to be
second order of time step is applied to recover the GKS equation correctly. Hu and their
collaborators [10] developed a LB model to solve a generalized Gardner equation with
time-dependent variable coefficients (TDVCs) by means of adding a compensation function
to the evolution equation. In order to solve a class of PDEs with the order up to six,
Chai et al. [11] introduced some suitable auxiliary moments to study a general LB model.
Lan et al. [12] investigated a general propagation LB model and successfully simulated
KdV-Burgers equation with TDVCs through adjusting the propagation step. Following
the idea in the work of Chai and his collaborators, Qiao et al. [13] recently proposed a
novel LB model with an auxiliary source distribution function to solve the general fourth
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order PDEs. In our previous work [14], a general propagation lattice Boltzmann model
was developed to solve Boussinesq equations by selecting the appropriate parameters
that affect the propagation process. In this work, we develop a unified lattice Boltzmann
model for fourth order PDEs with TDVCs, so as to avoid the need to construct different
models for different PDEs, including constant-coefficient PDEs and variable-coefficient
PDEs. Furthermore, the equilibrium distribution functions and the compensation functions
have a unified form for different PDEs according to our unified model. Based on our model
and algorithm, the constant-coefficient KS equation, constant-coefficient GKS equation and
variable-coefficient KdV equation, are successfully solved numerically.

We organize the paper as follows: a unified lattice Boltzmann model for fourth order
partial differential equations with variable coefficients is proposed in Section 2, where
we give a detailed derivation and analysis process of important equations, such as the
Chapman-Enskog analysis, the equilibrium distribution functions, the compensation func-
tions and so on. In Section 3, the algorithm for the present model and numerical results are
shown. In the end, Section 4 is a summary of this work.

2. A Unified Lattice Boltzmann Model for Fourth Order Partial Differential Equations
with Variable Coefficients

A unified LB model for fourth order PDEs with TDVCs, i.e., Equation (1) is investigated,

∂u
∂t

+ α(t)
∂

∂x
p1(u) + β(t)

∂2

∂x2 p2(u) + γ(t)
∂3

∂x3 p3(u) + η(t)
∂4

∂x4 p4(u) = 0. (1)

In Equation (1), x, t represent spatial position and time, respectively, u = u(x, t) is an
unknown scalar function. It should be noticed that unlike previous work, the coefficients
α(t), β(t), γ(t), η(t) in front of the partial derivative of space are functions of time, i.e., time-
dependent variable coefficients, and Pi(u)(i = 1, 2, . . . , 4) is a polynomial function of u,
such as p1(u) = u2 and so on.

2.1. A Unified Lattice Boltzmann Model for Fourth Order Partial Differential Equations with
Variable Coefficients

As for Equation (1), we introduce the discrete velocity lattice Boltzmann equation with
Bhatnagar-Gross-Krook (BGK) collision operator, which satisfies this form:

fk(x + αk∆t, t + ∆t)− fk(x, t) =
∆t[ f eq

k (x, t)− fk(x, t)]
τ0

+ ∆tgk(x, t), (2)

where fk(x, t) and f eq
k (x, t)(k = 0, 1, . . . , n− 1) are the local particle distribution function

and the local equilibrium distribution function, respectively, and τ0 is the single relaxation
time. It should be noted that we append a compensation function gk(x, t) to recover
Equation (1) exactly. There are some other important parameters in Equation (2), such as
∆t representing the time step, ∆x representing the lattice space step, αk representing the
discrete velocity. In this paper, we apply the simple and efficient D1Q5 velocity model. It
means that the n = 5 and αk = cek = c{0, 1,−1, 2,−2} = {0, c,−c, 2c,−2c}, where c is a
scale factor constant satisfying c∆t = ∆x.

We let
τ0

∆t
= τ, i.e.,

∆t
τ0

=
1
τ

. (3)

Applying Taylor expansion to Equation (2) to O(∆t5), and using Equations (2) and (3),
we obtain

∆t(∂t + αk∂x) fk +
∆t2

2
(∂t + αk∂x)

2 fk +
∆t3

6
(∂t + αk∂x)

3 fk +
∆t4

24
(∂t + αk∂x)

4 fk

+ O
(

∆t5
)
=

f eq
k − fk

τ
+ ∆tgk.

(4)
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We apply Chapman-Enskog(C-E) expansion to Equation (4) in space and time [15]:

∂x1 =
1
ε

∂x, (5)

∂t =
4

∑
i=1

εi∂ti + O(ε5), (6)

fk =
4

∑
i=0

εi f i
k + O(ε5), (7)

g1
k =

1
ε

gk. (8)

Substituting Equations (5)–(8) into Equation (4), we derive the equations from ε0 to ε4:

O(ε0) : − 1
τ
( f 0

k − f eq
k ) = 0, i.e., f 0

k = f eq
k , (9)

O(ε1) : ∆t∂t1 f 0
k + ∆tαk∂x1 f 0

k = − 1
τ

f 1
k + ∆tg1

k , (10)

O(ε2) : ∆t(∂t1 f 1
k + ∂t2 f 0

k + αk∂x1 f 1
k ) +

∆t2

2
(∂2

t1
+ 2αk∂x1 ∂t1 + α2

k∂2
x1
) f 0

k = − 1
τ

f 2
k , (11)

O(ε3) : ∆t(∂t1 f 2
k + ∂t2 f 1

k + ∂t3 f 0
k + αk∂x1 f 2

k ) + ∆t2(∂2
t1,t2

+ αk∂x1 ∂t2) f 0
k +

∆t2

2

(
∂2

t1

+2αk∂x1 ∂t1 + α2
k∂2

x1

)
f 1
k +

∆t3

6
(∂3

t1
+ 3αk∂x1 ∂2

t1
+ 3α2

k∂2
x1

∂t1 + α3
k∂3

x1
) f 0

k = − 1
τ

f 3
k , (12)

O(ε4) : ∆t(∂t1 f 3
k + ∂t2 f 2

k + ∂t3 f 1
k + ∂t4 f 0

k + αk∂x1 f 3
k ) +

∆t2

2
(2∂2

t1,t3
+ ∂2

t2
+ 2αk∂x1 ∂t3) f 0

k

+ ∆t2(∂2
t1,t2

+ αk∂x1 ∂t2) f 1
k +

∆t2

2
(∂2

t1
+ 2αk∂x1 ∂t1 + α2

k∂2
x1
) f 2

k +
∆t3

6

(
3∂2

t1
∂t2 + 6αk∂x1 ∂2

t1,t2

+3α2
k∂2

x1
∂t2

)
f 0
k +

∆t3

6
(∂3

t1
+ 3αk∂x1 ∂2

t1
+ 3α2

k∂2
x1

∂t1 + α3
k∂3

x1
) f 1

k +
∆t4

24

(
∂4

t1
+ 4αk∂x1 ∂3

t1

+6α2
k∂2

x1
∂2

t1
+ 4α3

k∂3
x1

∂t1 + α4
k∂4

x1

)
f 0
k = − 1

τ
f 4
k . (13)

Using Equations (9)–(13), we obtain:

−
f 1
k

τ∆t
= (∂t1 + αk∂x1) f 0

k − g1
k , (14)

−
f 2
k

τ∆t
=

(
∆t
2

∂2
t1
+ ∆tαk∂x1 ∂t1 +

∆t
2

α2
k∂2

x1
+ ∂t2

)
f 0
k + (∂t1 + αk∂x1) f 1

k , (15)

−
f 3
k

τ∆t
=

(
∂t3 + ∆t∂2

t1,t2
+ ∆tαk∂x1 ∂t2 +

∆t2

6
∂3

t1
+

∆t2

2
αk∂x1 ∂2

t1
+

∆t2

2
α2

k∂2
x1

∂t1 +
∆t2

6
α3

k∂3
x1

)
f 0
k +

(
∂t2 +

∆t
2

∂2
t1

+∆tαk∂x1 ∂t1 +
∆t
2

α2
k∂2

x1

)
f 1
k + (∂t1 + αk∂x1) f 2

k , (16)

−
f 4
k

τ∆t
=

(
∂t4 + ∆t∂2

t1,t3
+

∆t
2

∂2
t2
+ ∆tαk∂x1 ∂t3 +

∆t2

2
∂2

t1
∂t2 + ∆t2αk∂x1 ∂2

t1,t2
+

∆t2

2
α2

k∂2
x1

∂t2 +
∆t3

24
∂4

t1
+

∆t3

6
αk∂x1 ∂3

t1

+
∆t3

4
α2

k∂2
x1

∂2
t1
+

∆t3

6
α3

k∂3
x1

∂t1 +
∆t3

24
α4

k∂4
x1

)
f 0
k +

(
∂t3 + ∆t∂2

t1,t2
+ ∆tαk∂x1 ∂t2 +

∆t2

6
∂3

t1
+

∆t2

2
αk∂x1 ∂2

t1

+
∆t2

2
α2

k∂2
x1

∂t1 +
∆t2

6
α3

k∂3
x1

)
f 1
k +

(
∂t2 +

∆t
2

∂2
t1
+ ∆tαk∂x1 ∂t1 +

∆t
2

α2
k∂2

x1

)
f 2
k + (∂t1 + αk∂x1) f 3

k . (17)

Simplifying Equation (14), we have:

f 1
k = −τ∆t

[
(∂t1 + αk∂x1) f 0

k − g1
k

]
. (18)
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Coupling Equations (15) and (18), one can obtain:

f 2
k = −τ∆t2

{[
(

1
2
− τ)∂2

t1
+ (

1
2
− τ)α2

k∂2
x1
+ (1− 2τ)αk∂x1 ∂t1 +

1
∆t

∂t2

]
f 0
k + (τ∂t1 + ταk∂x1)g1

k

}
. (19)

Substituting Equations (18) and (19) into Equation (16), we have:

f 3
k =− τ∆t3

{[
1

∆t2 ∂t3 +
1

∆t
(1− 2τ)∂2

t1,t2
+

1
∆t

(1− 2τ)αk∂x1 ∂t2 + τ1∂3
t1
+ τ2αk∂x1 ∂2

t1
+ τ2α2

k∂2
x1

∂t1

+τ1α3
k∂3

x1

]
f 0
k +

[ τ

∆t
∂t2 + (

τ

2
− τ2)∂2

t1
+ (τ − 2τ2)αk∂x1 ∂t1 + (

τ

2
− τ2)α2

k∂2
x1

]
g1

k

}
. (20)

Finally, with the help of Equations (18)–(20), we rewrite Equation (17):

f 4
k =− τ∆t4

{[
1

∆t3 ∂t4 +
1

2∆t2 (1− 2τ)∂2
t2
+

1
∆t2 (1− 2τ)∂2

t1,t3
+

1
∆t2 (1− 2τ)αk∂x1 ∂t3 +

τ2

∆t
∂t2 ∂2

t1

+
6τ1

∆t
αk∂x1 ∂2

t1,t2
+

τ2

∆t
α2

k∂2
x1

∂t2 + τ3∂4
t1
+ 4τ3αk∂x1 ∂3

t1
+ 6τ3α2

k∂2
x1

∂2
t1
+ τ3α4

k∂4
x1
+ 4τ3α3

k∂3
x1

∂t1

]
f 0
k

+

[
τ

∆t2 ∂t3 +
1

∆t
(τ − 2τ2)∂2

t1,t2
+

1
∆t

(τ − 2τ2)αk∂x1 ∂t2 + τ4∂3
t1
+ 3τ4αk∂x1 ∂2

t1
+ 3τ4α2

k∂2
x1

∂t1

+τ4α3
k∂3

x1

]
g1

k

}
. (21)

where:

τ1 = τ2 − τ +
1
6

,

τ2 = 3τ2 − 3τ +
1
2

,

τ3 = −τ3 +
3
2

τ2 − 7
12

τ +
1

24
,

τ4 = τ3 − τ2 +
τ

6
.

fk and f eq
k should satisfy the constraint:

∑
k

fk = ∑
k

f eq
k = u. (22)

Using Equation (9), we obtain:

∑
k

f 0
k = u, ∑

k
f m
k = 0, m > 0. (23)

We can recover the equation exactly with minimal truncation error if both f 0
k and gk

satisfy the following conditions:
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∑
k

αk f 0
k = 0, (24)

∑
k

α2
k f 0

k = 0, (25)

∑
k

α3
k f 0

k =
γ(t)P3(u)

∆t2τ1
, (26)

∑
k

α4
k f 0

k =
η(t)P4(u)

∆t3τ3
. (27)

∑
k

gk = 0, (28)

∑
k

αkgk =
α(t)p1(u)

∆tτ
, (29)

∑
k

α2
k gk =

β(t)p2(u)
∆t2( τ

2 − τ2)
, (30)

∑
k

α3
k gk = 0. (31)

Summing Equation (18) over k, and using Equations (22) and (23), we have:

∂t1 u = 0. (32)

Summing Equation (19) over k and applying Equations (23)–(29), one can obtain:

∂t2 u = − 1
ε2 ∂x[α(t)p1(u)]. (33)

Summing Equation (20) over k and with the aim of Equations (23)–(30), we obtain:

∂t3 u = − 1
ε3 ∂3

x[γ(t)P3(u)]−
1
ε3 ∂2

x[β(t)p2(u)]−
∆t
ε2 (1− 2τ)∂x[p1(u)]∂t1 [α(t)]. (34)

Summing Equation (21) over k and coupling with Equations (23)–(31), we have:

∂t4 u =

(
τ∆t− ∆t

2

)
∂2

t2
u− 1

ε4 ∂4
x[η(t)P4(u)]−

4∆tτ3

τ1ε3 ∂3
x[P3(u)]∂t1 [γ(t)] +

∆t
ε2 (2τ − 1)∂x[p1(u)]∂t2 [α(t)]

− ∆t2

ε2 τ2∂x[p1(u)]∂2
t1
[α(t)]− 6∆tτ1

ε3(1− 2τ)
∂2

x[p2(u)]∂t1 [β(t)].
(35)

Combining Equations (32)–(35) in order of εk(k = 1, 2, 3, 4) and assuming ε = ∆t, we
are able to recover fourth order PDEs with TDVCs:

∂u
∂t

+ α(t)
∂

∂x
p1(u) + β(t)

∂2

∂x2 p2(u) + γ(t)
∂3

∂x3 p3(u) + η(t)
∂4

∂x4 p4(u) = ζ, (36)

where the truncation error ζ of the model is:

ζ =− ε2(1− 2τ)∂x[p1(u)]∂t1 [α(t)]− ε2 4τ3

τ1
∂3

x[P3(u)]∂t1 [γ(t)]− ε3(1− 2τ)∂x[p1(u)]∂t2 [α(t)]

− ε4τ2∂x[p1(u)]∂2
t1
[α(t)]− ε2 6τ1

1− 2τ
∂2

x[p2(u)]∂t1 [β(t)]− ε5
(

1
2
− τ

)
∂2

t2
u

= O(ε2).
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2.2. Selecting Appropriate Equilibrium Distribution Functions and Compensation Functions

By solving Equations (23)–(27), the equilibrium distribution functions f 0
k (k = 0, 1, . . . , 4)

are expressed by

f 0
0 = u +

η(t)P4(u)
4c4∆t3τ3

, (37)

f 0
1 = −γ(t)p3(u)

6c3∆t2τ1
− η(t)p4(u)

6c4∆t3τ3
, (38)

f 0
2 =

γ(t)p3(u)
6c3∆t2τ1

− η(t)p4(u)
6c4∆t3τ3

, (39)

f 0
3 =

γ(t)p3(u)
12c3∆t2τ1

+
η(t)p4(u)
24c4∆t3τ3

, (40)

f 0
4 = −γ(t)p3(u)

12c3∆t2τ1
+

η(t)p4(u)
24c4∆t3τ3

. (41)

Then, assuming
g4 = u2, (42)

and solving Equations (28)–(31), the compensation functions gk(k = 0, 1, . . . , 4) can be
derived:

g0 = 6u2 − β(t)p2(u)
c2∆t2

(
τ
2 − τ2

) − α(t)p1(u)
2c∆tτ

, (43)

g1 = −4u2 +
β(t)p2(u)

2c2∆t2
(

τ
2 − τ2

) + α(t)p1(u)
c∆tτ

, (44)

g2 = −4u2 +
β(t)p2(u)

2c2∆t2
(

τ
2 − τ2

) − α(t)p1(u)
3c∆tτ

, (45)

g3 = u2 − α(t)p1(u)
6c∆tτ

, (46)

g4 = u2. (47)

3. Numerical Solutions

Our numerical simulation is based on Algorithm 1. Some fourth order PDEs with
TDVCs are simulated to verify the effectiveness and stability of the model. For the treatment
of boundary conditions, we use the nonequilibrium extrapolation method [16]. In addition,
the initial and boundary value are determined by the exact solution. We apply global
relative error (i.e., GRE) to measure error between the LBM solutions and the exact solutions.

Algorithm 1 Numerical Simulation

Set initial value: u0 = the exact solution, compute pj(u)(j = 1, 2, . . . , 4) and fk(k =
0, 1, . . . , 4)
u = u0
for r = 1 to Nt do

for i = 1 to m + 1 do
Compute pj,i(u)(j = 1, 2, . . . , 4)
Compute coefficients
Compute fk,i(u) and gk,i(u)(k = 0, 1, . . . , 4)
Collision

end for
Stream
Compute u = ∑ f 0

k,i(u)(k = 0, 1, . . . , 4)
Treat boundary condition

end for



Entropy 2022, 24, 1176 7 of 13

GRE =

L
∑

n=1

∣∣∣ϑ(xn, t)− ϑ
′
(xn, t)

∣∣∣
L
∑

n=1

∣∣ϑ′(xn, t)
∣∣ , (48)

where ϑ(xn, t) and ϑ′(xn, t) are the LBM solution and the exact solution, respectively,
L represents the number of lattices.

Example 1. Let α(t) = 1
2 , p1(u) = u2, β(t) = −1, p2(u) = u, γ(t) = 0, η(t) = 1, p4(u) = u,

and Equation (1) is transformed into Kuramoto-Sivashinsky (KS) equation with such a form:

∂u
∂t

+ u
∂u
∂x
− ∂2u

∂x2 +
∂4u
∂x4 = 0. (49)

We obtain the exact solution u(x, t) of Equation (49) by Ref. [1]

u(x, t) =b +
15

19
√

19

{
−3 tanh[k(x− bt− x0)] + tanh3[k(x− bt− x0)]

}
. (50)

In the simulation, we set x ∈ [−50, 50], τ = 1.28, ∆x = 0.1, ∆t = 0.0001. Some other
parameters in Equation (50) are k = 1

2
√

19
, b = 5, and x0 = −25. The three-dimensional

visual comparisons between the LBM solutions and exact solutions with time are shown in
Figure 1. We show the space-time evolution graph of the LBM solutions and exact solutions
in Figure 2. Besides, we compare the present model with the one in Ref. [9]. We also list the
GRE of two models at different times in Table 1. It can find that our model is more accurate
and performs better than the one in Ref. [9]. Based on Figures 1 and 2 and Table 1, the LBM
solutions and the exact solutions are in good agreement.

12
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6
4

4.6

4.7

4.8

2

4.9

x

5

-50

u

-40

5.1

-30

5.2

-20

5.3

-10 00

5.4

10 20 30 40 50

(a) LBM solutions
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5
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-40
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5.3

-10 00

5.4

10 20 30 40 50

(b) Exact solutions

Figure 1. The 3D visual comparisons of LBM solutions (a) and exact solutions (b) from t = 0 to t = 12
for Example 1.
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Figure 2. LBM solutions versus exact solutions at (a) t = 6; (b) t = 8; (c) t = 10; (d) t = 12 for
Example 1.

Table 1. Comparison of LBM solutions and exact solutions for Example 1 at different times.

t = 6 t = 8 t = 10 t = 12

GRE in Example 1 4.1706× 10−6 5.2269× 10−6 6.1676× 10−6 7.2045× 10−6

GRE in Ref. [9] 7.8808× 10−6 9.5324× 10−6 1.0891× 10−5 1.1793× 10−5

Example 2. When α(t) = 1
2 , p1(u) = u2, β(t) = 1, p2(u) = u, γ(t) = 4, p3(u) = u, η(t) = 1,

p4(u) = u, and Equation (1) is called the generalized Kuramoto-Sivashinsky (GKS) equation with
the following form,

∂u
∂t

+ u
∂u
∂x

+
∂2u
∂x2 + 4

∂3u
∂x3 +

∂4u
∂x4 = 0. (51)

We obtain the exact solution u(x, t) of Equation (51) by Ref. [2]

u(x, t) = b + 9− 15
{

tanh[k(x− bt− x0)] + tanh2[k(x− bt− x0)]− tanh3[k(x− bt− x0)]
}

. (52)

In the simulation, we set x ∈ [−40, 40], τ = 1.3, ∆x = 0.1, and ∆t = 0.0001. Some
other parameters in Equation (52) are b = 0.6, k = 1

2 , and x0 = −10. The three-dimensional
visual comparisons between the LBM solutions and exact solutions with time are shown
in Figure 3. We show the space-time evolution graph of the LBM solutions and exact
solutions in Figure 4. We also list the GRE of the model at different times in Table 2.
Based on Figures 3 and 4 and Table 2, the LBM solutions and the exact solutions are in
good agreement.
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Figure 3. The 3D visual comparisons of LBM solutions (a) and exact solutions (b) from t = 0 to t = 5
for Example 2.
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Figure 4. LBM solutions versus exact solutions at (a) t = 3; (b) t = 4; (c) t = 5; (d) t = 6 for Example 2.

Table 2. Comparison of LBM solutions and exact solutions for Example 2 at different times.

t = 3 t = 4 t = 5 t = 6

GRE 7.012× 10−3 6.576× 10−3 1.082× 10−2 1.753× 10−2

Example 3. When α(t) = 3
4 , p1(u) = u4, β(t) = 1, p2(u) = u, γ(t) = −1, p3(u) = u,

η(t) = 1, p4(u) = u, and Equation (1) is also a GKS equation with the different from:

∂u
∂t

+ 3u3 ∂u
∂x

+
∂2u
∂x2 −

∂3u
∂x3 +

∂4u
∂x4 = 0. (53)

We obtain the exact solution u(x, t) of Equation (53) by Ref. [3]
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u(x, t) =
√

3
2
√

2
tanh

[ √
3

4
√

2

(
x− x0 −

29
144

t
)
+

1
2

]
+

1
6

. (54)

In the simulation, we set x ∈ [−30, 30], τ = 1.8, ∆x = 0.1, and ∆t = 0.0001. One free
parameter in Equation (54) is x0 = 0. The three-dimensional visual comparisons between
the LBM solutions and exact solutions with time are shown in Figure 5. We show the
space-time evolution graph of the LBM solutions and exact solutions in Figure 6. We also
list the GRE of the model at different times in Table 3. Based on Figures 5 and 6 and Table 3,
the LBM solutions and the exact solutions are in good agreement.
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Figure 5. The 3D visual comparisons of LBM solutions (a) and exact solutions (b) from t = 0 to t = 4
for Example 3.
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Figure 6. LBM solutions versus exact solutions at (a) t = 1; (b) t = 2; (c) t = 3; (d) t = 4 for Example 3.
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Table 3. Comparison of LBM solutions and exact solutions for Example 3 at different times.

t = 1 t = 2 t = 3 t = 4

GRE 2.3170× 10−4 4.7307× 10−4 7.3427× 10−4 1.127× 10−3

Example 4. Let α(t) = 3 cos(2t), p1(u) = u2, β(t) = 0, γ(t) = cos(2t), p3(u) = u, η(t) = 0,
and Equation (1) becomes a variable coefficient Korteweg-de Vries (KdV) equation with the follow-
ing form,

∂u
∂t

+ 6 cos(2t)u
∂u
∂x

+ cos(2t)
∂3u
∂x3 = 0. (55)

The exact solution [4] u(x, t) of Equation (55) is

u(x, t) =
r
2

sech2
(√

r
2

(
x− r

2
sin(2t)

)
− 7
)

. (56)

In the simulation, we set x ∈ [0, 40], τ = 1.5, ∆x = 0.1, and ∆t = 0.0001. One
free parameter r is set at 0.5 in Equation (56). The three-dimensional visual comparisons
between the LBM solutions and exact solutions with time are shown in Figure 7. We show
the space-time evolution graph of the LBM solutions and exact solutions in Figure 8. We
also list the GRE of the model at different times in Table 4. Based on Figures 7 and 8 and
Table 4, the LBM solutions and the exact solutions are in good agreement.
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Figure 7. The 3D visual comparisons of LBM solutions (a) and exact solutions (b) from from t = 0 to
t = 5 for Example 4.

Table 4. Comparison of LBM solutions and exact solutions for Example 4 at different times.

t = 2 t = 3 t = 4 t = 5

GRE 6.622× 10−2 2.628× 10−2 8.783× 10−2 4.597× 10−2
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Figure 8. LBM solutions versus exact solutions at (a) t = 2; (b) t = 3; (c) t = 4; (d) t = 5 for Example 4.

4. Conclusions

In this paper, we developed a unified lattice Boltzmann model for the fourth order
partial differential equation with time-dependent variable coefficients. In practice, as for
the one-dimensional problems, we can use a unified lattice Boltzmann model to solve
nth (n ≤ 4 ) order PDEs with the specific form like Equations (1). From the C-E analysis,
the macroscopic Equation (1) was recovered with second-order accuracy in time. Based
on the proposed model and algorithm, some different types of PDEs such as in Equa-
tion (1), including the constant-coefficient KS equation, constant-coefficient GKS equation
and variable-coefficient KdV equation, were numerically solved by selecting appropriate
equilibrium distribution functions f 0

k , compensation functions gk, the time step ∆t, space
step ∆x and single relaxation time τ. The performance of the model was tested with a com-
parison between the numerical solution and the analytical solution. The numerical results
show that the model is an effective method that can be used to simulate the equations such
as Equatios (1).

Finally, we would like to point out that only one-dimensional problems with time-
dependent variable coefficients in the form of Equation (1), were investigated in our model,
while space-dependent variable coefficients PDEs and high-dimensional problems were
not considered. We will replenish these inadequacies in the further work.
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