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Abstract: In this paper, we present the concept of the logical entropy of order m, logical mutual
information, and the logical entropy for information sources. We found upper and lower bounds
for the logical entropy of a random variable by using convex functions. We show that the logical
entropy of the joint distributions X1 and X2 is always less than the sum of the logical entropy of the
variables X1 and X2. We define the logical Shannon entropy and logical metric permutation entropy
to an information system and examine the properties of this kind of entropy. Finally, we examine the
amount of the logical metric entropy and permutation logical entropy for maps.
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1. Introduction and Basic Notions

Entropy is an influential quantity that has been explored in a wide range of studies,
from applied to physical sciences. In the 19th century, Carnot and Clausius diversified the
concept of entropy into three main directions—entropy associated with heat engines (where
it behaves similar to a thermal charge), statistical entropy, and (according to Boltzmann and
Shannon) entropy in communications channels and information security. Thus, the theory
of entropy plays a key role in mathematics, statistics, dynamical systems (where complexity
is mostly measured by entropy), information theory [1], chemistry [2], and physics [3] (see
also [4–6]).

In recent years, other information source entropies have been studied [7–9]. Butt et al.
in [10,11] introduced new bounds for Shannon, relative, and Mandelbrot entropies via
interpolating polynomials. Amig and colleagues defined entropy as a random process and
the permutation entropy of a source [1,12].

Ellerman [13] was the first to take credit for introducing a detailed introduction to the
concept of logical entropy and establishing its relationship with the renowned Shannon
entropy. In recent years, many researchers have focused on extending the notion of logical
entropy in new directions/perspectives. Markechová et al. [14] proposed the study of
logical entropy and logical mutual information of experiments in the intuitionistic fuzzy
case. Ebrahimzadeh [15] proposed the logical entropy of a quantum dynamical system
and investigated its ergodic properties. However, the logical entropy of a fuzzy dynamical
system was investigated in [7] ( see also [16]. Tamir et al. [17] extended the idea of logical
entropy over the quantum domain and expressed it in terms of the density matrix. In [18],
Ellerman defined logical conditional entropy and logical relative entropy. In fact, logical
entropy is a particular case of Tsallis entropy when q = 2. Logical entropy resembles
the information measure introduced by Brukner and Zeilinger [19]. In [13], Ellerman
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introduced the concept of logical entropy for a random variable. He studied the logical
entropy of the joint distribution p(x, y) over X×Y as:

h(x, y) = 1−∑
x,y

[p(x, y)]2.

The motive of this study was to extend the concept of logical entropy presented in [13]
to information sources. Since estimating entropy from the information source can be
difficult [20], we defined the logical metric permutation entropy of a map and used it to
apply for an information source.

In the article, (Γ,G, µ) is a measurable probability space (i.e., Γ 6= ∅ and G enjoys the
structure of σ-algebra of subsets of Γ with µ(Γ) = 1). Further, if X is a random variable of
Γ possessing discrete finite state space A = {a1, . . . , an}, then the function p : A → [0, 1]
defined by

p(x) = µ{γ ∈ Γ : X(γ) = x}

is a probability function. Hµ(X) = −∑x∈A p(x) log p(x) denotes the Shannon entropy of
X [1]. If (Xn)∞

n=1 is a sequence of the random variables on Γ, the sequence Xn is called an
information source (also called the stochastic process [S.P]). Similarly, if m ≥ 1, then we
define p : Am → [0, 1] by

p(x1, . . . , xm) = µ{γ ∈ Γ : X1(γ) = x1, . . . , Xm(γ) = xm}.

We know that

∑
x1,...,xm∈A

p(x1, . . . , xm) = µ(Γ) = 1

for every natural number m. A finite space S.P, X = (Xn)∞
n=1 can be recalled as a stationary

finite space S.P if

p(x1, . . . , xm) = µ{γ ∈ Γ : Xk+1(γ) = x1, . . . , Xk+m(γ) = xm},

for every m, k ∈ N. In an information–theoretical setting, one may assume a stationary S.P,
X as a data source. A finite space S.P, X is strictly a stationary finite space S.P if

p(x1, . . . , xm) = µ{γ ∈ Γ : Xk1(γ) = x1, . . . , Xkm(γ) = xm},

for every {k1, . . . , km} ⊆ N. The Shannon entropy of order m of source X is defined by [1,12]

Hµ(Xm
1 ) = − ∑

x1,...,xm∈A
p(x1, . . . , xm) log p(x1, . . . , xm).

The Shannon entropy of source X is defined by hµ(X) = limm→∞( 1
m Hµ(Xm

1 )). If we
assume that the alphabet A from source X accepts an order ≤, so that (A,≤) is a totally
ordered set, then define another order ≺ on A by [1]

ti ≺ tj ⇔ ti < tj or (ti = tj and i < j).

We say that a length-m sequence tk+m−1
k = (tk, . . . , tk+m−1) has an order pattern π

if, tk+π(0) ≺ tk+π(1) ≺ ... ≺ tk+π(m−1), where ti, tj ∈ A, k ∈ N and i 6= j. To a S.P,
X = (Xn)n∈N0 we associate a probability process R = (Rn)n∈N0 defined by Rm(γ) =

∑m
i=0 δ(Xi(γ) ≤ Xm(γ)). The sequence R defines a discrete-time process that is non-
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stationary. The metric permutation entropy of order m and the metric permutation entropy
of source X are, respectively, defined by [1,12]

H?
µ(Xm−1

0 ) = Hµ(Rm−1
0 ) =

−1
m− 1 ∑

r0,...,rm−1

p(rm−1
0 ) log p(rm−1

0 ),

and h?µ(X) = lim supm→∞ H?
µ(Xm−1

0 ).

2. Main Results

In this section, we use the symbol xm
1 for (x1, . . . , xm) to simplify the notation.

Definition 1. Reference [13]. Let X be a random variable on Γ with discrete finite state space
A = {a1, . . . , an}. Then,

Hµl(X) = ∑
x∈A

p(x)[1− p(x)] = 1− ∑
x∈A

[p(x)]2

is called the logical Shannon entropy of X.

Theorem 1. Reference [21] If f is convex on I and ζ = min1≤i≤n{yi}, η = max1≤i≤n{yi}, then

f (ζ) + f (η)− 2 f ( ζ+η
2 )

n
≤ ∑n

i=1 f (yi)

n
− f (∑n

i=1 yi

n
) ≤ f (ζ) + f (η)− 2 f (

ζ + η

2
).

Theorem 2. Suppose that X is a random variable on Γ with a discrete finite state space A =
{a1, . . . , an}, ζ = min1≤i≤n{p(ai)} and η = max1≤i≤n{p(ai)}, then

0 ≤ ∆(ζ, η) :=
(ζ − η)2

4
≤ n− 1

n
− Hµl(X) ≤ n

(ζ − η)2

4
= n∆(ζ, η).

Proof. Applying Theorem 1 with f (x) = x2 − x, we obtain

1
n
((ζ2 − ζ) + (η2 − η)− 2((

ζ + η

2
)2 − ζ + η

2
))

≤ 1
n

n

∑
i=1

(x2
i − xi)− ((

∑n
1 xi
n

)2 − (
∑n

1 xi
n

))

≤ (ζ2 − ζ) + (η2 − η)− 2((
ζ + η

2
)2 − ζ + η

2
).

Putting yi = p(ai), it follows that

1
n
((ζ2 − ζ) + (η2 − η)− 2((

ζ + η

2
)2 − ζ + η

2
))

≤ 1
n

n

∑
i=1

((p(ai))
2 − p(ai))− ((

∑n
1 p(ai)

n
)2 − (

∑n
1 p(ai)

n
))

≤ (ζ2 − ζ) + (η2 − η)− 2((
ζ + η

2
)2 − ζ + η

2
).

Thus,

1
n
((ζ2 − ζ) + (η2 − η)− 2((

ζ + η

2
)2 − ζ + η

2
))

≤ 1
n

n

∑
i=1

(p(ai))
2 − 1

n

n

∑
i=1

p(ai)− (
1
n2 −

1
n
)

≤ (ζ2 − ζ) + (η2 − η)− 2((
ζ + η

2
)2 − ζ + η

2
).
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Hence,

1
n
((ζ2 − ζ) + (η2 − η)− 2((

ζ + η

2
)2 − ζ + η

2
))

≤ 1
n
(1− Hζl(X))− 1

n
− (

1
n2 −

1
n
)

≤ (ζ2 − ζ) + (η2 − η)− 2((
ζ + η

2
)2 − ζ + η

2
).

After some calculations, it turns out that

∆(ζ, η) :=
(ζ − η)2

4
≤ n− 1

n
− Hµl(X) ≤ n

(ζ − η)2

4
.

Lemma 1. Let X be a random variable with alphabet A = {a1, . . . , an}. Then, 0 ≤ Hµl(X) ≤
n−1

n , and equality holds if and only if p(ai) = p(aj) for every 1 ≤ i, j ≤ n.

Proof. Using Theorem 2, we obtain 0 ≤ Hµl(X) ≤ n−1
n . Now, let Hµl(X) = n−1

n , by

the use of Theorem 2, we have M(ζ, η) = (ζ−η)2

4 = 0 and, thus, ζ = η. Therefore,
max1≤i≤n{p(ai)} = min1≤i≤n{p(ai)}. Thus, p(ai) = p(aj) for every 1 ≤ i, j ≤ n. On the
other hand, if p(ai) = p(aj) for every 1 ≤ i, j ≤ n, then ζ = η, so M(ζ, η) = 0 and by the
use of Theorem 2, we obtain Hµl(X)− n−1

n = 0. Hence, Hµl(X) = n−1
n .

Definition 2. The logical Shannon entropy of order m of source X is defined by

Hµl(Xm
1 ) = Hµl(X1, . . . , Xm) := ∑

x1,...,xm∈A
p(x1, . . . , xm)(1− p(x1, . . . , xm)),

= 1− ∑
x1,...,xm∈A

(p(x1, . . . , xm))
2

It is easy to see that may be p(x1, x2) 6= p(x2, x1) but for every two random variables
x1, x2 we have Hµl(x1, x2) = Hµl(x2, x1).

Definition 3. Let m be a natural number and 1 ≤ i1, . . . , im ≤ n. We define the sets Ai1i2 ...im by

Ai1i2 ...im = {γ ∈ Γ : X1(γ) = ai1 , X2(γ) = ai2 , . . . , Xm(γ) = aim}.

and µ(Ai1i2 ...im) := ai1i2 ...im .

Moreover, Ai1i2 ...im ∩ Aj1 j2 ...jm = ∅ for every (i1, i2, . . . , im) 6= (j1, j2, . . . , jm) and for
every m ∈ N. Furthermore, if γ ∈ ⋃n

j=1Ai1i2 ...im j, then γ ∈ Ai1i2 ...im j0 for some j0 ∈
{1, . . . , n}. Hence,

X1(γ) = ai1 , . . . , Xm(γ) = aim , Xm+1(γ) = aj0

for some j0 ∈ {1, . . . , n} and, thus, γ ∈ Ai1i2 ...im . Moreover, if γ ∈ Ai1i2 ...im , then

X1(γ) = ai1 , . . . , Xm(γ) = aim .

Define Xm+1(γ) = aj0 . Therefore,

X1(γ) = ai1 , . . . , Xm(γ) = aim , Xm+1(γ) = aj0 .
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Hence, γ ∈ Ai1i2 ...im j0 for some j0 ∈ {1, . . . , n} and, thus, γ ∈ ⋃n
j=1Ai1i2 ...im j. So,

Ai1i2 ...im =
n⋃

j=1

Ai1i2 ...im j

and, therefore, Γ =
⋃

i1,i2,...,im Ai1i2 ...im . Hence, we obtain

∑
i1i2 ...im

ai1i2 ...im = 1

and

ai1i2 ...im = µ(Ai1i2 ...im) = µ(∪n
j=1Ai1i2 ...im j)

=
n

∑
j=1

µ(Ai1i2 ...im j) =
n

∑
j=1

ai1i2 ...im j (1)

for every 1 ≤ i1, i2, . . . , im ≤ n.
We now prove the following Theorem by employing Lemma A1 (see Appendix A):

Theorem 3. If X1 and X2 are two random variables on Γ, then

max{Hµl(X1), Hµl(X2)} ≤ Hµl(X1, X2) ≤ Hµl(X1) + Hµl(X2). (2)

Proof. Suppose A = {a1, . . . , an}. For every 1 ≤ i, j ≤ n, we consider

Bi = {γ ∈ Γ : X1(γ) = ai}, Cj = {γ ∈ Γ : X2(γ) = aj}, Aij = Bi ∩ Cj,

bi = µ(Bi), cj := µ(Cj), aij = µ(Aij).

Moreover, Ci ∩ Cj = ∅ and Bi ∩ Bj = ∅ for every 1 ≤ i 6= j ≤ n; thus, Aij ∩Akl = ∅
for every ordered pair (i, j) 6= (k, l). For obvious reasons, Bi = ∪n

j=1Aij for each 1 ≤ i ≤ n
and Cj = ∪n

i=1Aij for each 1 ≤ j ≤ n, and Γ = ∪i,jAij. So, we have ∑i,j aij = 1 and for every
1 ≤ i, j ≤ n,

bi = µ(Bi) = µ(
n⋃

j=1

Aij) = ∑
j=1

µ(Aij) =
n

∑
j=1

aij,

and

cj = µ(Cj) = µ(∪n
i=1Aij) = ∑

i=1
µ(Aij) =

n

∑
i=1

aij.

With the use of Lemma A1, we have

n

∑
i=1

(
n

∑
j=1

aij)
2 +

n

∑
j=1

(
n

∑
i=1

aij)
2 ≤ 1 + ∑

i,j
a2

ij.

Therefore,

n

∑
i=1

b2
i +

n

∑
j=1

c2
j ≤ 1 + ∑

i,j
a2

ij.



Entropy 2022, 24, 1174 6 of 24

Consequently,

n

∑
i=1

(µ(Bi))
2 +

n

∑
j=1

(µ(Cj))
2 ≤ 1 + ∑

i,j
(µ(Aij))

2,

and

−∑
i,j
(µ(Aij))

2 ≤ 1−
n

∑
i=1

(µ(Bi))
2 −

n

∑
j=1

(µ(Cj))
2.

Hence,

1−∑
i,j
(µ(Aij))

2 ≤ (1−
n

∑
i=1

(µ(Bi))
2) + (1−

n

∑
j=1

(µ(Cj))
2),

it follows that Hµl(X1, X2) ≤ Hµl(X1) + Hµl(X2).
Now, we prove the left-hand inequality. Since

bi = µ(Bi) = µ(
n⋃

j=1

Aij) = ∑
j=1

µ(Aij) =
n

∑
j=1

aij

for every 1 ≤ i ≤ n, b2
i = (∑n

j=1 aij)
2 ≥ ∑n

j=1 a2
ij. Therefore,

(µ(Bi))
2 ≥

n

∑
j=1

(µ(Aij))
2,

and, thus,

n

∑
i=1

(µ(Bi))
2 ≥

n

∑
i=1

n

∑
j=1

(µ(Aij))
2.

So, Hµl(X1) ≤ Hµl(X1, X2).
Similarly, Hµl(X2) ≤ Hµl(X1, X2). Consequently,

max{Hµl(X1), Hµl(X2)} ≤ Hµl(X1, X2).

Corollary 1. If X is an information source, then

max{Hµl(Xi) : 1 ≤ i ≤ k} ≤ Hµl(X1, . . . , Xk) ≤
k

∑
i=1

Hµl(Xi), (∀k ∈ N).

Proof. This follows from Theorem 3.

Definition 4. The logical metric permutation entropy of order m of source X = {X0, X1, . . .}
defined by

H?
µl(Xm−1

0 ) = Hµl(Rm−1
0 ) = 1− ∑

r0,...,rm−1

(p(rm−1
0 ))2.

Lemma 2. For a S.P, X, the sequence of {Hµl(Xm
1 )}m increases. Thus, limm→∞ Hµl(Xm

1 ) exists.
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Proof. According to (1),

p(x1, . . . , xm) = ∑
xm+1

p(x1, . . . , xm, xm+1)

for every m ∈ N. Therefore,

(p(x1, . . . , xm))
2 = ( ∑

xm+1

p(x1, . . . , xm, xm+1))
2

≤ ∑
xm+1

(p(x1, . . . , xm, xm+1))
2,

and

∑
xm

1

(p(x1, . . . , xm))
2 ≤ ∑

xm+1
1

(p(x1, . . . , xm, xm+1))
2.

This means that

Hµl(Xm
1 ) = 1−∑

xm
1

(p(x1, . . . , xm))
2

≥ 1− ∑
xm+1

1

(p(x1, . . . , xm, xm+1))
2 = Hµl(Xm+1

1 ).

Definition 5. The logical Shannon entropy of source X = {X1, X2, . . .} is defined by

hµl(X) = lim
m→∞

(Hµl(Xm
1 )).

Definition 6. The logical metric permutation entropy of source X = {X0, X1, . . .} is defined by

h?µl(X) = lim
m→∞

H?
µl(Xm−1

0 ).

Remark 1. Let m be a positive integer number. Then 0 ≤ Hµl(Xm
1 ) ≤ 1 and 0 ≤ hµl(X) ≤ 1.

Lemma 3. Let X = (X1, X1, X1, . . .) be an information source. Then the following holds:

1. Hµl(X1, X1, . . . , X1︸ ︷︷ ︸
m times

) = Hµl(X1), for every m ∈ N.

2. hµl(X) = Hµl(X1).

Proof.

1. If X = (X1, X1, X1, . . .), then

p(x1, x2, . . . , xm) =

{
p(x1) x1 = x2 = . . . = xm
0 xi 6= xj, for some 1 ≤ i 6= j ≤ m.

Hence,

Hµl(X1, . . . , Xm) = ∑
x1,...,xm∈A

p(x1, . . . , xm)(1− p(x1, . . . , xm))

= ∑
x1∈A

p(x1)(1− p(x1))

= Hµl(X1). (3)
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2. We derive from (3) that

hµl(X) = lim
m→∞

Hµl(X1, . . . , Xm)

= lim
m→∞

Hµl(X1, . . . , X1)

= lim
m→∞

Hµl(X1) = Hµl(X1).

Theorem 4. Suppose that X represents an information source on Γ with the discrete finite state
space A = {a1, . . . , an}.
1. If ζm = minxm

1 ∈A{p(xm
1 )} and ηm = maxxm

1 ∈A{p(xm
1 )}, then

0 ≤ ∆(ζm, ηm) ≤
nm − 1

nm − Hµl(xm
1 ) ≤ nm∆(ζm, ηm), (4)

2. limm→∞ ∆(ζm, ηm) ≤ 1− hµl(X) ≤ limm→∞ nm∆(ζm, ηm).

Proof.

1. The result follows from Theorem 2.

2. Taking the limit as m→ ∞ in (4), consequently (2) holds.

Lemma 4. Let X represent an information source on Γ with the discrete finite state space A =
{a1, . . . , an}, then 0 ≤ Hµl(Xm

1 ) ≤ nm−1
nm , and equality holds if and only if p(xm

1 ) = p(tm
1 ) for

every xm
1 , tm

1 ∈ Am.

Proof. By Theorem 4, 0 ≤ Hµl(Xm
1 ) ≤ nm−1

nm . If Hµl(Xm
1 ) = nm−1

nm , then by the use of

Theorem 4 we obtain ∆(ζm, ηm) =
(ζm−ηm)2

4 = 0. Hence ζm = ηm. Therefore maxxm
1 ∈A{p(xm

1 )}
= minxm

1 ∈A{p(xm
1 )}. Thus p(xm

1 ) = p(tm
1 ) for every xm

1 , tm
1 ∈ Am. On the other hand if

p(xm
1 ) = p(tm

1 ) for every xm
1 , tm

1 ∈ Am, then ζm = ηm. Therefore ∆(ζm, ηm) = 0 and by
Theorem 4 has Hµl(Xm

1 )− nm−1
nm = 0 and thus Hµl(Xm

1 ) = nm−1
nm .

Definition 7. Let p(x) 6= 0, the conditional probability function defined by p(y|x) := p(x,y)
p(x) . In gen-

eral, for p(x1, . . . , xn) 6= 0, the conditional probability function is defined by p(x1|x2, . . . , xn+1) :=
p(x1,x2,...,xn+1)

p(x2,x3,...,xn)
.

Lemma 5. Let x1, x2, . . . , xn+1 be a word. Then

p(xm+1, xm, . . . , x1) =
m+1

∏
i=1

p(xi|xi−1, . . . , x1),

where m ∈ N and p(x1|x0) := p(x1).
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Proof. We prove the lemma by induction. If m = 1, have p(x1, x2) = p(x1)× p(x1|x2).
Thus, the statement is true for m = 1. Now suppose the statement is true for m = k− 1, we
give reasons for m = k.

k+1

∏
i=1

p(xi|xi−1, . . . , x1) =
k

∏
i=1

p(xi|xi−1, . . . , x1)× p(xk+1|xk, . . . , x1)

= p(xk, xk−1, . . . , x1)× p(xk+1|xk, . . . , x1)

= p(xk, xk−1, . . . , x1)×
p(xk+1, xk, . . . , x1)

p(xk, xk−1, . . . , x1)

= p(xk+1, xk, . . . , x1),

which completes the proof.

Definition 8. Let X1 and X2 be two random variables on Γ. We define the conditional logical
entropy of X2 given X1 by

Hµl(X2|X1) := ∑
x1,x2

(p(x1))
2(p(x2)− (p(x2|x1))

2).

Note: if p(x1) = 0, define (p(x1))
2(p(x2)− (p(x2|x1))

2 = 0.

Definition 9. Suppose X1, X2, . . . , Xm are m random variables on Γ. Define the conditional logical
entropy of Xm given X1, . . . , Xm−1 by

Hµl(Xm|Xm−1, . . . , X2, X1) : = ∑
xm

1

(p(xm−1, . . . , x2, x1))
2

[p(xm)− (p(xm|xm−1, . . . , x1))
2].

Lemma 6. Suppose X1, X2, . . . , Xm are m random variables on Γ, then

Hµl(Xm|Xm−1, . . . , X2, X1)

= ∑
xm−1

1

(p(xm−1, . . . , x2, x1))
2 −∑

xm
1

(p(xm, . . . , x2, x1))
2

= Hµl(Xm, Xm−1, . . . , X2, X1)− Hµl(Xm−1, . . . , X2, X1).

Proof. According to Definition 9, we obtain

Hµl(Xn|Xm−1, . . . , X2, X1)

= ∑
xm

1

(p(xm−1, . . . , x2, x1))
2(p(xm)− (p(xm|xm−1, . . . , x1))

2)

= ∑
xm

1

p(xm−1, . . . , x2, x1))
2 p(xm)

−∑
xm

1

p(xm−1, . . . , x2, x1))
2(p(xm|xm−1, . . . , x1))

2

= ( ∑
xm−1

1

p(xm−1, . . . , x2, x1))
2)(∑

xm

p(xm))

−∑
xm

1

p(xm−1, . . . , x2, x1))
2(

p(xm, xm−1, . . . , x1)

p(xm−1, . . . , x1)
)2

= ∑
xm−1

1

(p(xm−1, . . . , x2, x1))
2 −∑

xm
1

(p(xm, . . . , x2, x1))
2.
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Lemma 7. Let X be a stationary finite space S.P, then

∑
xn

2

(p(xn, . . . , x2))
2 = ∑

xn−1
1

(p(xn−1, . . . , x2, x1))
2. (5)

Proof. Since X is stationary,

∑
xn

2

(p(xn, . . . , x2))
2 = ∑

xn
2

(µ({γ ∈ Γ : Xn(γ) = xn, . . . , X2(γ) = x2}))2

= ∑
xn

2

(µ({γ ∈ Γ : Xn−1(γ) = xn, . . . , X1(γ) = x2}))2

= ∑
xn−1

1

(p(xn−1, . . . , x2, x1))
2,

which yields (5).

Theorem 5. Let X be a stationary finite space S.P, with discrete finite state space A = {a1, . . . , an}.
Then the sequence of conditional logical entropies Hµl(Xm|Xm−1, . . . , X1) decreases.

Proof. Under the notation of Definition 3, define

{Ai1i2 ...im : 1 ≤ i1, i2, . . . , im ≤ n} = {D1,D2, . . . ,DM},

and µ(Dr) = dr where M = nm. Furthermore, assume that

Dij = Di
⋂
{γ ∈ Γ : xj(γ) = aj}, µ(Dij) = dij,

Dijk = Dij
⋂
{γ ∈ Γ : xk(γ) = ak}, µ(Dijk) = dijk,

where 1 ≤ i ≤ M and 1 ≤ j, k ≤ n. It is easy to see thatDi ∩Dj = ∅ for every 1 ≤ i 6= j ≤ n,
and Dij ∩Drs = ∅ for every ordered pair (i, j) ≤ (r, s). Therefore, Dijk ∩Drst = ∅ for every
(i, j, k) 6= (r, s, t). For obvious reasons, Di = ∪n

j=1Dij for each 1 ≤ i ≤ n, Dij = ∪n
k=1Dijk for

every 1 ≤ i, j ≤ n and Γ = ∪i,j,kDijk. Consequently, ∑i,j,k dijk = 1 and

di = µ(Di) = µ(
n⋃

j=1

Dij) =
n

∑
j=1

µ(Dij) =
n

∑
j=1

dij

and

dij = µ(Dij) = µ(
n⋃

k=1

Dijk) =
n

∑
k=1

µ(Dijk) =
n

∑
k=1

dijk

for every 1 ≤ j ≤ M, 1 ≤ i ≤ n.
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Using Theorem A1 and Lemma 7, we deduce that

∑
xm+2

1

(p(xm+2, . . . , x2, x1))
2 =

M

∑
i=1

n

∑
j=1

n

∑
k=1

d2
ijk = ∑

i,j,k
d2

ijk

∑
xm+1

1

(p(xm+1, . . . , x2, x1))
2 =

M

∑
i=1

n

∑
j=1

d2
ij = ∑

i,j
d2

ij = ∑
i,j
(

n

∑
k=1

dijk)
2

∑
xm

1

(p(xm, . . . , x2, x1))
2 =

M

∑
i=1

d2
i =

M

∑
i=1

(
n

∑
j,k=1

dijk)
2

∑
xm+2

2

(p(xm+2, . . . , x2))
2 = ∑

xm+1
1

(p(xm+1, . . . , x2, x1))
2 = ∑

i,j
d2

ij.

With the use of Theorem A1, we obtain

Hµl(Xm+2|Xm+1, . . . , X2, X1)

= ∑
xm+1

1

(p(xm+1, . . . , x2, x1))
2 − ∑

xm+2
1

(p(xm+2, . . . , x2, x1))
2.

= ∑
i,j,k

d2
ijk −∑

i,j
(

n

∑
k=1

dijk)
2

≥∑
i,j
(

n

∑
k=1

dijk)
2 −

M

∑
i=1

(
n

∑
j,k=1

dijk)
2

= ∑
xm

1

(p(xm, . . . , x2, x1))
2 − ∑

xm+1
1

(p(xm+1, . . . , x2, x1))
2

= Hµl(Xm+1|Xm, . . . , X2, X1),

this means that the sequence of conditional logical entropies

Hµl(Xm|Xm−1, . . . , X1)

is decreasing, so

0 ≤ . . . ≤ Hµl(Xm+1|Xm, . . . , X1) ≤ Hµl(Xm|Xm−1, . . . , X1) ≤ . . . ≤ Hµl(X1).

Corollary 2. Let X = (X1, X2, X3, . . .) be a source. Then the limit limn→∞ Hµl(Xn|Xn−1, . . . , X1)
exists.

Lemma 8. Let X = (Xm)∞
m=1 be a stationary finite space S.P. Then

∑
xm+1

2

(p(xm+1|xm, . . . , x2))
2 = ∑

xm
1

(p(xm|xm−1, . . . , x1))
2.
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Proof. Since X is stationary,

∑
xm+1

2

(p(xm+1|xm, . . . , x2))
2

= ∑
xm+1

2

(
p(xm+1, xm, . . . , x2)

p(xm, . . . , x2)
)2

= ∑
xm+1

2

(
µ({γ ∈ Γ : xm+1(γ) = xm+1, . . . , x2(Γ) = x2})

µ({Γ ∈ Γ : xm(Γ) = xm, . . . , x2(γ) = x2})
)2

= ∑
xm+1

2

(
µ({γ ∈ Γ : xm(γ) = xm+1, . . . , x1(γ) = x2})
µ({γ ∈ Γ : xm−1(γ) = xm, . . . , x1(γ) = x2})

)2

= ∑
xm

1

(p(xm|xm−1, . . . , x1))
2,

which completes the proof.

Theorem 6. Let X = (Xn)∞
n=1 be a stationary finite space S.P. Then

Hµl(Xm+1|Xm, . . . , X2) = Hµl(Xm|Xm−1, . . . , X1)

Proof. According to Lemma 7,

Hµl(Xm+1|Xm, . . . , X2) = ∑
xm

2

(p(xm, . . . , x2))
2 − ∑

xm+1
2

(p(xm, . . . , x2))
2

= ∑
xm−1

1

(p(xm−1, . . . , x1))
2 −∑

xm
1

(p(xm, . . . , x1))
2

= Hµl(Xm|Xm−1, . . . , X2, X1).

Theorem 6 is thus proved.

Theorem 7. Let X1 and X2 be two random variables on Γ. Then the following hold:
1. Hµl(X2|X1) = Hµl(X1, X2)− Hµl(X1).
2. Hµl(X2|X1) + Hµl(X1) = Hµl(X1|X2) + Hµl(X2).

Proof.

1. Using the definition of condition logical entropy, we deduce

Hµl(X2|X1) = (∑
x1

(p(x1))
2)− ∑

x1,x2

(p(x1, x2))
2

= (1− ∑
x1,x2

(p(x1, x2))
2)− (1−∑

x1

(p(x1))
2)

= Hµl(X1, X2)− Hµl(X1),

which completes the proof.

2. From the previous part, and since Hµl(X1, X2) = Hµl(X2, X1), we have

Hµl(X2|X1) + Hµl(X1) = Hµl(X1, X2)

= Hµl(X2, X1)

= Hµl(X1|X2) + Hµl(X2).
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Theorem 8. Let X = (X1, X1, X1, . . .) be an information source. Then

Hµl(X1, . . . , Xm) =
m

∑
i=1

Hµl(Xi|Xi−1, . . . , X1),

where Hµl(X1|X0) := Hµl(X1).

Proof. According to Lemma 6, we obtain

m

∑
i=1

Hµl(Xi|Xi−1, . . . , X1)

= Hµl(X1) +
m

∑
i=2

(Hµl(Xi, . . . , X1)− Hµl(Xi−1, . . . , X1))

= Hµl(X1, . . . , Xm),

hence the theorem is proven.

Theorem 9. Let X = (X1, X2, X3, . . .) be an information source. Then

hµl(X) =
∞

∑
i=1

Hµl(Xi|Xi−1, . . . , X1).

Proof. By the use of Theorem 8, we obtain

hµl(X) = lim
n→∞

n

∑
i=1

Hµl(Xi|Xi−1, . . . , X1) =
∞

∑
i=1

Hµl(Xi|Xi−1, . . . , X1),

which completes the proof.

Definition 10. An independent information source, X = (X1, X2, X3, . . .), is a source with the
following property

p(x1, x2, . . . , xm) =
m

∏
i=1

p(xi)

for all xm
1 .

Theorem 10. Let X = (X1, X2, X3, . . .) be an independent information source. Then

Hµl(Xm+1|Xm, . . . , X1) = (1− Hµl(Xm, . . . , X1))Hµl(Xm+1)

for every m ∈ N.
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Proof. Since X = (X1, X2, X3, . . .) is an independent random variables, we have

Hµl(Xm+1|Xm, . . . , X1)

= ∑
xm+1

1

(p(xm, . . . , x1))
2 p(xm+1)− ∑

xm+1
1

(p(xm+1, . . . , x1))
2

= ∑
xm+1

1

(p(xm, . . . , x1))
2 p(xm+1)− ∑

xm+1
1

(p(xm+1, . . . , x1))
2

= ∑
xm+1

1

(p(xm, . . . , x1))
2 p(xm+1)− ∑

xm+1
1

(p(xm, . . . , x1))
2(p(xm+1))

2

= ∑
xm+1

1

(p(xm, . . . , x1))
2(p(xm+1)− (p(xm+1))

2)

= (∑
xm

1

(p(xm, . . . , x1))
2)( ∑

xm+1

(p(xm+1)− (p(xm+1))
2))

= (1− Hµl(Xm, . . . , X1))Hµl(Xm+1). (6)

The result follows from (6).

Theorem 11. Suppose that X = (X1, X2, X3, . . .) is an independent information source and
limn Hµl(Xn) 6= 0. Then hµl(X) = 1.

Proof. In view of Theorem 10 and Lemma A2, we conclude that

lim
n→∞

Hµl(Xn+1|Xn, . . . , X1) = lim
n→∞

(1− Hµl(Xn, . . . , X1))Hµl(Xn+1)

= lim
n
(1− Hµl(Xn, . . . , X1))× lim

n
Hµl(Xn+1) = 0.

Since limn Hµl(Xn) 6= 0, limn(1− Hµl(Xn, . . . , X1)) = 0. Hence,

hµl(X) = lim
n→∞

Hµl(Xn, . . . , X1) = 1.

Theorem 12. Let X = (X1, X2, X3, . . .) be an independent information source. Then

Hµl(Xm, . . . , X1) = 1−
m

∏
i=1

(1− Hµl(Xi))

for every m ∈ N.

Proof. Since X is an independent source,

Hµl(Xm, . . . , X1) = 1− ∑
x1,...,xm

(p(x1, . . . , xm))
2

= 1− ∑
x1,...,xm

(
m

∏
i=1

p(xi))
2 = 1− ∑

x1,...,xm

(
m

∏
i=1

(p(xi))
2)

= 1−
m

∏
i=1

(∑
xi

(p(xi))
2) = 1−

m

∏
i=1

(1− Hµl(Xi)),

which is the desired result.

Theorem 13. If X = (X1, X2, X3, . . .) is an independent information source, then

1. limn→∞ ∏n
i=1(1− Hµl(Xi)) = 1− hµl(X).

2. If there exists k ∈ N, such that Hµl(Xk) = 1, then hµl(X) = 1.
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Proof.

1. This follows from Theorem 12.

2. Let Hµl(Xk) = 1 for some k ∈ N. Since Hµl(Xk) = 1,

1− hµl(X) = lim
n→∞

n

∏
i=1

(1− Hµl(Xi)) = 0.

Hence, hµl(X) = 1.

Definition 11. Let X1 and X2 be two random variables on Γ. Define the logical mutual information
of X2 and X1 by

Iµl(X1, X2) := Hµl(X1)− Hµl(X1|X2).

Lemma 9. Let X1 and X2 be two random variables on Γ. Then the following hold:

1. Iµl(X1, X2) = Hµl(X2)− Hµl(X2|X1).
2. Iµl(X1, X2) = Hµl(X1) + Hµl(X2)− Hµl(X1, X2).
3. Iµl(X1, X2) = Iµl(X2, X1).
4. Iµl(X1, X1) = Hµl(X1).
5. If X1 and X2 are independent random variables, then

Iµl(X1, X2) = Hµl(X1)Hµl(X2).

Proof. 1–3 follows from Definition 11 and Theorem 7.
4. According to Lemma 3, Hµl(X1, X1) = Hµl(X1). Therefore,

Iµl(X1, X1) = Hµl(X1) + Hµl(X1)− Hµl(X1, X1)

= 2Hµl(X1)− Hµl(X1)) = Hµl(X1).

5. It follows from Lemma 12 that

Hµl(X1, X2) = 1− (1− Hµl(X1))(1− Hµl(X2))

= Hµl(X1) + Hµl(X2)− Hµl(X1)Hµl(X2).

Hence, the result follows from 2.

Definition 12. Let X = (X1, X2, X3, . . .) be an information source. Define the logical mutual
information of X1,. . . ,Xm by

Iµl(X1, . . . , Xm) :=
m

∑
i=1

Hµl(Xi)− Hµl(X1, . . . , Xm).

Lemma 10. Let X1 and X2 be two random variables on Γ. Then

0 ≤ Hµl(X2|X1) ≤ Hµl(X2).

Proof. It follows from Theorem 8 that

Hµl(X1, X2) = Hµl(X1) + Hµl(X2|X1)

and from Theorem 3 that Hµl(X1, X2) ≤ Hµl(X1) + Hµl(X2). Hence,

Hµl(X1) + Hµl(X2|X1) ≤ Hµl(X1) + Hµl(X2).
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This means that Hµl(X2|X1) ≤ Hµl(X2).

Theorem 14. Let X1 and X2 be two random variables on Γ. Then the following holds:

0 ≤ Iµl(X1, X2) ≤ min{Hµl(X1), Hµl(X1)}.

Proof. From Lemma 9, it follows that

Iµl(X1, X2) = Hµl(X1) + Hµl(X2)− Hµl(X1, X2).

Furthermore, Theorem 3 yields Hµl(X2) ≤ Hµl(X1, X2). Hence,

Iµl(X1, X2) = Hµl(X1) + Hµl(X2)− Hµl(X1, X2)

≤ Hµl(X1) + Hµl(X1, X2)− Hµl(X1, X2)

= Hµl(X1).

Similarly, Iµl(X1, X2) ≤ Hµl(X2); therefore,

Iµl(X1, X2) ≤ min{Hµl(X1), Hµl(X1)}.

On the other hand, (2) yields

Hµl(X2) + Hµl(X2)− Hµl(X1, X2) ≥ 0.

Therefore, Iµl(X1, X2) ≥ 0 and, thus,

0 ≤ Iµl(X1, X2) ≤ min{Hµl(X1), Hµl(X1)}.

3. Logical Entropy of Maps

Definition 13. Let f : Γ −→ Γ be a measurable function and α = {α1, . . . , αn} be a partition
of Γ. The logical metric entropy of order m of f with respect to the partition α is defined by

hµl,m( f , α) = 1− ∑
1≤x0,...,xm≤n

(µ(αx0 ∩ f−1(αx1) ∩ . . . ∩ f−m((αxm)))
2, (7)

and the logical metric entropy of f with respect to the partition α is defined by

hµl( f , α) = lim
m→∞

hµl,m( f , α). (8)

The limits in (7) and (8) exist (see Theorem (15)). The logical metric entropy of f is defined by
hµl( f ) = supα hµl( f , α).

Remark 2. 0 ≤ hµl( f ) ≤ 1.

Let I be an interval, h : I −→ I be a function and x ∈ I. For the finite orbit {hn(x) :
0 ≤ n ≤ L− 1}, we say that x is of type ordinal L-pattern π = π(x) = (π0, . . . , πL−1) if

hπ0(x) < hπ1(x) < . . . < hπL−1(x).

We denote Pπ the set of x ∈ I that are of type π.

Definition 14. The logical metric permutation entropy of order m of f is defined by

H?
µl,m( f ) := 1− ∑

π∈Sm

(µ(pπ))
2,
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and the logical metric permutation entropy of f is defined by

h∗µl( f ) := lim
m→∞

H?
µl,m( f ) = 1− lim

m→∞ ∑
π∈Sm

(µ(pπ))
2.

Theorem 15. Given A = {0, 1, . . . , n− 1} with Xm : [0, 1] −→ A, is defined as follows:

Xm(x) = i⇐⇒ f m(x) ∈ αi.

Then hµl( f , α) = hµl(X) where X is a stationary process (X0, X1, . . .).

Proof. Since

Hµl(Xm) = 1−
n−1

∑
i=0

(µ({x : f m(x) ∈ αi}))2

= 1−
n−1

∑
i=0

(µ( f−mαi))
2,

we have

p(x0, . . . , xm) = µ({x : x0(x) = x0, . . . , xm(x) = xm})
= µ({x : x ∈ αx0 , . . . , f m(x) ∈ αxm})
= µ(αx0

⋂
f−1(αx1) ∩ . . .

⋂
f−m((αxm)).

Hence,

Hµl(Xm
0 ) = 1−∑

xm
0

(µ(αx0

⋂
f−1(αx1)

⋂
. . .
⋂

f−m((αxm)))
2, (9)

and so (9) implies that hµl( f , α) = hµl(X).

4. Examples and Applications in Logistic and Tent Maps

Example 1. Let g(x) = 4x(1− x) : [0, 1] −→ [0, 1] be the logistic map (see Figures 1 and 2 and
Table 1). Then

p(0,1) = (0,
3
4
), p(1,0) = (

3
4

, 1),

p(0,1,2) = (0,
1
4
), p(0,2,1) = (

1
4

,
5−
√

5
8

), p(2,0,1) = (
5−
√

5
8

,
3
4
),

p(1,0,2) = (
3
4

,
5 +
√

5
8

), p(1,2,0) = (
5 +
√

5
8

, 1), p(2,1,0) = ∅.

Therefore,

∑
π∈S2

(µ(pπ))
2 = (

3
4
)2 + (

1
4
)2 =

5
8

,

H?
µl,2(g) = 1− 5

8
= 0/375,

∑
π∈S3

(µ(pπ))
2 = (

1
4
)2 + (

3−
√

5
8

)2 + (
1 +
√

5
8

)2 + (

√
5− 1
8

)2 + (
3−
√

5
8

)2,

=
17− 6

√
5

32
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and

H?
µl,3(g) = 1− 17− 6

√
5

32
=

15 + 6
√

5
32

' 0/888.

Figure 1. x, g(x), and g2(x).

Figure 2. H?
µl,m(g), and h?µ(g, m).
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Table 1. Logical metric permutation entropy and metric permutation entropy [1] for the logistic map
up to order m = 3.

m 1 2 3

H?
µl,m(g) 0 0/375 0/888

h?µ(g, m) 0 0/28 0/39

Example 2. Ref. [1] Let α = {α0 = [0, 1
2 ], α1 = ( 1

2 , 1]}. We consider the tent map (see
Figures 3 and 4 and Table 2) Λ : [0, 1] −→ [0, 1] by

Λ(x) =
{

2x 0 ≤ x ≤ 1
2 ,

2− 2x 1
2 ≤ x ≤ 1,

.

Define Xm : [0, 1] −→ {0, 1} via

Xm(x) =
{

0 if Λm(x) ∈ α0,
1 if Λm(x) ∈ α1,

for every m ≥ 0. Let

α00 = [0,
1
4
] = {x ∈ α0 : Λ(x) ∈ α0}, α01 = (

1
4

,
1
2
] = {x ∈ α0 : Λ(x) ∈ α1},

α10 = [
3
4

, 1] = {x ∈ α1 : Λ(x) ∈ α0}, α11 = (
1
2

,
3
4
) = {x ∈ α1 : Λ(x) ∈ α1}.

Given αi1 ...im , where m ∈ N, set

αi1 ...im0 = αi1 ...im

⋂
{x ∈ [0, 1] : Λm(x) ∈ α0},

αi1 ...im1 = αi1 ...im

⋂
{x ∈ [0, 1] : Λm(x) ∈ α1},

and

αi0i1 ...im =
m⋂

k=0

Λ−kαik .

Therefore,

α000 = [0,
1
8
], α001 = (

1
8

,
1
4
], α010 = [

3
8

,
1
2
], α011 = (

1
4

,
3
8
),

α100 = [
7
8

, 1], α101 = [
3
4

,
7
8
), α110 = (

1
2

,
5
8
], α111 = (

5
8

,
3
4
),

α0000 = [0,
1

16
], α0001 = (

1
16

,
1
8
], α0010 = [

3
16

,
1
4
], α0011 = (

1
8

,
3
16

),

α0100 = [
7
16

,
1
2
], α0101 = [

3
8

,
7
16

), α0110 = (
1
4

,
5

16
], α0111 = (

5
16

,
3
8
),

α1000 = [
15
16

, 1], α1000 = [
7
8

,
15
16

), α1010 = [
3
4

,
13
16

], α1011 = (
13
16

,
7
8
),

α1100 = (
1
2

,
9
16

], α1101 = (
9

16
,

5
8
], α1110 = [

11
16

,
3
4
), α1111 = (

5
8

,
3
4
).
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Figure 3. Λ, Λ2 and Λ3.

The sets {αi0 ...im−1} are identical to the binary sequences of 0 , 1 in length m.
Hence, µ(αi0 ...im−1) =

1
2m and, thus,

Hµl(Xm−1
0 ) = 1− ∑

i0 ...im−1

(µ(αi1 ...im))
2 = 1− ∑

im−1
0

(
1

2m )2

= 1− 2m × 1
22m =

2m − 1
2m .

So, hµl(X) = 1, hµl(Λ, α) = 1 and hµl(Λ) = 1. Furthermore, if

X = (X1, X1, X1, . . .),

then Hµl(X1, . . . , X1) = Hµl(X1) and hµl(X) = 1
2 .

Figure 4. Hµl,m(Λ), and hµ(Λ, m).

Table 2. Logical metric entropy and metric entropy [1] for the tent map up to order m = 3.

m 1 2 3 . . . m

Hµl,m(Λ) 0 0/75 0.875 . . . 1− 1
2m

h?µ(Λ, m) 0 ln 2 ln 2 . . . ln 2



Entropy 2022, 24, 1174 21 of 24

Example 3. Reference [1]. Consider the symmetric tent map in Example 2, we obtain (Figures 5
and 6 and Table 3)

p(0,1) = (0,
2
3
), p(1,0) = (

2
3

, 1),

p(0,1,2) = (0,
1
3
), p(0,2,1) = (

1
3

,
2
5
), p(2,0,1) = (

2
5

,
2
3
),

p(1,0,2) = (
2
3

,
4
5
), p(1,2,0) = (

4
5

, 1), p(2,1,0) = ∅,

p(0,1,2,3) = (0,
1
6
), p(0,1,3,2) = (

1
6

,
1
5
), p(0,3,1,2) = (

1
5

,
2
9
) ∪ (

2
7

,
1
3
),

p(3,0,1,2) = (
2
9

,
2
7
), p(0,2,1,3) = (

1
3

,
2
5
), p(2,0,3,1) = (

2
5

,
4
9
) ∪ (

4
7

,
3
5
),

p(2,3,0,1) = (
4
9

,
4
7
), p(2,0,1,3) = (

3
5

,
2
3
), p(3,1,0,2) = (

2
3

,
4
5
),

p(1,3,2,0) = (
4
5

,
5
6
), p(1,2,0,3) = (

6
7

,
8
9
), p(1,2,3,0) = (

5
6

,
6
7
) ∪ (

8
9

, 1).

Therefore,

∑
π∈S2

(µ(pπ))
2 = (

2
3
)2 + (

1
3
)2 =

5
9
' 0/556,

H?
µl,2(Λ) = 1− 5

9
=

4
9
' 0/444,

∑
π∈S3

(µ(pπ))
2 = (

1
3
)2 + (

1
15

)2 + (
4
15

)2 + (
2

15
)2 + (

1
5
)2 =

11
45
' 0/244,

H?
µl,3(Λ) = 1− 11

45
=

34
45
' 0/756,

∑
π∈S4

(µ(pπ))
2 ' 0.106,

H?
µl,4(Λ) ' 0/894.

Furthermore,

h?µl(Λ) = lim
m→∞

H?
µl,m(Λ) = 1 = hµl(Λ).

Figure 5. x, Λ(x), Λ2(x) and Λ3(x).



Entropy 2022, 24, 1174 22 of 24

Figure 6. H∗µl,m(Λ), and h∗µ(Λ, m).

Table 3. Logical metric permutation entropy and metric permutation entropy [1] for the tent map up
to order m = 4.

m 1 2 3 4

H?
µl,m(Λ) 0 0/444 0/756 0/894

h?µ(Λ, m) 0 0/32 0/41 0/59

Example 4. Let I = [0, 1] endowed with the measure ν,

ν(A) = χA(
1
2
) =

{
1 if 1

2 ∈ A
0 if 1

2 6∈ A,

and let f : [0, 1] −→ [0, 1] be a function. Then hνl( f , α) = 0 for every partition α. Hence,
hνl( f ) = 0.

5. Concluding Remarks

We introduced the concept of the logical entropy of random variables. In addition,
we found a bound for the logical entropy of a random variable. We also extended the
Shannon and permutation entropies to information sources. Finally, we used these results
to estimate the logical entropy of the maps. In this article, we only introduced the concept
of logical entropy for information systems. In future studies, researchers can find methods
that calculate or estimate the numerical value of this type of entropy. It is pertinent to
mention that, in the future, Rényi’s metric entropy and Rényi’s permutation entropy can be
generalized for information sources. Another important problem is to extend this idea for
quantum logical entropy, as it is a good direction to investigate the existence of such results.
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Appendix A

In this appendix, we prove the following results that we need in the paper.

Lemma A1. Let M = [θij]n×n be a matrix that 0 ≤ θij ≤ 1 for every 1 ≤ i, j ≤ n and
∑i,j θij = 1, then

n

∑
i=1

(
n

∑
j=1

θij)
2 +

n

∑
j=1

(
n

∑
i=1

θij)
2 ≤ 1 + ∑

i,j
θ2

ij.

Proof. Since

n

∑
i=1

(
n

∑
j=1

θij)
2 +

n

∑
j=1

(
n

∑
i=1

θij)
2 = ∑

i,j
θ2

ij + (∑
i,j

θij)
2 − 2 ∑

i 6=k,j<l
θijθkl

= ∑
i,j

θ2
ij + 1− 2 ∑

i 6=k,j<l
θijθkl ≤ 1 + ∑

i,j
θ2

ij,

the assertion is proved.

Theorem A1. Let aijk be real numbers and aijk ≥ 0 for every 1 ≤ i ≤ n1, 1 ≤ i ≤ n2 and
1 ≤ i ≤ n3. Then

2 ∑
i,j
(∑

k
aijk)

2 ≤ ∑
i,j,k

a2
ijk + ∑

i
(∑

j,k
aijk)

2. (A1)

Proof. Since

2 ∑
i,j
(∑

k
aijk)

2 = 2 ∑
i,j
(∑

k,r
aijkaijr) = 2 ∑

i,j,k,r
aijkaijr

≤ ∑
i,j,t,k,r

aijkaitr = ∑
i
(∑

j,k
aijk)

2

≤ ∑
i,j,k

a2
ijk + ∑

i
(∑

j,k
aijk)

2,

which completes the proof of the theorem.

Lemma A2. For an information source X = (X1, X2, X3, . . .),

lim
n→∞

Hµl(Xn|Xn−1, . . . , X1) = 0.

Proof. According to Theorem 9, the series ∑∞
n=1 Hµl(Xn|Xn−1, . . . , X1) converges and, thus,

limn→∞ Hµl(Xn|Xn−1, . . . , X1) = 0.
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