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Abstract: This paper addresses the problem of frequency stability prediction (FSP) following active
power disturbances in power systems by proposing a vision transformer (ViT) method that predicts
frequency stability in real time. The core idea of the FSP approach employing the ViT is to use the
time-series data of power system operations as ViT inputs to perform FSP accurately and quickly
so that operators can decide frequency control actions, minimizing the losses caused by incidents.
Additionally, due to the high-dimensional and redundant input data of the power system and the
O(N2) computational complexity of the transformer, feature selection based on copula entropy (CE)
is used to construct image-like data with fixed dimensions from power system operation data and
remove redundant information. Moreover, no previous FSP study has taken safety margins into
consideration, which may threaten the secure operation of power systems. Therefore, a frequency
security index (FSI) is used to form the sample labels, which are categorized as “insecurity”, “relative
security”, and “absolute security”. Finally, various case studies are carried out on a modified New
England 39-bus system and a modified ACTIVSg500 system for projected 0% to 40% nonsynchronous
system penetration levels. The simulation results demonstrate that the proposed method achieves
state-of-the-art (SOTA) performance on normal, noisy, and incomplete datasets in comparison with
eight machine-learning methods.

Keywords: frequency stability prediction; vision transformer; copula entropy; deep learning; power
system

1. Introduction

To respond to the global environmental crisis, 137 countries agreed to achieve carbon
neutrality by approximately 2050 after COP26 [1]. As an essential part of this climate action
plan, the large-scale replacement of fuel resources with renewable resources will be able
to effectively reduce carbon emissions [2]. Nevertheless, grid frequency support becomes
weakened as large-scale renewable generators are connected, which is a challenging issue
for power systems that must accommodate renewable energy penetration [3,4]. Specifically,
fuel resources in power systems usually belong to synchronous generators that provide
inertia and primary operating reserves to maintain system frequency stability [5]. However,
the inertia that maintains the system frequency stability is declining because synchronous
generators are being replaced by nonsynchronous generators (renewable resources) [6]. To
arrest and stabilize frequency volatility in renewable-energy-penetrated power systems, it
is essential to accurately and quickly predict system frequency stability, which helps system
planners and dispatchers to determine the corresponding control measures in advance,
such as under frequency load shedding [7,8], frequency regulation using renewable-power
production units [9], frequency regulation using loads [10], and frequency regulation using
storage devices [11].

The traditional methods for frequency stability prediction (FSP) are model-driven
methods, including the time-domain simulation (TDS) approach and its equivalent models,
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which are rigorous and logistic in derivation. TDS, as the cornerstone of this research field,
provides the most accurate frequency response results via high-order nonlinear equations
and stepwise integration. Nevertheless, TDS is not available for online FSP because this
method takes much time for its computations. Equivalent model-based methods have been
proposed to reduce the time consumption for FSP. However, these equivalent methods
achieve increased computing efficiency by simplifying their generator models, resulting in
accuracy decreases. Furthermore, the benefit derived from the development of data-driven
methods, such as machine learning (ML) methods [12,13], increases the feasibility of online
FSP in various scenarios, which fills the research gap mentioned above.

As the main branch of ML methods, deep-learning (DL) methods achieve vigorous
performance in online FSP due to their powerful nonlinear modeling capabilities. For
instance, transformers in DL have strong representation capabilities; they can extract global
features from the time-series data of power system operations. However, their O(N2)
computational complexity imposes high computational and time costs. In particular, the
high-dimensional and redundant data obtained from large-scale power systems make the
success of the transformer costly. Feature selection based on copula entropy (CE) is a simple
and effective way to ease the computational burden caused by a transformer and remove
redundant information. Given the advantages of transformers and CE, this paper uses
these approaches to form a DL framework and applies it to accurately and quickly predict
frequency stability, where the aim is to achieve the best performance without massive
computational resources. Additionally, to fully consider frequency response characteristics,
a frequency security index (FSI) is used as the prediction indicator of the DL methods.

The remainder of this paper is organized as follows: Section 2 introduces the related
studies. Section 3 presents the ViT-based FSP method. The overall process of the proposed
method is presented in Section 4. In Section 5, case studies are provided. In Section 6, the
proposed method is discussed. Finally, Section 7 is devoted to conclusions and future work.

2. Related Work

This section provides a literature review regarding power system stability prediction,
including model-driven and data-driven methods. In addition, the transformer models in
DL, feature selection methods, and FSIs are also reviewed in this section.

2.1. Model-Driven Methods

The traditional model-driven methods are mainly divided into two types: (1) TDS
and (2) its equivalent models. TDS involves power flow models [14,15] and component
models [16,17], such as generators, turbines, boilers, governors, exciters, and power system
stabilizers. According to its detailed simulation models, TDS can accurately depict dynamic
frequency processes, but it is not able to perform online prediction in a power system
due to its high computational burden. The equivalent model-based methods neglect the
power flow models and simplify the component models to predict dynamic frequency
responses; these models include the average system frequency [18,19] model and system
frequency response (SFR) [20,21] model. In [20], a low-order SFR model was able to
reduce the computational burden and limit the errors induced by frequency response
estimation. In [21], an integration method was proposed to combine the SFR model and
Type-3 wind turbines for dynamic frequency analysis. In [22], an improved SFR model was
proposed to analyze the influences of thermal states on dynamic frequency responses by
extending the typical SFR model with a thermodynamic boiler submodel. Overall, there
is always a trade-off between computational efficiency and accuracy in the equivalent
model-based methods.

2.2. Data-Driven Methods

Currently, power system operation data in real time can be accessed by wide-area mea-
surement systems (WAMSs) with phasor measurement units (PMUs) [23]. Therefore, ML
has been a popular technique for analyzing power system stability in recent years [24,25].
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Various DL methods, such as long short-term memory (LSTM) [26], convolutional neural
networks (CNNs) [27], and graph neural networks (GNNs) [28], have been widely applied
to power system stability prediction. To the best of the authors’ knowledge, LSTM is good
at extracting sequence features [29], CNNs are good at extracting local features [30], and
GNNs are good at extracting topology structure features [31]. Each DL method mentioned
above has corresponding advantages. Therefore, based on these characteristics, some schol-
ars have developed multi-model combinations, such as CNN-LSTM [32], CNN-GRU [33],
and GNN-LSTM [34] models, to further mine data from various aspects of information
for prediction purposes. It is noteworthy that none of the former studies focused on
transformer models in the research field of power system stability.

2.3. Transformer Models in DL

The original transformer, as a powerful DL model, was first proposed in [35]. Unlike a
CNN or LSTM, a transformer can extract global features via an attention mechanism. The
most representative work is the bidirectional encoder representations from transformers
(BERT) [36]. At present, most state-of-the-art (SOTA) natural language processing (NLP)
tasks involve BERT. Inspired by the stunning performance of transformers in NLP, the
Brain Team of Google Research proposed a vision transformer (ViT) [37] model to solve
computer vision (CV) tasks, and the ViT outperformed ResNet [38] in image classification.
After this, researchers studying other CV tasks tried to use the transformer architecture as
their backbone networks to achieve object detection [39] and semantic segmentation [40].
Inspired by the fantastic performance of transformers in NLP and CV, this paper first
proposes a ViT-based FSP method to fill the research gap regarding the use of transformers
in power system stability prediction.

2.4. Feature Selection Methods

The current feature selection approaches can be classified into three categories:
(1) embedded methods; (2) filter-based methods; and (3) wrapper-based methods. Specifi-
cally, an embedded method is injected into the learning process of a forecasting model. A
filter-based method is independent of any prediction model. A wrapper-based method is
based on an optimization algorithm and a forecasting model [41]. In terms of this study,
DL methods can automatically perform feature extraction, but at a high cost. We hope
that there is a simple and effective way to remove apparently redundant features. CE-
based feature selection is a filter-based method, so it can meet the above requirements.
Compared with embedded and wrapper-based methods, filter-based methods have higher
execution efficiency and greater generalization capabilities [42]. In particular, mutual infor-
mation (MI) [43] and RReliefF are typical filter-based methods. In [44], CE is proven to be
equivalent to MI but has a lower computational burden than MI.

2.5. Frequency Security Indices

Frequency prediction indicators can be divided into two kinds: frequency curve
prediction [32,45] and frequency characteristics prediction [46,47]. However, the above
frequency indicators only distinguish between frequency security and insecurity. None of
the previous studies paid attention to safety margins. Delkhosh and Seifi [48] proposed an
FSI considering all frequency key characteristics. Due to the decline in power system inertia,
this paper combines the center-of-inertia frequency (COIF) and FSI to divide the system
frequency responses into three categories, i.e., insecurity, relative security, and absolute
security. Note that relative security reflects the safety margin of the frequency response,
which can help operators avoid the risk caused by low inertia. For the above reasons, the
FSI is used as the prediction indicator of the DL methods.

2.6. Our Contributions

Finally, the main contributions of this paper are summarized as follows.
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• This paper proposes a ViT-based FSP method that predicts frequency security online
following a disturbance.

• A CE-based feature selection method is used to construct image-like data with fixed
dimensions, which can decrease the computational burden of the proposed model by
removing redundant information.

• This paper develops a novel FSI as the predicted result of the model, which considers
the safety margin and comprehensive characteristics of frequency compared with the
traditional indicators.

• Case studies are conducted on a modified IEEE 39-bus system and a modified AC-
TIVSg500 system for projected 0% to 40% nonsynchronous system penetration levels,
aiming to validate the proposed method’s efficacy and scalability.

3. ViT-Based FSP Method
3.1. Vision Transformer (ViT)
3.1.1. Multihead Self-Attention

Normal qkv self-attention (SA) [49] is a building block for DL, and it is given by
Equation (1). We compute a weighted sum over all values for every element in an input
sequence z ∈ RN×D. The attention weights Aij are based on the pairwise similarity between
two elements in the sequence and their respective query qi and key kj representations.

[q, k, v] = zUqkv Uqkv ∈ RD×3Dh ,

A = softmax(qkT/
√

Dh

)
A ∈ RN×N ,

SA(z) =Av.

, (1)

Figure 1 introduces a multihead self-attention (MSA) [35] mechanism that can be
used to increase the performance of the SA layer, in which we run h self-attention opera-
tions (named “heads”) in parallel and project their concatenated outputs. It is given by
Equation (2), and when changing h, Dh is usually set to D/h to maintain the number of
calculated parameters constant.

MSA = [SA 1(z); SA2(z); · · · ; SAh(z)]Umsa Umsa ∈ Rh·Dh×D, (2)
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Figure 1. Multihead self-attention. Figure 1. Multihead self-attention.

3.1.2. ViT

The ViT adopts a pure transformer architecture, which has minimal changes for
performing image classification tasks and achieves better performance than ResNet [37]. It
follows the raw design of transformers as much as possible. Figure 2 depicts the framework
of the ViT.
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To process 2D images, an image x ∈ RH×W×C is reshaped into N nonoverlapping
image patches xp ∈ RN×(P2·C) such that p2 is the resolution of each image patch, C is the
number of channels, and (H, W) is the resolution of the original image. The ViT performs
a trainable linear projection that maps each vectorized path to 1D tokens zi ∈ Rd. The
sequence of 1D tokens input into the subsequent transformer encoder is as follows:

z = [Ex1, Ex2, . . . , ExN ] + P1d, (3)

where E denotes a linear projection that is equivalent to a 2D convolution [50], and P1d
denotes 1D position embeddings that are added to the patch embeddings to retain posi-
tional information. The tokens are passed through an encoder consisting of a sequence
of transformer layers. Each layer ` comprises layer normalization (LN) [51], multilayer
perception (MLP) [36], and MSA blocks, as follows:

y = MSA(LN(z `)) + z`, (4)

z`+1 = MLP(LN(y `)) + y`, (5)

The MLP is made up of two linear projections split by a GELU activation function [37],
and the token dimensionality remains constant throughout all layers. Finally, a linear
classifier is utilized to classify the encoded input.

As shown in Figure 2, power system operation data are reshaped into an equivalent
form RH×W×C, where H is the sampling time series of the sensors, W is the dimensionality
of the data, and C is the number of channels. Given such a transformation, FSP of power
systems can also be carried out by the ViT model.
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3.2. CE-Based Feature Selection

Statistical independence is a fundamental concept in the fields of statistics and ML.
Copulas provide theoretical tools for uniformly representing the statistical associations
between random variables [52]. The core of copula is the Sklar theorem [53], which
shows that a multivariate density function can be denoted as a product of its marginal
and copula density functions, indicating a dependence structure among the associated
random variables.

Suppose that X represents random variables whose marginals and copula density
are u and c(u), respectively. According to the copula density, the CE of X can be defined
as follows:

Hc(X) = −
∫

u
c(u) log c(u)du, (6)

where c(u) = dNC(u)
du1du2···duN

.
In [44], a parameter-free CE estimation approach was proposed, including two steps:

(1) Estimating the empirical copula density (ECD)
(2) Estimating the CE

For step 1, if independent identically distributed samples {x1, . . . , xT} are generated
from random variables X = {x1, . . . , xN}T , one can easily estimate the ECD as follows:

Fi(xi) =
1
T

T

∑
t=1

χ(xi
t ≤ xi), (7)

where i = 1,..., and N and χ represent an indicator function. Let u = [F1, . . . , FN ]; then, one
can derive a new sample set {u1, . . . , uT} as data from the ECD c(u).

Once the ECD is estimated, step 2 is essentially an entropy estimation problem. The k-
nearest-neighbor method [43] is utilized to estimate the CE. A larger CE denotes a stronger
correlation between the tested variables. The desired features can be obtained by measuring
the CE values between the input features and the target features.

In this work, power system operation data are reshaped into three 32× 32 dimensional
matrices, i.e., image-like data with three channels and 32 pixels, via CE-based feature
selection. In this process, considerable redundant information is removed from the power
system operation data. Therefore, such input data with fixed dimensions are utilized as the
inputs of the ViT to avoid an unnecessary computational burden.

3.3. Frequency Security Index
3.3.1. Center-of-Inertia Frequency

The frequency of each generator fluctuates around the COIF when a sudden incident
occurs in the power system. Therefore, the COIF is commonly used to represent the power
system frequency in load shedding schemes [54]. The COIF is given by Equation (8).

fCOI = (∑N
i=1 HiSi fi)/(∑N

i=1 HiSi), (8)

where Hi, Si, and fi represent the inertia constant, rated apparent power, and frequency of
generator i, respectively. N stands for the number of synchronous generators. In this work,
the COIF is used to calculate the proposed FSI.

3.3.2. Insecure Boundaries and Secure Boundaries

Insecure boundaries (IBs) are provided by standards and policies to maintain the
system stability and reliability, i.e., the maximum frequency deviation (FD), rate of change
of frequency (RoCoF), and quasi-steady-state frequency deviation (QSSFD). As depicted
in Figure 3, an IB is a constant boundary distinguishing between the secure (stable) and
insecure (unstable) frequencies after an active power disturbance.



Entropy 2022, 24, 1165 7 of 24

Entropy 2022, 24, x FOR PEER REVIEW 7 of 25 
 

 

where Hi, Si, and fi represent the inertia constant, rated apparent power, and frequency of 
generator i, respectively. N stands for the number of synchronous generators. In this work, 
the COIF is used to calculate the proposed FSI. 

3.3.2. Insecure Boundaries and Secure Boundaries 
Insecure boundaries (IBs) are provided by standards and policies to maintain the 

system stability and reliability, i.e., the maximum frequency deviation (FD), rate of change 
of frequency (RoCoF), and quasi-steady-state frequency deviation (QSSFD). As depicted 
in Figure 3, an IB is a constant boundary distinguishing between the secure (stable) and 
insecure (unstable) frequencies after an active power disturbance. 

t

f

Insecure Boundary 
(α, β, γ = 1)

Secure Boundary 
(α, β = 0.8, γ = 0.9)

Secure Boundary 
(α, β = 0.5, γ = 0.6)

Secure Boundary 
(α, β = 0.2, γ = 0.4)

Nadir frequency

Quasi steady state 
frequency

RoCoF(df/dt)

Inertia 
response Primary frequency response

 
Figure 3. Impact of different security coefficients (α, β, and γ) on an SB. 

Secure boundaries (SBs) distinguish between absolute security and relative security. 
As depicted in Figure 3, an SB is a flexible boundary determined by the disturbance size, 
and different values of α, β, and γ lead to different SBs, where α, β, and γ are dependent 
on the disturbance size, as defined in Equations (9)–(12). 

The detailed calculation process of the IB and SB is shown in Table 1. Δfc, RoCoF, and 
Δfs in Table 1 represent the FD, RoCoF, and QSSFD, respectively. Δfcmax, RoCoFmax, and 
Δfsmax in Table 1 represent the maximum FD, RoCoF, and QSSFD, respectively. α, β, and γ 
in Table 1 represent the security coefficients of the FD, RoCoF, and QSSFD, respectively. 
The security coefficients (α, β, and γ) are defined in Equations (9)–(12). 

max min
T

max min

( , , )T Tk T
M M

α β γ−
= =

−
, (9) 

min

min max

max

0.2, ,
, ,

0.8, ,

M M
k M M M M

M M
αα

≤
= ⋅ < ≤
 <

, (10) 

min

min max

max

0.2, ,
, ,

0.8, ,

M M
k M M M M

M M
ββ

≤
= ⋅ < ≤
 <

, (11) 
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Secure boundaries (SBs) distinguish between absolute security and relative security.
As depicted in Figure 3, an SB is a flexible boundary determined by the disturbance size,
and different values of α, β, and γ lead to different SBs, where α, β, and γ are dependent
on the disturbance size, as defined in Equations (9)–(12).

The detailed calculation process of the IB and SB is shown in Table 1. ∆fc, RoCoF, and
∆fs in Table 1 represent the FD, RoCoF, and QSSFD, respectively. ∆fcmax, RoCoFmax, and
∆fsmax in Table 1 represent the maximum FD, RoCoF, and QSSFD, respectively. α, β, and
γ in Table 1 represent the security coefficients of the FD, RoCoF, and QSSFD, respectively.
The security coefficients (α, β, and γ) are defined in Equations (9)–(12).

kT = Tmax−Tmin
Mmax−Mmin

(T = α, β, γ), (9)

α =


0.2, M ≤ Mmin,
kα·M, Mmin < M ≤ Mmax,
0.8, Mmax < M,

, (10)

β =


0.2, M ≤ Mmin,
kβ·M, Mmin < M ≤ Mmax,
0.8, Mmax < M,

, (11)

γ =


0.4, M ≤ Mmin,
kγ·M, Mmin < M ≤ Mmax,
0.9, Mmax < M,

, (12)

where M represents the disturbance size; Mmax and Mmin respectively represent the max-
imum and minimum disturbance sizes, which are reference values determined by the
historical disturbances in the power system; and kT represents the linear coefficient of the
three security coefficients.

Table 1. SB and IB.

Index (ϕ)
Boundaries

SB (ϕ) IB (ϕ)

∆fc α × ∆fcmax ∆fcmax

RoCoF β × RoCoFmax RoCoFmax

∆fs γ × ∆fsmax ∆fsmax
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3.3.3. Calculation of the FSI

The proposed FSI aims to qualitatively evaluate the frequency stability of a power
system for a specified operating condition. When an incident occurs, the system frequency
response can be divided into three states: insecurity, relative security, and absolute security.
In Equation (13), the numbers 0, 1, and 2 indicate insecurity, relative security, and absolute
security, respectively.

SS(ϕ) =


2, SB(ϕi) < ϕi,
1, IB(ϕi) < ϕi ≤ SB(ϕi),
0, ϕi ≤ IB(ϕi),

(ϕ1,2,3 = ∆ fc, RoCoF, ∆ fs)

, (13)

where ϕi indicates three frequency characteristics, such as ∆fc, RoCoF, and ∆fs. SB(ϕ) and
IB(ϕ) are presented in Table 1. Furthermore, the minimum value among the three frequency
characteristics is the FSI, which is given by Equation (14).

FSI = min
{

SS(ϕ1), SS(ϕ2), SS(ϕ3)
}

, (14)

For a clear understanding of the FSI, the effect diagram of the FSI is illustrated in
Figure 4. If the COIF curve is located in the red zone, the system frequency is absolutely
secure. If some parts of the COIF curve are located in the orange or blue area, the system
frequency is relatively secure or insecure, respectively.
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It is worth noting that the occurrence times of the maximum FD and the maximum
QSSFD are not included in this paper. Due to their weak correlations with the disturbance
size, it is not appropriate for the occurrence times of the maximum FD and the maximum
QSSFD to undergo a similar process.

4. Overall Process of the Proposed Method
4.1. Raw Database

Original feature formation is critical for ensuring the accuracy of the FSP results. For a
sudden disturbance in a power system, generators withstand the unbalanced power based
on the corresponding synchronization factor. The synchronization factor between node j
and node k is represented as:

SPjk = VjVk(Bjk cos δjk − Gjk sin δjk), (15)
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where V and δ denote the voltage amplitude and phase angle difference, respectively, and
Bjk and Gjk denote the transfer impedance. Therefore, the voltage amplitude and phase
angle of each bus [32] should be added to the original features. Furthermore, the power
imbalance ∆P for a generator is defined as:

∆P = Pm − Pe = 2
H
fN

d f
dt

, (16)

where Pm and Pe represent the mechanical power and electrical power of the generator,
respectively. H stands for the inertia constant of the generator. fN stands for the system
operational frequency. Referring to Equation (16), the electrical power values of the genera-
tors [32] are also selected as original input features. Note that the electrical power values
of the nonsynchronous generators also might be related to frequency stability, according
to [55–57]. Thus, in our work, the electrical power values of all generators are selected as
original input features. Furthermore, the active power load of each bus and the apparent
power of each line are also selected as original input features, as they can reflect the current
power flow situation. In practice, sensors (i.e., PMUs) and TDS software (i.e., PSS/E,
DIgSILENT) are able to provide the above data as a raw database. Specifically, they are
listed in Table 2.

Table 2. Original feature selection.

Number Original Feature

1 Electrical power of each generator from t0 to 32 f t
2 Active power load of each bus from t0 to 32 f t
3 Voltage amplitude of each bus from t0 to 32 f t
4 Voltage phase angle of each bus from t0 to 32 f t
5 Apparent power of each line from t0 to 32 f t

Note: t0 is the initial sampling point when a disturbance occurs. f t is the sampling period.

4.2. Offline Training

As illustrated in Figure 5, the offline training process of the proposed method includes
two parts: (1) performing CE-based feature selection and (2) training and building the
ViT model.
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The first part calculates the CE values between the input data at the initial moment
t0 and the FSIs. By sorting the CE values, the desired feature subset is obtained, the
dimensionality of which is 96. Then, the data shape of the feature subset is reshaped into
three channels, 32 features, and 32 sampling points, similar to an RGB image of 32 pixels.
Moreover, zero-mean normalization [30] is used to eliminate the magnitude differences
between different features before inputting them into the model, and this process is defined
as follows:

x∗ =
x− µ

σ
, (17)

where µ is the mean of all data, σ is the standard deviation of all data, and x* is the
normalized data.

For the second part, the loss function is the cross-entropy error function [30]. The
optimization solver adopts Adam [58] to update parameters. The number of epochs is set
to 200, and the batch size is set to 200 for each epoch. The initial learning rate is 0.0005,
and the CosineAnnealingLR [59] schedule is used to decrease the learning rate to yield
improved training efficiency.

4.3. Online Application

All steps of the online application are shown in Figure 5. The post-fault input data in
the feature subset can be sampled by a WAMS with PMUs, and then these data input into
the well-trained model, enabling the quick prediction of the FSIs, i.e., insecurity, relative
security, and absolute security. The operators utilize corresponding controls and strategies
by referring to the prediction results to minimize the loss caused by the incident. Moreover,
note that the model only needs data from the feature subset in the online application stage,
which means that the PMU does not cover the entire power system. Because PMUs are
expensive, this can increase the economy of the ML system in online applications [60].
Finally, online updating of the database and retraining of the model can be carried out
hourly or daily to adapt to various system operation situations [27].

4.4. Evaluation Indicators

In this paper, the FSP of power systems is a classification task. Therefore, accuracy
(ACC), precision (PRE), recall (REC), and F-measure (F1) are employed as the evaluation
metrics. These metrics are defined in Equation (18).

ACC = ∑2
i=0 TPi/ntotal

PREi = TPi/(TPi + FPi)
RECi = TPi/(TPi + FNi)
F1 = 2 ∗ PRE ∗ REC/(PRE + REC)

, (18)

where TPi, FPi, and FNi are the number of true-positive samples, the number of false-
positive samples, and the number of false-negative samples under each security state i,
respectively. ntotal is the total number of samples. PREi, and RECi are the precision and
recall under each security state i, respectively, whose average values are PRE and REC.

4.5. Equipment and Software

All tested algorithms are implemented in Pytorch-v1.10.1 and Scikit-learn-v1.0.2. The
CE-based feature selection process is provided by pycopent-v0.2.3, which is available in
R or Python. Moreover, all algorithms are trained on a personal computer with an Intel
Core(TM) i5-12600KF CPU @ 3.70 GHz (Santa Clara, CA, USA), 32 GB of RAM and an RTX
3060 GPU ((Santa Clara, CA, USA)).

5. Case Studies
5.1. A Modified New England 39-Bus System

Numerical simulations were implemented on a modified New England 39-bus system
with PSS/E [61] to simulate the data acquired by a WAMS and PMUs. To approximate the
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system behavior [27], the load levels of the power system were set to 50%, 51%, . . . , and
100% of the original load levels [32]. The same ratio was also used to scale the generation
power, but extra modifications were provided to ensure that all input data fall within a
reasonable range [27]. Under different power flow levels, the sudden load volatility was
set to the active power disturbance [32]. The disturbance was assumed to occur on all load
buses. The fault sizes were set to range from −500 MW to 500 MW at intervals of 100 MW.
The fault occurrence time was set at the simulation start moment (0 s), the simulation
duration was 60 s, and the sample rate was 100 Hz for each incident. Additionally, wind
farms were connected to bus 2, bus 29, and bus 39 of the system. Dynamic wind farm
models were provided by the Western Electricity Coordinating Council (WECC) [62].
Specifically, the wind turbine converter module adopted WT3G2, the electrical control
module adopted WT3E1, the mechanical control module adopted WT3T1, and the pitch
control module adopted WT3P1. The detailed parameters of dynamic wind farm models
are listed in Appendix A. Changing the power output of the generating units controlled
the renewable energy penetration rate (REPR). This study set the REPR to 0%, 5%, . . . , and
40% of the total generation power output.

The detailed configurations utilized for dataset generation are summarized in Table 3.
The FSI was used for each sample to annotate the corresponding frequency stability category.
The required input data for the FSI calculation process are listed in Table 4. Consequently,
69,768 labeled samples were formed under the above conditions. As described in the
CE-based feature selection discussion, the input data obtained within 0.32 s were selected
as a subset with 96 features. The number of sample points was T = 0.32/0.01 = 32, and
the input sample of each disturbance was X ∈ R32×32×3. In the subsequent experiments,
the dataset was divided randomly at a 7:3 ratio into training and test datasets to assess the
performance discrepancies among various methods.

Table 3. Configurations used for dataset generation on the modified New England 39-bus system.

Name Value

Load Levels 50%, 51%, 52%, . . . , 100%
Fault Buses 3, 4, 7, 8, 12, 15, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 39

Fault Sizes (MW) −500, −400, −300, −200, 200, 300, 400, 500
REPRs 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%

Table 4. Input data for the FSI calculations of the modified New England 39-bus system.

Disturbancemax
(MW)

Disturbancemin
(MW)

∆fmax
(Hz)

|RoCoFmax|
(Hz/s)

∆fsdes
(Hz)

±400 ±200 0.6 0.5 0.25

In this work, the sample annotation process was based on the FSI. Each sample be-
longed to one of three frequency categories, i.e., insecurity, relative security, and absolute
security. To observe the correlation between the REPR and FSI, Figure 6 presents the distri-
bution of the FSI (labels) under 0% to 40% REPRs. The number of insecure samples follows
an increasing trend with the growth of the REPR. Conversely, the number of absolutely
secure samples follows a decreasing trend with the growth of the REPR. Moreover, the
number of relatively secure samples approximatively follows a normal distribution. It is
assumed that the other operating conditions are not shifted, such that the growth of the
REPR deteriorates the frequency stability of power systems.
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5.1.1. Feature Subset

Due to the vast computational resources required by a transformer, a single-layer
fully connected network (FCN) is used to verify the effectiveness of CE-based feature
selection in this section. Figure 7a depicts a comparison between the raw dataset and
the optimal dataset in terms of the accuracy, training time, and parameter size of the
FCN. The parameter size denotes the required computational resources, which are mainly
dependent on the data dimensionality and model complexity. According to dimensionality
reduction, CE-based feature selection can reduce the training time and parameter size
while maintaining the original performance as much as possible. Figure 7b shows the
component analysis results of the feature subset. In the feature subset, the apparent power
of the transmission line accounts for 33.3% of the feature subset, and the voltage phase
angle of the bus accounts for 31.3% of the feature subset. This reflects that these physical
variables may involve much effective information for the FSP. Subsequently, the active
power load accounts for 21.9% of the subset, and the voltage amplitude of the bus accounts
for 13.5% of the subset. This reflects that these physical variables only involve some
effective information for the FSP. It is worth noting that the active power of the generator
accounts for 0%. This reflects that the active power of the generator may provide zero or
slight effective information for the FSP. Overall, CE, as a theoretical tool in statistics, tries
to analyze the correlation between system frequency and other physical variables of the
power system. To some degree, this can help system planners and dispatchers understand
what input features are important for the FSP.

Finally, the feature subset provided by CE-based feature selection can substitute for
the raw dataset. Thus, the next section adopts this feature subset as the input dataset to
compare the performance of different models.
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5.1.2. Performance Comparison

A support vector machine (SVM), FCN, LeNet [63], AlexNet [64], ResNet [38],
VGG [65], MobileNet [66], and InceptionNet [67] are utilized for comparison to test the
performance of the ViT on the same dataset. The SVM and FCN are traditional ML models
and are the default implementations provided by Sklearn. LeNet, AlexNet, ResNet, VGG,
MobileNet, and InceptionNet are traditional DL models that use the same parameters and
structure as those in their original papers. In particular, the structure of the ViT contains
three transformer encoder layers and one MLP layer for classification. The detailed hyper-
parameters of the well-trained ViT model are listed in Table 5. For a fair comparison, the
ViT and other DL models adopt the same training strategy.

Table 5. The hyperparameters of the ViT model.

Hyperparameter Value

Input size 32
Classes 3

Patch size 4
Hidden size 256

Heads 8
MLP size 128
Dropout 0.05

As shown in Figure 8, it is evident that the proposed method achieves SOTA per-
formance in comparison with the traditional ML and DL methods. The PRE and REC
values are similar to the ACC values, which reflects that the models treat each FSI category
fairly. The traditional ML models lack the powerful feature-extraction capability of DL.
Thus, they have poorer performance than the DL models. The traditional DL models
extract data information by the convolution layer. However, the convolution layer focuses
on the extraction of local data features, and obtaining global data information requires a
large number of convolution layers. However, according to the results, MSA is a better
effective mechanism than convolution. Unlike convolution, MSA can directly extract global
features [35], which leads to better performance for the proposed method. Moreover, since
FSP has high demands regarding the execution times of models, the proposed algorithm
only takes approximately 0.34 s (the time window is 0.32 s and the execution time is 0.02 s)
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to be executed for predicting each FSI category since the implementation of transformer
models has been highly optimized [36]. Thus, the proposed method is acceptable for
online applications.
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5.1.3. Influence of Gaussian Noise

The experiments, as mentioned above, are assumed to sample data from the PMUs in
power systems without any noise. However, PMUs usually suffer from noise interference
and sampling errors [27]. To analyze the influence of white Gaussian noise on the models,
this study added a noise n with different signal–noise ratios (SNRs) to the feature subset.
The SNR is given by Equation (19). The accuracies of the ViT and the other models on the
noisy data are reported in Table 6, where the best values are highlighted in boldface.

SNR = 10 log10
∑l

i=1 ∑h
j=1 P2

d (i, j)

∑l
i=1 ∑h

j=1 n2(i, j)
, (19)

Table 6. Test accuracy of different models on the noisy datasets of the modified New England
39-bus system.

Model
Accuracy (%)

50 dB 45 dB 40 dB 35 dB 30 dB 25 dB 20 dB 15 dB 10 dB

SVM 93.93 93.81 93.68 93.49 93.02 92.55 91.51 89.05 84.92
FCN 96.36 95.88 94.90 94.13 93.98 93.89 92.16 89.38 85.81

LeNet 89.42 89.33 89.08 88.52 87.16 86.74 85.31 84.95 82.06
AlexNet 97.53 97.29 96.86 96.78 96.63 96.36 94.78 90.23 82.31

InceptionNet 98.16 98.08 97.87 97.39 96.98 96.33 95.22 94.02 90.29
VGG 97.55 97.24 97.07 96.86 96.61 95.91 95.34 93.49 89.16

ResNet 97.27 97.08 96.78 96.58 96.26 95.82 95.04 92.16 90.15
MobileNet 97.81 97.76 97.72 97.35 96.94 96.35 94.24 90.14 81.37
ViT (ours) 98.86 98.54 98.39 98.21 97.97 97.42 96.56 94.79 90.94

As the SNR declines from 50 dB to 10 dB, Gaussian white noise hinders the useful
feature vector information extracted by the ML models, reducing their accuracy. In Table 6,
it can be observed that the ViT achieves SOTA accuracy on noisy datasets (from 50 dB to
10 dB) relative to those of other methods. Note that the ViT still exceeds 90% accuracy
on the noisy data with an SNR of 10 dB. In contrast, the accuracies of the SVM, the FCN,
LeNet, AlexNet, and MobileNet are obviously lower than 90% on noisy data, with an SNR
of 10 dB. Overall, the ViT ensures the concentration of useful information in the extracted
feature vectors, which illustrates that the ViT can tolerate PMU noise in practice.
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5.1.4. Incomplete Data Analysis

Another assumption mentioned above is that the PMU measurements of all data are
available. In practice, some PMU data may be missing due to PMU losses or communication
delays [27]. To analyze the influences of incomplete data on the models, we randomly
set the data of each sample to 0 with the same proportions. The incomplete ratio can be
described by Equation (20), where Nmissing is the number of missing data, and Nall is the
total number of data. The accuracies of the models on the incomplete data are presented in
Table 7, where the best values are also highlighted in boldface.

IncompleteRatio = Nmissing/Nall , (20)

Table 7. Test accuracies of different models on the incomplete datasets of the modified New England
39-bus system.

Model
Accuracy (%)

5% 10% 15% 20% 25% 30% 35% 40%

SVM 87.29 84.44 82.65 80.76 79.16 77.57 76.60 75.72
FCN 87.98 85.08 83.14 81.31 80.55 79.13 78.19 76.93

LeNet 84.49 83.06 82.84 80.88 79.66 79.59 79.28 79.18
AlexNet 92.25 87.62 84.57 79.47 77.61 75.33 73.58 71.44

InceptionNet 96.06 95.29 94.48 93.11 91.79 90.76 89.89 89.78
VGG 94.91 93.04 90.83 90.16 87.92 86.24 85.48 83.82

ResNet 96.63 95.46 94.78 93.78 92.98 91.54 90.49 89.97
MobileNet 87.77 86.27 80.34 76.02 72.08 71.76 69.03 67.76
ViT (ours) 97.11 95.86 95.08 94.95 94.32 93.62 92.54 90.78

As the incomplete ratio rises from 5% to 40%, the missing data also reduce the infor-
mation contained in the feature vectors extracted by the ML models, which decreases their
accuracy. As shown in Table 7, the ViT achieves SOTA accuracy compared with that of other
ML methods. Under incomplete ratios of 5% and 10%, the ViT exceeds 95% accuracy. An
incomplete ratio of more than 10% is rare in real power systems unless they are maliciously
attacked. In the case with malicious attacks, the accuracy of the ViT still remains at 90.78%
under an incomplete ratio of 40%. For this situation, one of the reasons for this performance
may be attributed to the global feature extraction ability of the transformer model. Addi-
tionally, it should be noted that the accuracies of InceptionNet and ResNet are close to that
of ViT. The main reason for this may be that stacking a large number of convolution layers
can similarly extract global features from local features [38]. However, MSA can naturally
extract global features. Thus, the ViT is less affected in terms of performance when data
are missing. Finally, the ViT is empirically proven to work more robustly than CNN-based
models, even when some PMU measurements are unavailable.

5.1.5. Visualization Analysis of the ViT

TSNE [68] is a popular method for embedding high-dimensional data to visualize
them in a low-dimensional space. To further analyze the representation ability of the
ViT, we decrease the dimensions of the feature vectors extracted by the model to 2D
for visualization purposes. The results are shown in Figure 9, in which the closer the
sample points are, the more similar they are, and the different colors distinguish different
categories. Figure 9a shows the feature visualization results obtained from the raw data
after performing dimensionality reduction via TSNE, and there are no evident demarcation
lines between the three categories. After full training, it is clear from Figure 9b that the
chaotic feature is separated into several clusters by the well-trained ViT model. The TSNE
visualization results demonstrate the powerful feature extraction ability of the transformer
architecture. Moreover, the representations learned by the MSA mechanism are useful for
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the subsequent classification task. Overall, this proves that the ViT model has the ability to
find effective representations for classification.
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last layer.

5.2. A Modified ACTIVSg500 System

In addition to the modified New England 39-bus system, a more extensive synthetic
system, the modified ACTIVSg500 system, was also employed as a test case to validate
the performance and scalability of the proposed method. As shown in Figure 10, the
ACTIVSg500 system was built based on the footprint of western South Carolina, covering
approximately 21 counties with approximately 2.6 million people [69]. The ACTIVSg500
system has two voltage levels (345/138 kV). Furthermore, it contains 90 generators with
a total generation capacity of approximately 12 GW [70]. The synchronous generators
include coal, gas, and hydro generators. The nonsynchronous generators include wind and
solar PV power plants. Specifically, the detailed parameters of dynamic wind farm models
are the same as those in the previous case. The grid interface module for solar generators
adopts REGCAU1, the electrical control module for solar generators adopts REECBU1, and
the plant controller module for solar generators adopts REPCAU1. The detailed parameters
of solar PV power plants are listed in Appendix A. The wind power plants are connected to
nodes 9, 144, and 197 of the system, and the solar PV power plants are connected to nodes
17, 167, and 224 of the system. Changing the power outputs of the generating units adjusts
the different REPRs.
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Similarly, numerical simulations were carried out on PSS/E, and all simulation models
were provided by Texas A&M University. The load levels were set to 50%, 52%, . . . , and
100% of the basic system load levels. The same ratios also scale the generation power but
with extra modifications to ensure that all input data stay within a reasonable range. Under
each power flow level, the sudden load volatility was set to active power disturbance. The
disturbances are located at nodes 4, 6, 61, 64, 103, 150, 204, 292, 303, 364, 470, and 499. The
fault sizes were set to range from −700 MW to 700 MW at intervals of 100 MW. The fault
occurrence time was set at the simulation start moment (0 s), the simulation duration was
60 s, and the sample rate was 100 Hz for each disturbance. This study set different REPRs:
0%, 5%, . . . , and 40% of the total generation power output.

The detailed configurations used for dataset generation are summarized in Table 8.
The required input data for the FSI calculation process are listed in Table 9. Consequently,
39,312 labeled samples were formed under the above conditions. In further trials, the
dataset was also divided randomly at a 7:3 ratio into training and test datasets to assess the
observed performance discrepancies.

Table 8. Configurations used for dataset generation on the modified ACTIVSg500 system.

Name Value

Load Levels 50%, 52%, 54%, . . . , 100%
Fault Buses 4, 6, 61, 64, 103, 150, 204, 292, 303, 364, 470, 499

Fault Sizes (MW) −700, −600, −500, −400, −300, −200, −100, 100, 200, 300, 400, 500, 600, 700
REPRs 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%

Table 9. Input data used for the FSI calculation process of the modified ACTIVSg500 system.

Disturbancemax
(MW)

Disturbancemin
(MW)

∆fmax
(Hz)

|RoCoFmax|
(Hz/s)

∆fsdes
(Hz)

±550 ±250 1 1 0.4

Testing Results and Comparison

The ViT and other methods have almost the same configurations as those in the
previous case. The performance comparison between the ViT and other methods is shown
in Figure 11. The feature subset of the ACTIVSg500 system was similarly analyzed, and the
results are shown in Figure 12. The effects of PMU noise and loss on the model are shown
in Tables 10 and 11, respectively.
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Table 10. Test accuracies of different models on the noisy datasets of the modified
ACTIVSg500 system.

Model
Accuracy (%)

50 dB 45 dB 40 dB 35 dB 30 dB 25 dB 20 dB 15 dB 10 dB

SVM 92.21 92.18 92.04 91.89 91.54 90.32 89.42 88.21 85.43
FCN 96.65 96.31 96.01 95.87 95.10 94.95 92.27 90.43 87.66

LeNet 88.31 87.47 87.31 86.71 86.98 86.85 86.69 85.71 84.62
AlexNet 97.22 96.52 96.33 96.16 95.23 94.91 92.76 89.62 86.41

InceptionNet 98.63 98.53 98.48 98.08 97.79 95.41 93.82 91.39 88.99
VGG 98.82 98.57 98.55 98.31 97.86 96.33 94.12 90.54 88.38

ResNet 98.94 98.69 98.48 97.94 97.29 95.49 93.13 90.97 88.49
MobileNet 98.96 98.68 98.30 97.09 95.28 92.83 90.89 88.92 85.17
ViT (ours) 99.12 99.04 98.96 98.48 98.37 97.47 95.46 91.97 89.55

Table 11. Test accuracies of different models on the incomplete datasets of the modified
ACTIVSg500 system.

Model
Accuracy (%)

5% 10% 15% 20% 25% 30% 35% 40%

SVM 90.78 90.16 89.73 89.02 88.76 88.23 87.75 87.36
FCN 89.55 88.09 86.69 86.47 86.02 85.67 84.95 84.57

LeNet 85.21 84.95 84.00 83.57 82.75 82.66 81.97 81.89
AlexNet 91.59 88.88 86.87 86.71 85.33 85.04 84.25 83.69

InceptionNet 94.03 91.11 90.81 90.12 89.85 88.99 88.32 87.87
VGG 92.73 91.45 90.27 89.84 88.84 88.26 87.47 87.18

ResNet 94.47 92.17 91.11 90.24 89.32 88.66 88.13 87.70
MobileNet 89.77 88.35 86.87 85.72 85.23 84.25 83.42 83.25
ViT (ours) 95.04 93.23 92.74 91.27 90.95 90.36 89.98 89.52

In the results presented thus far, this case agrees with the previous case. The proposed
ViT-based method achieves the best accuracy among the tested methods, whether they
are used in a noisy or incomplete environment or not. This indicates again that the global
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feature extraction of MSA is better than the local feature extraction of convolution. Note
that the performance of the proposed method does not decline as the system size increases,
demonstrating its superior efficacy and scalability. The reason behind these results might
be that CE retains as many variables as possible that are effective in FSP. In Figure 12b, the
variables of power systems follow the same trend as in the previous case, with a slight
difference in the number of each feature.

6. Discussion

In the present study, we first propose a ViT-based FSP method. Note that the ViT
only uses the pure transformer architecture because we aim to explore the potential of
the transformer architecture in FSP. Convolution and MSA are all effective mechanisms
for extracting useful information. Multimodel combinations may be better when the
transformer is reasonably combined with other DL models. For example, the transformer
can be combined with a CNN to mine the complex relationships between data because the
transformer is good at extracting global features [71] and the CNN is good at extracting
local features.

In addition, the transformer is a widespread method in NLP. For NLP, the self-
supervised training approach [36] is common; i.e., the training process does not need
data labels. However, most ML methods in power systems are supervised training ap-
proaches, i.e., the training process needs data labels. The use of self-supervised training
methods combined with transformers is foreseeable in power systems. The advantage of
self-supervised learning is that it ensures low-cost access to large amounts of training data
and maintains high performance. For example, the topology of a power system may change
due to a failure, causing the new data to be completely different from the original training
data. Models trained via supervised learning cannot handle new data that are outside
the range of the original training data. This means that new data should be collected and
labeled to retrain the model to fit such a change, but this is a high-cost training approach.
In contrast, self-supervised learning can automatically fit the change by collecting data
without manual annotation, which costs less than supervised learning.

For the image classification task, DL does not require feature selection because the
dimensionality of the image is fixed, and DL can automatically extract useful features. For
the FSP of power systems, different power systems have different dimensions, and their
data are highly redundant. CE-based feature selection transforms power system operation
data into image-like data with three channels and 32 pixels, thereby significantly improving
the generalization of the proposed method. Moreover, DL usually belongs to a black-box
model that has low interpretability. According to feature selection, we can know feature
importance, which increases the interpretability of the resulting model to some extent.

7. Conclusions and Future Work

This paper proposes a DL method for power system FSP by using ViT and CE. Case
studies were carried out on the modified New England 39-bus system and the modified
ACTIVSg500 system. The results demonstrate the following:

• The ViT-based FSP method achieves SOTA performance compared to eight ML meth-
ods on normal, noisy, and incomplete datasets, so the proposed method is suitable for
practical applications.

• As for the FSP of power systems tasks, the global feature extraction of MSA is a better
mechanism than the local feature extraction of convolution.

• When using CE-based feature selection, the proposed method is still efficient
and achieves high performance in power systems of any scale without vast
computational resources.

• From the point of view of CE, the apparent power of the transmission line and the
voltage phase angle of the bus have strong correlations with FSP when the load
variance occurs. Conversely, the active power of the generator has a weak correlation
with FSP when the load variance occurs.
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In the future, the authors hope that this work may extend to modern or future power
systems containing all units, i.e., loads, storage devices, and converter-connected units.
These results can help system planners and dispatchers make related decisions [72,73]
regarding frequency stability and control in power systems.
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Appendix A

The detailed parameters of dynamic wind farm models are listed in Tables A1–A4.
The detailed parameters of solar PV power plants are listed in Tables A5–A7.

Table A1. The parameters of WT3G2 module.

#1 #2 #3 #4 #5 #6 #7
0.20 0.0 0.0 0.0 0.10 1.50 0.50

#8 #9 #10 #11 #12 #13
0.90 1.0 1.20 2.0 5.0 0.02

Table A2. The parameters of WT3T1 module.

#1 #2 #3 #4 #5 #6 #7 #8
1.25 4.95 0.0 0.7 × 10−2 21.98 0.0 1.8 1.5

Table A3. The parameters of WT3P1 module.

#1 #2 #3 #4 #5 #6 #7 #8 #9
0.30 150.0 25.0 3.0 30.0 0.0 27.0 10.0 1.0
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Table A4. The parameters of WT3E1 module.

#1 #2 #3 #4 #5 #6 #7 #8
0.15 18.0 5.0 0.0 0.05 3.0 0.60 1.12

#9 #10 #11 #12 #13 #14 #15 #16
0.10 0.296 −0.436 1.10 0.05 0.45 −0.45 5.0

#17 #18 #19 #20 #21 #22 #23 #24
0.05 0.90 1.20 40.0 −0.50 0.40 0.05 0.05

#25 #26 #27 #28 #29 #30 #31
1.0 0.69 0.78 0.98 1.12 0.74 1.20

Table A5. The parameters of REGCAU1 module.

#1 #2 #3 #4 #5 #6 #7
0.2 × 10−1 10.0 0.90 0.50 1.22 1.20 0.80

#8 #9 #10 #11 #12 #13 #14
0.40 −1.30 0.2 × 10−1 0.70 9999.0 −9999.0 1.0

Table A6. The parameters of REECBU1 module.

#1 #2 #3 #4 #5 #6 #7 #8 #9

−99.0 99.0 0.0 −0.5 ×
10−1 0.5e-0.1 0.0 1.05 −1.05 0.0

#10 #11 #12 #13 #14 #15 #16 #17 #18
0.5 × 10−1 0.436 −0.436 1.10 0.90 0.0 0.10 0.0 40.0

#19 #20 #21 #22 #23 #24 #25
0.2 × 10−1 99.0 −99.0 1.0 0.0 1.82 0.2 × 10−1

Table A7. The parameters of REPCAU1 module.

#1 #2 #3 #4 #5 #6 #7 #8 #9
0.2 × 10−1 18.0 5.0 0.0 0.75 × 10−1 0.0 0.0 0.0 0.2 × 10−1

#10 #11 #12 #13 #14 #15 #16 #17 #18
0.10 −0.10 0.0 0.0 0.436 −0.436 0.10 0.5 × 10−1 0.25

#19 #20 #21 #22 #23 #24 #25 #26 #27
0.0 0.0 999.0 −999.0 999.0 −999.0 0.10 20.0 0.0
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