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Abstract: The application of precision dual-drive gantry stages in intelligent manufacturing is
increasing. However, the loads of dual drive motors can be severely inconsistent due to the movement
of heavy loads on the horizontal crossbeam, resulting in synchronization errors in the same direction
movement of dual-drive motors. This phenomenon affects the machining accuracy of the gantry
stage and is an critical problem that should be immediately solved. A novel optimal synchronization
control algorithm based on model decoupling is proposed to solve the problem. First, an accurate
physical model is established to obtain the essential characteristics of the heavy-load dual-drive
gantry stage in which the rigid-flexible coupling dynamic is considered. It includes the crossbeam’s
linear motion and rotational motion of the non-constant moment of inertia. The established model
is verified by using the actual system. By defining the virtual centroid of the crossbeam, the cross-
coupling force between dual-drive motors is quantified. Then, the virtual-centroid-based Gantry
Synchronization Linear Quadratic Regulator (GSLQR) optimal control and force-Feed-Forward (FF)
decoupling control algorithm is proposed. The result of the comparative experiment shows the
effectiveness and superiority of the proposed algorithm.

Keywords: dual-drive gantry stage; synchronization control; GSLQR optimal control; convex
optimization; force-FF decoupling; virtual centroid; heavy-load

1. Introduction

Among all configurations of large span, long-stroke Cartesian robot systems, the
industrial dual-drive gantry, also known as a dual-drive H-gantry(DHG), has attracted
increasing attention from industry and academia [1,2]. The application demands for preci-
sion dual-drive gantry stages is increasing in many fields, such as laser cutting/welding
applications, lithography, placement machines, solar panels, LCD panels, CNC machining
centers, precision metrology, and CT scanning. In the DHG structure, two permanent
magnetic linear motors (PMLM) are mounted on two parallel guide rails to push the gantry
crossbeam in the same direction. Heavy-loads (such as the laser cutting head) are mounted
on the crossbeam and driven by a single PMLM. The advantage of this structure is that the
stage could obtain higher rigidity and power density.

Various factors will cause the dynamic characteristics of the dual-drive motors to be
inconsistent, such as heavy-load motions on the crossbeam, varying damping characteristics
of the dual-drive motors, and time-varying thermal-mechanical properties. It will lead to
the synchronization error of the linear movement of dual-drive motors and the small-angle
rotation of the crossbeam. Due to the limitation of the physical connection between the
crossbeam and the sliders of the two parallel guides, the above phenomenon could cause
the sliders to deform. This could cause them to wear out or even be damaged [3]. Therefore,
precise synchronization is crucial to ensure the motion accuracy of the dual-drive gantry
stage. A novel optimal synchronization control algorithm based on model decoupling is
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proposed to reduce the synchronization error of the dual-drive motors of the gantry stage
when it is moving with a heavy-load on the crossbeam.

When the load of the dual-drive motors is unbalanced or subjected to various dis-
turbances, their movement could be out of synchronization. The advanced decoupling
control strategy could improve the motion synchronization of the gantry dual-drive motors
under different working conditions. Currently, many scholars have proposed various
decoupling control strategies. Meng et al. [4] presented a model predictive control strat-
egy. It is based on a switched LTI control-oriented model, which is able to ensure a
coordinated contouring tolerance in the presence of disturbances from imperfect drive
synchronizations. Yunbo et al. [5] introduced a commercial controller to realize the syn-
chronous control of the dual-drive gantry stage. Ishizaki et al. [6] proposed a cross-coupling
PD controller to penalize differential positioning errors between the linear drives of a gantry
axis by modifying the reference position and velocity commands. Wang et al. [7] proposed
a method that integrates the model’s reference adaptive control and variable structure
control. Dongmei et al. [8] presented the decoupling control algorithm with a position
controller for improved variable structure control. Sliding-mode variable structure con-
trol comprise disturbance rejection, an insensitivity to parameter variations, and simple
implementation [9,10]. Kim et al. [11] proposed the LQR optimal control method for im-
proving the synchronous accuracy of gantry dual-diver motors. However, the quantitative
modeling of the dual-drive axis’s cross-coupling force is absent in the above controller
design approaches.

Xiaoqing et al. [12] proposed a novel fractional-order biquad notch filter and feedfor-
ward controller with the inverse model. It generated an antiresonance peak to guarantee
the system’s stability and quickly attenuated external disturbances. Qin et al. [13] proposed
a synchronous control strategy with the inverse system method. It decoupled thrust forces
dynamically through state feedback. Li et al. [14] proposed a synchronous control method
for dual-drive systems based on disturbance observers (DOBs). Garcia et al. [15] presented
a feedback feedforward decoupling control by model inversion. Tan et al. [16] proposed
a DOB-augmented composite control strategy. It coordinates the motion control of the
dual-drive gantry stage for precision applications. However the inverse system model
method has high requirements for system modeling. As long as there is a deviation in
modeling, the zero point of the right half-plane will become the right half-plane’s pole,
resulting in a divergence of the system [17].

Chao et al. [2] proposed an adaptive robust synchronization control method by con-
sidering the dynamic load presented on the crossbeam. Li et al. [18] proposed the Adaptive
Robust Control (ARC) algorithm to obtain a guaranteed robust performance under the
presence of uncertain nonlinearities and parametric uncertainties. Cong et al. [1] proposed
an ARC algorithm with thrust allocation. It achieved improved motion synchronization
in terms of the dual-drive motors and the simultaneous regulation of internal forces.
Li et al. [19] presented Desired Compensation Direct/Indirect Adaptive Robust Control
(DCDIARC) to synthesize the synchronization controller. It guaranteed both robust perfor-
mances relative to various uncertainties and accurate parameter estimation. Chen et al. [20]
proposed an adaptive model compensation algorithm. It had an accurate online parameter
estimation for effectively dealing with uncertain nonlinearities and transformed the con-
touring tolerance control problem into a robust stabilization problem. However, the above
adaptive algorithm needs to proceed through many iterations to converge to the extreme
value [21].

Quan et al. [22] proposed a method that transforms the synchronous control problem
of such coupled systems into a linear-quadratic optimal control problem. Gomand et al. [23]
derived a control structure based on a physical model. However, these algorithms do not
consider the change in heavy-load positions on the crossbeam. Aiming at the coupling effect
on dual-drive motors subjected to the heavy-load position change, this paper proposed
the virtual-centroid-based Gantry Synchronization Linear Quadratic Regulator (GSLQR)
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optimal control and force-FF decoupling control algorithm. It dramatically reduces the
synchronization error of the gantry dual-drive motors due to heavy-load position changes.

The main contributions of this paper are as follows.
(1) An accurate physical model is established to obtain the essential characteristics

of the heavy-load dual-drive gantry stage. It includes the crossbeam’s linear motion and
rotational motion. The established model clearly shows that the coupling effect of the
dual-drive Y1, Y2 motors is mainly caused by the change in heavy-load Ml positions on the
crossbeam. Thus, the moment of inertia J of the crossbeam could not be described by a
constant value. The validity of the established model is confirmed by the actual system.

(2) By establishing a linear quadratic performance index, including synchronization
error, the GSLQR optimal control algorithm is designed by using the variational functional
extremum method. It derives the control law, including cross-coupling compensation,
which preliminarily decouples the system.

(3) By defining the virtual centroid of the crossbeam, the cross-coupling force between
dual-drive motors is quantified. Then, the virtual-centroid-based GSLQR optimal control
and force-FF decoupling control algorithm are proposed to further improve the synchro-
nization accuracy of the system. Compared with the GSLQR optimal control algorithm and
the thrust allocation algorithm in [1], the simulation experiment shows the effectiveness
and superiority of the proposed algorithm.

This paper is organized as follows: In Section 2, the lumped parameter dynamics
model was established by Newtonian mechanics. Then, a novel decoupling optimal
synchronous control algorithm and the relevant control laws are provided. In Section 3,
simulation experiments are designed and compared. Finally, a conclusion is drawn in
Section 4.

2. Materials and Methods
2.1. Physical Modeling of Heavy-Load Dual-Drive Gantry System
2.1.1. Equivalent Dynamic Model of the System

The dual-drive axis (Y-axis) of the studied industrial dual-drive gantry stage is driven
by two PMLMs. Two magnetic rails (PMLM’s stator) are fixed on the marble base in
parallel. A precision ball linear-rolling guide rail is installed parallel to each magnetic rail.
Two PMLM rotors are rigidly connected with the guide’s sliding block. The crossbeam
orthogonal to the parallel guide rail is rigidly connected with the guide’s sliding block.
The heavy-load on the crossbeam is driven by a PMLM (X-axis). Due to the low rigidity
of the sliding block ball’s bearing relative to the joint part, it can be regarded as an elastic
element [24]. The finite element of the rigid–flexible coupling characteristics of the dual-
drive gantry stage was analyzed in [23]. Based on this, the dynamic model is established
for the Y-axis’s linear motion and rotational motion of the crossbeam. It generates the
equivalent lumped parameter model, as shown in Figure 1. Note, when the rotation angle
α of the crossbeam is 0°, the dual-drive motors move synchronously; when α is not 0°, the
dual-drive motors move asynchronously. As both joints are subjected to the same angle,
they can be modeled by a single equivalent spring with stiffness kα.

In Figure 1, OXY represents a fixed inertial coordinate system with the origin O located
in the middle of the parallel guide rails. The Y-axis of OXY is parallel to the linear guide
rails Y1 and Y2. Denote C as the equivalent centroid of the crossbeam. CX′Y′ represents the
moving inertial coordinate system on the crossbeam. The X′-axis of CX′Y′ is parallel to the
longitudinal direction of the crossbeam. Denote Ml as heavy-load on the crossbeam. Denote
M as the mass of the crossbeam. Denote y1 and y2 as Y1 and Y2 motor position values
(obtained from the linear grating encoder). Denote b1 and b2 as the damping coefficients
of the linear guide rails. Denote L as the length of the crossbeam. Denote l1 and l2 as the
distances between C and Y1 and Y2 motors.
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Figure 1. Equivalent lumped parameter model of a dual-drive gantry stage.

Above all, in the OXY coordinate system, the motion of the crossbeam can be com-
pletely described by the following three generalized coordinates: the two position: xC, yC
of the centroid C, and the rotation angle α. From Figure 1, we have the following.

yC = y1 + l1 sin α = y2 − l2 sin α (1)

Due to the physical constraints of the gantry stage, α is very small; thus, set α ≈ 0.
Thus, sin α = α, and the real-time feedback of yC, α can be obtained as follows.

yC = l2
L y1 +

l1
L y2,

α = 1
L (y2 − y1)

(2)

Considering that the mass of heavy-load Ml relative to the crossbeam cannot be
ignored. The movement of Ml will cause a change in centroid C on the crossbeam. Then,
the moment of inertia J of the crossbeam cannot be described as a constant value. It can be
described as follows.

Suppose a body of mass rotates about an axis passing through its centroid. It has a
moment of inertia subject to this axis. Then, the moment of inertia concerning the new
axis, parallel to the first axis, can be obtained by the parallel axis theorem [25]. Thus, the
following is the case.

J =
ML2

12
+ M

(
L
2
− l1

)2
(3)

Expand (3) to obtain the following.

J =
M
3

(
l2
1 − l1l2 + l2

2

)
(4)

Remark 1. The rotational inertia J in (4) is a function of l1 and l2, unlike the constant set in most
paper [1,13,14]. This renders the equivalent model of this paper closer to the actual system.

From Figure 1, when the dual-drive motors is not synchronized, the X-axis and the
X′- axis will form angle α. Equivalent centroid C will be changed with the movement of
heavy-load Ml , resulting in the unbalanced load of the Y1 and Y2 motors.



Entropy 2022, 24, 1153 5 of 18

Above all, using Newtonian dynamics and the PMLM mathematical model [1,13], the
equivalent model of the dual-drive gantry stage can be described by: (5)–(8)

MÿC = f1 + f2 − BtẏC + Cẏα̇α̇ (5)

Jα̈ = − f1l1 + f2l2 + Cẏα̇ẏC − Bαα̇− Kαα (6)

fi = ktiii (7)

ui = kei ẏi + Lai i̇i + Raiii (8)

where i = 1, 2; fi, ii, ui, kti, kei, Lai, and Rai, respectively, represent the motor thrust, coil
current, input voltage, motor thrust constant, Back EMF constant, coil inductance, and coil
resistance. Bt = b1 + b2 , Cẏα̇ = b1l1 − b2l2 , Bα = b1l2

1 + b2l2
2 . Expanding (5) and (6) yields

the following.
Ml2

L
ÿ1 +

Ml1
L

ÿ2 = f1 + f2 − b1ẏ1 − b2ẏ2 (9)

J
L
(ÿ2 − ÿ1) = − f1l1 + f2l2 + b1l1ẏ1 − b2l2ẏ2 −

Kα

L
(y2 − y1) (10)

2.1.2. Full State-Space Equation of the System

Combined with (7)–(10), the state equation of the system could be described as follows:

~̇x = A~x + B~u (11)

~y = C~x (12)

where system state ~xT = (y1 y2 ẏ1 ẏ2 i1 i2), system input ~uT = (u1 u2), and system
output ~yT = (y1 y2) is the position value of the Y1, Y2 motors.

A =



0 0 1 0 0 0
0 0 0 1 0 0

a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

0 0 −ke1
La1

0 −Ra1
La1

0
0 0 0 −ke2

La2
0 −Ra2

La2


,

B =



0 0
0 0
0 0
0 0
1

La1
0

0 1
La2


, C =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
.

The elements a31~a46 in the state-space matrix A are described by the following.

a31 = −Kα l1
Jl1+Jl2

, a32 = Kα l1
Jl1+Jl2

, a33 = −b1L
Ml1+Ml2

− b1Ll2
1

Jl1+Jl2
, a34 = −b2L

Ml1+Ml2
+ b2Ll1l2

Jl1+Jl2
,

a35 = kt1L
Ml1+Ml2

+
kt1Ll2

1
Jl1+Jl2

, a36 = kt2L
Ml1+Ml2

− kt2Ll1l2
Jl1+Jl2

, a41 = Kα l2
Jl1+Jl2

, a42 = −Kα l2
Jl1+Jl2

,

a43 = −b1L
Ml1+Ml2

+ b1Ll1l2
Jl1+Jl2

, a44 = −b2L
Ml1+Ml2

− b2Ll2
2

Jl1+Jl2
, a45 = kt1L

Ml1+Ml2
− kt1Ll1l2

Jl1+Jl2
,

a46 = kt2L
Ml1+Ml2

+
kt2Ll2

2
Jl1+Jl2

.

The relevant parameters of the system could be found in the reference manual of the
machine manufacturer and are provided in Table 1.
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Table 1. The relevant parameters of the system.

Name Symbol Value

midrule mass of crossbeam
(including load Ml)

M 25 kg

mass of load Ml 10 kg
length of crossbeam L 0.8 m
damping of Y1 rotor b1 5 N·m·s
damping of Y2 rotor b2 5 N·m·s

stiffness of joint between
crossbeam and rails Kα 52,520 N/m

thrust constant of Y1 Motor kt1 61.0 N/A
thrust constant of Y2 Motor kt2 61.0 N/A

back EMF constant of Y1
motor ke1 49.6 V/M/S

back EMF constant of Y2
motor ke2 49.6 V/M/S

inductance of Y1 Motor La1 5.07× 10−3 H
inductance of Y2 Motor La2 5.07× 10−3 H
resistance of Y1 Motor Ra1 8.4 Ω
resistance of Y2 Motor Ra2 8.4 Ω

Substituting the parameters of Table 1 into state-space matrix A, with related coeffi-
cients being l1 = 0.2 m and l2 = 0.6 m, yields the following.

A =



0 0 1 0 0 0
0 0 0 1 0 0

−5627 5627 −0.286 0.057 3.486 −0.697
16881 −16881 0.057 −0.971 −0.697 11.85

0 0 −9783 0 −1657 0
0 0 0 −9783 0 −1657


By conducting MATLAB calculations, the controllable matrix of the system Sc =(

A AB . . . A5B
)

is at full rank. Thus, the system is controllable.

2.1.3. Validity of the Established Model

Note that the state-space matrix A is strongly coupled. From [23], the gantry stage is a
square MIMO (multiple input multiple output system). It can be described as follows:(

ẏ1
ẏ2

)
=

(
G11(s) G12(s)
G21(s) G22(s)

)(
u1
u2

)
(13)

where G11(s) and G22(s) are the direct transfers of Y1, Y2 motors, and G12(s) and G21(s) are
the cross-coupling transfer functions between Y1 and Y2 motors.

From [26], state space Equations (11) and (12) are written in the form of a transfer
function, which yields the following.

Y
U

= C(sI − A)−1B =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
(sI − A)−1



0 0
0 0
0 0
0 0
1

La1
0

0 1
La2


(14)

Thus, the following is the case.
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G11(s) =
ẏ1

u1
|u2=0 =

(
0 0 1 0 0 0

)
(sI − A)−1



0
0
0
0
1

La1
0


=

687.5s4 + 1.14× 106s3 + 9.07× 107s2 + 1.795× 1010s
s6 + 3315s5 + 2.922× 106s4 + 3.267× 108s3 + 6.691× 1010s2 + 1.805× 1012s + 0.2184

(15)

G22(s) =
ẏ2

u2
|u1=0 =

(
0 0 0 1 0 0

)
(sI − A)−1



0
0
0
0
0
1

La2


=

2338s4 + 3.874× 106s3 + 9.07× 107s2 + 1.795× 1010s
s6 + 3315s5 + 2.922× 106s4 + 3.267× 108s3 + 6.691× 1010s2 + 1.805× 1012s + 0.2184

(16)

G12(s) = G21(s) =
ẏ1

u2
|u1=0 =

ẏ2

u1
|u2=0 =

(
0 0 0 1 0 0

)
(sI − A)−1



0
0
0
0
1

La1
0


=

−137.5s4 − 2.278× 105s3 + 1.083× 107s2 + 1.795× 1010s
s6 + 3315s5 + 2.922× 106s4 + 3.267× 108s3 + 6.691× 1010s2 + 1.805× 1012s + 0.2184

(17)

The experimental stage of the system is shown in Figure 2. When the heavy-load is
close to the Y1 motor side, centered, and close to the Y2 motor side, the relevant frequency
characteristic curves of the system are calculated or tested, as shown in Figures 3–8. The
open-loop frequency characteristic curve of the equivalent model is shown in Figures 3, 5 and 7.
The closed-loop frequency characteristic curve of the actual stage is obtained by sweeping
the frequency of the motors, as shown in Figures 4, 6 and 8. Compared with Figures 3 and 4,
Figures 5 and 6, and Figures 7 and 8, bode diagrams of both the model and the actual
system show that the frequency response performance of the light-load motor is better than
that of the heavy load motorl they have similar characteristics in the low-frequency band
(the main working frequency band of this gantry stage, 100∼1000 rad/s). By conducting
this simple comparison experiment, it can be confirmed that the established model can
be used for the algorithm comparison simulation experiment in the following paper. If
the experimental verification of the algorithm is carried out in the future, the least square
method satisfying the PE condition is needed to accurately identify the parameters of the
actual system.
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Figure 2. Dual-drive gantry stage.
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Figure 3. Bode diagram of model (open loop), heavy-load close Y1 motor side: (1)—G11(s);
(2)—G22(s); (3)—G12(s).
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Figure 4. Bode diagram of actual system (closed loop), heavy-load close Y1 motor side: (1)—Y1 motor;
(2)—Y2 motor.
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Figure 5. Bode diagram of model (open loop), heavy-load close Y2 motor side: (1)—G11(s);
(2)—G22(s).
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Figure 6. Bode diagram of actual system (closed loop), heavy-load close Y2 motor side: (1)—Y1 motor;
(2)—Y2 motor.
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Figure 7. Bode diagram of model (open loop), heavy-load centered. (1)—G11(s); (2)—G22(s).
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Figure 8. Bode diagram of actual system (closed loop), heavy-load centered. (1)—Y1 motor;
(2)—Y2 motor.

2.2. Virtual-Centroid-Based GSLQR Optimal Control and Force-FF Decoupling Control
Algorithm Design

To reduce the synchronization error of the dual-drive motors in the gantry stage with
the dynamic heavy-load Ml , the following two objectives will be completed in this section:
1. The GSLQR optimal control algorithm is designed to preliminarily compensate for the
cross-coupling force of the system; 2. to further optimize Y1 and Y2 motors’ synchronization
accuracy, the virtual-centroid-based GSLQR optimal control and force-FF decoupling
control algorithm is proposed.

2.2.1. GSLQR Optimal Control Algorithm Design

The linear-quadratic-regulator (LQR) control law ~u = − k~x is designed to minimize
I = lim

t→∞
I(t) in (18). Generally, with the setting of weight matrix Q of the system state and

input weight R, the optimal feedback gain k could be calculated by the Riccati equation.

I =
∫ t f

0

1
2 (~x

TQ~x + ~uT R~u)dτ+~x(t f )
TQ f~x(t f )

s.t. ~̇x = A~x + B~u
(18)

To realize the design of the Gantry Synchronization Linear Quadratic Regulator
(GSLQR) optimal control algorithm, the quadratic performance index of synchroniza-
tion errors between dual-drive motors should be introduced. The detailed procedure is
described below.

To guarantee the synchronous movement of the Y1, Y2 motors, the position values
y1, y2 should always keep the minimum error when the dual-drive axis moves; thus, y1, y2
and the desired trajectory yd should be as consistent as possible. The desired state is set as
~xT

d = (yd yd 0 0 0 0). By defining ε1 = y1 − yd, ε2 = y2 − yd, the system state is rewritten
as~ε = ~x−~xd. Thus,~εT = (ε1 ε2 ẏ1 ẏ2 i1 i2).
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Since, the the system state at the terminal time t f is 0. Substituting ~x by~ε in (18) yields
the following.

I =
∫ t f

0

1
2 (~ε

TQ~ε + ~uT R~u)dτ (19)

To guarantee (19), obtain the global minimum under the constraint condition of (11).
The following equivalent convex function by introducing the Lagrange multiplier~λ [27]
should be constructed.

Iconvex =∫ t f

0

[
1
2 (~ε

TQ~ε + ~uT R~u) +~λT(A~x + B~u− ~̇x)
]
dτ

(20)

Define ` = 1
2 (~ε

TQ~ε + ~uT R~u); taking the total variation of Iconvex in (20) yields the
following:

δIconvex =∫ t f

0
(

∂`

∂~ε
δ~ε +

∂`

∂~u
δ~u +~λT Aδ~x +~λT Bδ~u−~λTδ~̇x)dτ

(21)

where ∂`
∂~ε =~εTQ, ∂`

∂~u = ~uT R, δ~ε = δ(~x−~xd). Note that ~xd is a fixed trajectory; then, δ~xd = 0;
thus, δ~ε = δ~x (if define as~ε = ~xd −~x, then δ~ε = − δ~x, which will not obtain (29)). The last
term in (21) can be modified using integration by the following parts:

−
∫ t f

0
λTδẋdτ = −λT(t f )δx(t f ) + λT(0)δx(0) +

∫ t f

0
λ̇Tδxdτ (22)

where λT(0)δx(0) = 0. From (21) and (22), we obtain the following:

δIconvex =
∫ t f

0
(~εTQ +~λT A + ~̇λT)δ~xdτ+∫ t f

0
(~uT R +~λT B)δ~udτ −~λT(t f )δ~x(t f )

(23)

where δ~x, δ~u, and δ~x(t f ) ∈ R. To obtain an optimal control solution that minimizes Iconvex,
the following three terms must be equal to 0.

~εTQ +~λT A + ~̇λT = 0 (24)

~uT R +~λT B = 0 (25)

−~λT(t f ) = 0 (26)

Note that constraint (26) represents an initial condition for the reverse-time equation
for~λ starting at t f . Thus, the dynamics in (11) with initial condition ~x(0) = ~x0 and (24)–(26)
with the final-time condition form a two-point boundary value problem. Since the system
could be approximated as a linear system, it is possible to assume that~λ = P~ε. Combing
(24) yields the following.

~εTQ + (P~ε)T A + (Ṗ~ε + P~̇ε)T = 0 (27)

Transposing and expanding (27) yields the following.

Q~ε + AT P~ε + Ṗ~ε + PA~ε− PBR−1BT P~ε = 0 (28)

When t→ ∞, Ṗ = 0, we obtain the following Algebraic Riccati Equation (ARE).

Q + AT P + PA− PBR−1BT P = 0 (29)
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An optimal solution to the P matrix can be obtained by using backward approximate
dynamic programming. Substituting the optimal solution P into (25) can obtain the optimal
feedback gain kGSLQR = R−1BT P. Thus, the control law is obtained as follows.

~u = − R−1BT P~ε (30)

From(29), both GSLQR and LQR have robustness, as described as follows: The LQR
achieves infinite gain margin kg = ∞ and also guarantees phase margin p = 60◦. It was
proved by Lyapunov’s second method in [28,29].

2.2.2. Virtual-Centroid-Based Force-FF Decoupling Control Algorithm Design

As observed from Figure 3, the DC components of the coupling term G12(s) and the
G11(s) and G22(s) are almost the same. To improve the synchronization accuracy of the
dual-drive gantry stage, the effect of the coupling term on the system must be reduced.
Since the GSLQR optimal control algorithm is robust, adding force-FF decoupling to the
GSLQR could further improve the synchronization accuracy of the system [30–32].

In [33], Richard et al. proposed the concept of inverse models of causal-order graphs.
By its methodology, this paper proposed the virtual-centroid-based GSLQR optimal control
and force-FF decoupling control algorithm to further improve the synchronous accuracy of
the system.

Defining the virtual centroid M
2 ÿ1, M

2 ÿ2 and rewriting (9)–(10) as control-oriented
equations yields the following.

Eq_vm1 : f1− fbc1− fxc =
M
2

ÿ1 + b1ẏ1 (31)

Eq_vm2 : f2− fbc2 + fxc =
M
2

ÿ2 + b2ẏ2 (32)

Eq_coupled :{
fbc1 = Kα

L2 (y1 − y2) +
J−Ml1l2

L2 (ÿ1 − ÿ2)− M(l1−l2)
2L ÿ1

fbc2 = −Kα
L2 (y1 − y2)− J−Ml1l2

L2 (ÿ1 − ÿ2) +
M(l1−l2)

2L ÿ2

In (31)–(32), fbc1 and fbc2 are cross-coupling forces of unbalanced load relative to
Y1, Y2 motors (the movement of heavy-load Ml will cause centroid C to change in the
longitudinal direction of the crossbeam). fxc is the cross-coupling force of the eccentric load
to Y1, Y2 motors.

Thus, the block diagram of the proposed algorithm is shown in Figure 9.

Figure 9. Block diagram of the virtual-centroid-based GSLQR optimal control and force-FF decou-
pling control algorithm. AMP referred to an amplifier.
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ỹ1, ˜̈y1, l̃1, ỹ2, ˜̈y2, l̃2, f̃1, f̃2, f̃bc1, and f̃bc2 can be obtained directly or indirectly through the
linear grating position encoder of the dual-drive gantry stage.

From Figure 9, the decoupling force f̃bc1, f̃bc2 is added into the system’s control loop
as force-feedforward.

3. Simulation Experiments

The proposed algorithm experiment is carried out in the Matlab/Simulink environ-
ment, and it will be compared with the GSLQR optimal control algorithm and the thrust
allocation algorithm (u1/u2 = kml2/l1 = kt2l2/kt1l1) presented in [1].

The simulation experiment of the GSLQR optimal control algorithm will be carried out
first. To penalize the synchronization error, ε1 and ε2 in system state~εT = (ε1 ε2 ẏ1 ẏ2 i1 i2)
require high weight values. Thus, the weights are set as Q = diag(500 500 1 1 1 1), R = 1.
Then, the optimal feedback gain kGSLQR can be obtained by Matlab calculations. With the
position command of (33), the Y1, Y2 motor’s response speed curve is shown in Figure 10.
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Figure 10. Simulation result of GSLQR optimal control algorithm: (a) the load Ml is close to Y1 motor
side, l1 = 0.2 m, l2 = 0.6 m; (b) the load Ml is centered, l1 = l2 = 0.4 m; (c) the load Ml close to Y2

motor side, l1 = 0.5 m, l2 = 0.3 m. (1)—speed of Y1 motor; (2)—speed of Y2 motor.
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yd =


2.5t2, 0 < t < 0.2
t− 0.1, 0.2 6 t < 2
2.4, t > 2

(33)

The simulation results show that when load Ml is located at different positions of the
crossbeam, the GSLQR optimal feedback control can ensure that the response speeds of the
Y1, Y2 motors are basically the same. However, as obesrved from Figure 10a,c, when the
load of the dual-drive motors becomes more and more unbalanced, the synchronization
errors of the Y1, Y2 motors tend to deteriorate. It should be pointed out that the effectiveness
of the linear quadratic optimal control algorithm is mainly due to the precondition of (2)
(α ≈ 0; thus, sin α = α). Thanks to the rigid connection between the crossbeam and the
Y1, Y2 guide rails, it can always ensure α ≈ 0 when the stage is in motion; that is, the motion
of the stage is generally dominated by linear equations. In practical operation, the range of
α is also related to the clearance of the guide: The larger the clearance, the larger α. If α ≈ 0
is not satisfied, a non-linear solution needs to be developed, which will be carried out in
the next study.

To further improve the synchronization accuracy of Y1, Y2 motors, the force-FF decou-
pling will be added in the following experiments.

The position of heavy-load Ml is adjusted to the Y1 motor side by setting l1 = 0.2 m,
l2 = 0.6 m. The weights are set as Q = diag(500 500 1 1 0.1 0.1) and R = 0.02. The
optimal feedback gain can be obtained as follows: kGSLQR =(

79.6373 78.4503 4.4432 1.3175 0.3010 0.0073
85.4521 72.6880 3.9487 1.7949 0.0073 0.3033

)
.

The force-FF gain of decoupling force f̃bc1, f̃bc2 is set to 0.13 by experience. With the
position step command of (34), the synchronization error curve of each algorithm is shown
in Figure 11.

yd =


0, 0 < t < 1
0.1, 1 6 t < 2
0, t > 2

(34)
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Figure 11. The synchronization error curve of each algorithm: (1)—GSLQR optimal control algorithm;
(2)—thrust allocation algorithm [1]; (3)—proposed algorithm. Where heavy-load Ml close to the Y1

motor side, l1 = 0.2 m, l2 = 0.6 m.

The maximum value of synchronization error of each algorithm in Figure 11 is shown
in Table 2.
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Table 2. The heavy-load Ml close to the Y1 motor side, the maximum value of the synchronization
error of each algorithm: (1)—GSLQR optimal control algorithm; (2)—thrust allocation algorithm [1];
(3)—proposed algorithm.

Index Algo (1) Algo (2) Algo (3)

max(|y1 − y2|), mm 0.76 0.54 0.22

The position of heavy-load Ml is adjusted to the Y2 motor side by setting l1 = 0.5 m
and l2 = 0.3 m. The weights are set as Q = diag(500 500 1 1 0.1 0.1), R = 0.02. The
optimal feedback gain could be obtained as follow: kGSLQR =(

72.5974 85.5296 2.4536 3.2945 0.3034 0.0066
81.2974 76.8034 1.9788 3.7780 0.0066 0.3017

)
.

The force-FF gain of decoupling force f̃bc1, f̃bc2 is set to 0.13. With the position step
command of (34), the synchronization error curve of each algorithm is shown in Figure 12.
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Figure 12. The synchronization error curve of each algorithm: (1)—GSLQR optimal control algorithm;
(2)—thrust allocation algorithm [1]; (3)—proposed algorithm. Where the heavy-load Ml close to the
Y2 motor side, l1 = 0.5 m, l2 = 0.3 m.

The maximum value of synchronization error of each algorithm in Figure 12 is shown
in Table 3.

Table 3. The heavy-load Ml close to the Y2 motor side, the maximum value of the synchronization
error of each algorithm: (1)—GSLQR optimal control algorithm; (2)—thrust allocation algorithm [1];
(3)—proposed algorithm.

Index Algo (1) Algo (2) Algo (3)

max(|y1 − y2|), mm 0.39 0.26 0.11

From the above simulation results, when the heavy-load Ml is located at different
positions of the crossbeam, the proposed algorithm is compared with the GSLQR optimal
control algorithm and the thrust allocation algorithm in [1] and reduces the maximum
synchronization error by about 70 % and 60 %, respectively.

4. Conclusions

The issue of the coupling effect on dual-drive motors subjected to heavy-load posi-
tion changes has been investigated. Aiming at this problem, the virtual-centroid-based
GSLQR optimal feedback control and force-feedforward decoupling control algorithm is
proposed. The simulation results show that the proposed algorithm greatly improves the
synchronization accuracy of the dual-drive motors.
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In this paper, an accurate mathematical model was established for the dual-drive
gantry stage with dynamic heavy-load, which includes the linear motion and rotational
motion of the crossbeam. Unlike most gantry stage rotation dynamics, which consider
the crossbeam rotational inertia J as a constant, the rotational inertia J in this paper is a
function of the centroid’s position variable C. The validity of the model is confirmed by
the frequency response identification experiment of the actual system. The model shows
that the coupling effect of the dual-drive Y1, Y2 motors is mainly caused by the change of
heavy-load Ml’s position on the crossbeam.

From the model, the strongly coupled state-space matrix of the system is obtained.
Unlike configuring PID to independently control Y1 and Y2 motors, this paper proposes the
Gantry Synchronous Quadratic Linear Regulation (GSLQR) optimal algorithm to control
the dual-drive axis in one system. The cross-coupling force of the system is preliminarily
compensated by the optimal feedback algorithm. The systematic design procedure of the
controller and its robustness have been clearly presented.

To further improve the synchronization accuracy of the Y1, Y2 motors, a virtual centroid
is defined to quantify the cross-coupling force between dual-drive motors. The force-
feedforward decoupling control is added to further compensate for the cross-coupling force
of the system. Unlike the thrust allocation algorithm [1], which only focuses on the centroid
position variable C, the quantized coupling force derived in this paper reveals that the
coupling of the dual-drive motor is mainly generated by the different accelerations of the
Y1 and Y2 motors.

The simulation results show the effectiveness and superiority of the virtual-centroid-
based GSLQR optimal feedback control and force-feedforward decoupling control algo-
rithm: compared with the thrust allocation algorithm in [1], the maximum synchronization
error is reduced by about 60%.
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