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Abstract: Focusing on the dynamics of quantumness in ensembles, we propose a framework to
qualitatively and quantitatively characterize quantum channels from the perspective of the amount
of quantumness in ensembles that a quantum channel can induce or reduce. Along this line, the
quantumness power and dequantumness power are introduced. In particular, once a quantum
dynamics described by time-varying quantum channels reduces the quantumness for any input
ensembles all the time, we call it a completely dequantumness channel, whose relationship with
Markovianity is analyzed through several examples.
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1. Introduction

As natural generalizations of transition matrices in stochastic analysis, quantum
channels are completely positive and trace-preserving maps. A quantum channel usu-
ally changes the quantum features of the system, such as causing the decoherence of
quantum states [1,2] and destroying the quantum correlations [3–6]. Characterizing quan-
tum channels from the information perspective has received fruitful results. The entan-
gling power [7], decorrelating capability [8], cohering and decohering power [9–14], and
quantumness-generating capability [15] of quantum channels have been studied.

In this work, we propose a framework to qualitatively and quantitatively characterize
quantum channels by analyzing the dynamics of quantumness in ensembles. A quantum
ensemble E = {(pi, ρi), i ∈ I} is represented by a family of quantum states together with a
probability distribution specifying the probability of the occurrence of each state [16]. It
arises naturally in quantum mechanics and statistical physics, and is a fundamental and
practical object in quantum information, especially in quantum measurement and quantum
communication [17–23]. As long as the involved quantum states are not commutative,
the quantum ensemble possesses a certain intrinsic quantum feature, which is named as
quantumness in quantum ensembles. It plays a central role in quantum cryptography and
other various quantum information processing tasks. Various measures of quantumness
have been proposed from different perspectives, such as that via commutator [24,25],
that based on no cloning and no broadcasting [19], that defined from the perspective of
accessible information [24], and that via relative entropy [26] and coherence [27,28].

In general, the quantumness in a quantum ensemble will change after performing a
quantum channel. It is natural to investigate the maximal amount of quantumness that
a quantum channel can introduce or reduce. In this work, by virtue of the quantumness
measure based on commutators [24] that is easy to calculate, we study the characterization
of quantum channels from the perspective of quantumness power and dequantumness
power, which quantify the maximal amount of quantumness that a quantum channel
can induce and reduce, respectively. Comparing with the result in Ref. [29] where the
quantumness of the channel is defined as the minimum average quantum coherence of the
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state space after the dynamics, quantumness power defined here is the maximal amount
of the non-commutativity between the states that can be generated after the channel. The
properties and calculation process of quantumness power and dequantumness power have
been analyzed. We call a quantum dynamics described by a quantum channel a completely
dequantumness channel if it reduces the quantumness in ensembles all the time. Through
several significant examples, the relationship between the completely dequantumness
channel and quantum Markovian channel is analyzed. It is worth mentioning that although
we mainly focus on the qubit channels, without loss of generality, the result can be directly
extended to qudit cases.

The paper is organized as follows. In Section 2, we briefly review the measure of
quantumness adopted in this work. Quantumness power and dequantumness power of
the quantum channel with their modified versions are introduced in Section 3. We give the
definition of the completely dequantumness channel and investigate its relationship with
quantum Markovianity through several significant examples in Section 4. We conclude
with a summary in Section 5.

2. Measure of Quantumness

Based on the direct connection between the quantumness of an ensemble and the non-
commutativity among its constituent states, the quantumness of the quantum ensemble
E = {(pi, ρi), i ∈ I} can be naturally quantified via the commutator as [24]

Q(E) = −∑
i,j

pi pjtr[ρi, ρj]
2, (1)

where [ρi, ρj] = ρiρj − ρjρi stands for the commutator, which is anti-Hermitian. This
measure is easy to calculate. We remark that in Refs. [30,31] the authors also used the
Hilbert–Schmidt norm of the commutators between two density operators to quantity the
non-commutativity between these two density operators.

For the two-qubit case, by virtue of the Bloch representation of the state, the expression
of Q(E) for ensembles with only two ingredients such that E = {(p, ρ1), (1− p, ρ2)} can
be further derived. Here p ∈ (0, 1), ρi =

1
2 (1 +~ri ·~σ), i = 1, 2 with 1 the identity operator,

~ri = (rix, riy, riz) the Bloch vector of the state ρi, and~σ = (σ1, σ2, σ3) the vector of the Pauli
matrices. Then, it can be calculated that

Q(E) = p(1− p)|~r1 ×~r2|2 = p(1− p)(r2
1r2

2 − (~r1 ·~r2)
2).

Here r2
i = |~ri|2, × and · denote the outer and inner product of the vectors, respectively.

The Bloch vector of state ρi can be given as ~ri = ri(sin θi cos φi, sin θi sin φi, cos θi) with
ri ∈ [0, 1], θi ∈ [0, π], and φi ∈ [0, 2π), then

Q(E) = p(1− p)r2
1r2

2(n
2
1 + n2

2 + n2
3), (2)

with

n1 = sin θ1 sin θ2 sin(φ1 − φ2),

n2 = sin θ1 cos φ1 cos θ2 − cos θ1 sin θ2 cos φ2,

n3 = sin θ1 sin φ1 cos θ2 − cos θ1 sin θ2 sin φ2. (3)

Recently, a modified version of this measure is proposed in Ref. [15] as

Q
′
(E) = −∑

i,j

√
pi pjtr[

√
ρi,
√

ρj]
2,

which is proved to bear some nice properties, such as the positivity, unitary invariance,
subaddtivity, concavity under probability union, convexity under state decomposition, and
increasing under fine graining.
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For simplicity in calculation, we adopt the measure in Equation (2) in the follow-
ing. It is worth mentioning that all the work derived here can be directly generalized to
other measures.

3. Quantumness and Dequantumness Power

After a quantum channel Λ, which is a linear, trace-preserving completely positive
map, the ensemble E = {(pi, ρi), i ∈ I} evolves to Λ(E) = {(pi, Λ(ρi)), i ∈ I}. By ana-
lyzing the dynamics of quantumness in ensembles, we can characterize the quantumness
power and dequantumness power of the quantum channel. To be specific, the quantumness
power of a quantum channel is defined as the maximal amount of quantumness that it
generates over all input ensembles E . Its expression is given as

C(Λ) = max
E

(
Q(Λ(E))−Q(E)

)
,

which quantifies the ability to induce quantumness. If we only focus on the initial commu-
tative ensembles, we can get another definition of quantumness power which we denote as
C
′

with expression
C
′
(Λ) = max

{E : Q(E)=0}
Q(Λ(E)).

Similarly, we can define the dequantumness power of a quantum channel as the maximal
amount by which the quantumness of the ensemble is reduced when it passed through the
channel, i.e.,

D(Λ) = max
E

(
Q(E)−Q(Λ(E))

)
.

When we only consider the initial ensembles with the maximal quantumness, we can obtain
a modified version

D
′
(Λ) = max

{E : Q(E)=Qmax}

(
Q(E)−Q(Λ(E))

)
= Qmax − min

{E : Q(E)=Qmax}
Q(Λ(E)).

Here Qmax denotes the maximal amount of quantunness in a quantum ensemble for a given
Hilbert space, which is dependent on the space dimension.

We remark that in [32], the quantumness of a quantum channel is defined as the
maximal quantumness (non-commutativity) between the output states of the quantum
channel for any two maximal-quantumness states, which can be formally expressed as

max
{E : Q(E)=Qmax}

Q(Λ(E)).

Note that another difference in the motivation is that we start from the quantumness in
ensembles rather than any two quantum states.

From the definition, we can obtain the following properties.
(1) C(Λ) ≥ C

′
(Λ) and D(Λ) ≥ D

′
(Λ).

(2) C
′
(Λ) = 0 is equivalent to that Λ is a commutativity preserving channel.

(3) C(U) = 0 and D(U) = 0, where U is the unitary operation.
(4) C(Λ1 ◦Λ2) ≤ C(Λ1) + C(Λ2) and D(Λ1 ◦Λ2) ≤ D(Λ1) + D(Λ2).
(5) C2(Λ) ≤ Cn(λ) < 2C2(Λ) and D2(Λ) ≤ Dn(λ) < 2D2(Λ), where Cn(Λ) and

Dn(Λ) represent the quantumness and dequantumness power defined on the ensembles
with less than n ingredients, respectively.

Proof. Since the first four properties can be directly verified from the definition, we only
prove the property (5) as follows. For simplicity, we just give the proof of the quantumness
power, with the case of the dequantumness power similarly derived.
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For ensembles having two ingredients E2 = {(p, ρ1), (1− p, ρ2)}, the quantumness
power is

C2(Λ) =max
E2

(
Q(Λ(E))−Q(E)

)
= max

p,ρ1,ρ2
2p(1− p)

(
tr[ρ1, ρ2]

2 − tr[Λ(ρ1), Λ(ρ2)]
2
)

=
1
2

max
ρ1,ρ2

(
tr[ρ1, ρ2]

2 − tr[Λ(ρ1), Λ(ρ2)]
2
)
,

1
2

H.

For ensembles with less than n constitutes denoted by En, the quantumness power is

Cn(Λ) = max
{E2,··· ,En}

(
Q(Λ(En))−Q(En)

)
= max

k=2,··· ,n
max
Ek

(
Q(Λ(Ek))−Q(Ek)

)
= max

k=2,··· ,n
max

{(pi ,ρi),i=1,··· ,k}
∑
i 6=j

pi pj

(
tr[ρi, ρj]

2 − tr[Λ(ρi), Λ(ρj)]
2
)

≤ max
k=2,··· ,n

max
{pi ,i=1,··· ,k}

∑
i 6=j

pi pjH = max
k=2,··· ,n

max
{pi ,i=1,··· ,k}

(1−∑
i

p2
i )H

≤ max
k=2,··· ,n

(1− 1
k
)H < 2C2(Λ),

meanwhile Cn(Λ) ≥ C2(Λ), then we can directly get that

C2(Λ) ≤ Cn(Λ) < 2C2(Λ), n ≥ 2.

From this property, we can obtain that the calculation of quantumness power and
dequantumness power can be restricted to the ensembles with two ingredients. In the
following, focusing on one particular channel, the explicit calculation process is given.

Example 1. For amplitude damping channels the Kraus operators of which are E0 =

(
1 0
0
√

1− λ

)
and E1 =

(
0
√

λ
0 0

)
, we can calculate the quantumness power and dequantumness power as follows.

Through this channel, the Bloch vectors of the states in the ensemble
E2 = {(p, ρ1), (1− p, ρ2)} change from ri(sin θi cos φi, sin θi sin φi, cos θi) to

~ri =
(

ri sin θi cos φi
√

1− λ, ri sin θi sin φi
√

1− λ, λ + (1− λ)ri cos θi

)
.

From Equation (2), we can obtain the quantumness of this evolved ensemble as

Q(Λ(E2)) =p(1− p)(1− λ)
[
λ2(h2

1 + h2
2) + r2

1r2
2(n

2
2 + n2

3)

+ r2
1r2

2(1− λ)n2
1 + 2λr1r2(n3h1 + n2h2)

]
, (4)

where ni are the same to the ones in Equation (3), and

h1 = r1 sin θ1 sin φ1 − r2 sin θ2 sin φ2 + r1r2(cos θ1 sin θ2 sin φ2 − sin θ1 cos θ2 sin φ1),

h2 = r1 sin θ1 cos φ1 − r2 sin θ2 cos φ2 + r1r2(cos θ1 sin θ2 cos φ2 − sin θ1 cos θ2 cos φ1).

The quantumness power restricted to the ensembles with two ingredients is

C2(Λ) = max
p,ri ,θi ,φi

(
Q(Λ(E2))− p(1− p)r2

1r2
2(n

2
1 + n2

2 + n2
3)
)

.
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Since the optimization is very complicated, we only show the numerical result as the blue
solid line in Figure 1.

If we only focus on the initial ensembles without quantumness, i.e., Q(E2) = 0, which
means r1 (or r2) = 0 or n1 = n2 = n3 = 0, we can get the expression of the modified
quantumness power as

C
′
2(Λ) = λ2(1− λ), (5)

whose proof is left in the Appendix A. The difference between these two measures is shown
in Figure 1. C2(Λ) > C

′
2(Λ) when 0 ≤ λ < λc and C2(Λ) = C

′
2(Λ) when λc < λ ≤ 1,

where λc ≈ 0.75.
Similarly, we can get the expression of dequantumness power as

D2(Λ) = max
p,ri ,θi ,φi

(
p(1− p)r2

1r2
2(n

2
1 + n2

2 + n2
3)−Q(Λ(E2))

)
.

Noting maxp,ri ,θi ,φi Q(E2) = 1
4 with p = 1

2 , r1 = r2 = 1 and sin θ1 sin θ2 cos(φ1 − φ2) =
− cos θ1 cos θ2, the modified dequantumness power is

D
′
2(Λ) = max

θ∈[0,π]

1
4

[
1− (1− λ)

[
(2λ2 − 2λ + 1)

± 2λ2 sin θ cos θ + 2λ(1− λ)(cos θ ± sin θ)
]]

.

As shown in Figure 2, D2(Λ) = D
′
2(Λ) in this case.

From this example, we can obtain that C(Λ) can be strictly larger than C
′
(Λ), which

means that the maximum may not be achieved at the free case just like the cohering
power [14]. Though D2(Λ) = D

′
2(Λ) in this case, we conjecture this equality may fail in

certain cases. But we have not found the counterexample satisfying D2(Λ) > D
′
2(Λ) yet.

Meanwhile, we can obtain that the channel with higher quantumness power does not
necessarily have stronger or weaker dequantumness power. The relationship among them
is complicated. For example, C2(0.25) > C2(0.99) while D2(0.25) < D2(0.99), C2(0.5) >
C2(0.1) and D2(0.5) > D2(0.1).

Figure 1. The graphs of C2 and C
′
2 for the amplitude damping channel.
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Figure 2. The graphs of D2 and D
′
2 for the amplitude damping channel.

4. Completely Dequantumness Channel and Its Relationship with
Quantum Markovianity

In this section, we consider a quantum channel as a quantum evolution Λt. If for all
the quantum ensembles, the channel reduces the quantumness all the time, we call this
channel as the completely dequantumness channel. For these channels, we always have

d
dt

Q(Λt(E)) ≤ 0, ∀E , ∀t ≥ 0.

The completely dequantumness channel can be verified to satisfy the following properties:
(1) The quantumness power of the completely dequantumness channel is always 0,

while the inverse is not always true.
(2) To verify whether a channel is a completely dequantumness channel or not, we only

need to verify whether the inequality d
dt Q(Λt(E)) ≤ 0 holds or not for all the ensembles

with two ingredients.

Proof. We only give the proof of property (2) since the first one can be verified directly from
the definition. If the channel reduces quantumness for all ensembles E = {(pi, ρi), i ∈ I},
we can directly obtain that for the ensembles with two ingredients E = {(p, ρ1), (1− p, ρ2)},
the inequality d

dt Q(Λt(E)) ≤ 0 holds.
Conversely, if for all the ensembles with two ingredients, the inequality holds, then by

virtue of the definition in Equation (1), for the general ensembles with arbitrary numbers of
ingredients, we can obtain that d

dt Q(Λt(E)) = −∑i,j∈I pi pj
d
dt tr[Λt(ρi), Λt(ρj)]

2 ≤ 0.

For open quantum systems, the definition of completely dequantumness channel
(dynamics) reflects the information flow of quantumness from the quantum system to the
environment. Since the information loss is a typical feature of Markovianity, it is natural to
investigate the relationship between the completely-dequantumness property of a quantum
dymamics and its Markovianity.

It is worth mentioning that there are various criteria proposed to qualitatively or quan-
titatively characterize quantum non-Markovianity from different perspectives, such as divisi-
bility [33–36], the distinguishability of states [37,38], fidelity [39], correlations [35,40,41], Fisher
information [42–44], and Rényi entropy [45]. Among these, a criterion that can fully charac-
terize the non-Markovianity of a quantum dynamics [33] is using the appearance of negative
decoherence rates in the canonical form of the master equation

dρt

dt
= − i

h̄
[H(t), ρt] +

d2−1

∑
k=1

γk(t)
[
Lk(t)ρtLk(t)† − 1

2
{Lk(t)†Lk(t), ρt}

]
,
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where the Lk(t) form an orthonormal basis set of traceless operators, i.e., trLk(t) = 0,
trLj(t)Lk(t)† = δjk, and H(t) is Hermitian. In this sense, a time-local master equation is
Markovian if and only if the canonical decoherence rates are positive at any time, i.e.,

γk(t) ≥ 0, ∀t ≥ 0, k = 1, · · · , d2 − 1. (6)

More importantly, the authors in Ref. [33] give an example of a master equation that
is non-Markovian for all times t ≥ 0, but to which nearly all proposed non-Markovian
measures do not work. For this reason, we will adopt this criterion for Markovianity.

To make a comparative study between the completely-dequantumness property and
the Markovianity, we focus on phase damping dynamics, amplitude damping dynamics,
and random unitary dynamics.

4.1. Phase Damping Dynamics

Consider the qubit dynamics Λ = {Λt : t ≥ 0} with ρt = Λt(ρ) described by the
differential equation

dρt

dt
= γt(σzρtσz − ρt),

where
∫ t

0 γsds ≥ 0 and σz is the Pauli-z spin matrix.
This dynamics is actually a phase damping channel and can be presented as

Λt(ρ) = E0ρE†
0 +E1ρE†

1 with Kraus operators E0 = diag(1,
√

1− λt) and E1 = diag(0,
√

λt),

where λt = 1− e−4
∫ t

0 γsds.
The Bloch vectors of the evolved states are

~ri(t) = ri(
√

1− λt sin θi cos φi,
√

1− λt sin θi sin φi, cos θi).

The quantumness of evolved ensemble Λt(E) = {(p, Λt(ρ1)), (1− p, Λt(ρ2))} turns
out to be

Q(Λt(E)) = p(1− p)r2
1r2

2[(1− λt)
2m1 + (1− λt)(m2 + m3)],

with mi = n2
i given in Equation (3), and the derivative is

dQ(Λt(E))
dt

=− p(1− p)r2
1r2

2

[
2(1− λt)m1 + m2 + m3

]dλt

dt
∝ −γt.

From above, we can obtain that for all quantum ensembles,

dQ(Λt(E))
dt

≤ 0 if and only if γt ≥ 0.

It can be directly verified from the definition of Equation (6) that γt ≥ 0 is just the condition
that the channel Λt is Markovian, which is also in accordance with the results revealed by
the measures based on the quantum trace distance (BLP-Markovianity) [37], dynamical di-
visibility (RHP-Markovianity) [35], quantum mutual information (LFS-Markovianity) [41],
and quantum Fisher information [43] (see Refs. [41,43] and references therein). This implies
that for the phase damping dynamics, it is completely dequantumness if and only if it
is Markovian.

4.2. Amplitude Damping Dynamics

Consider the qubit dynamics Λ = {Λt : t ≥ 0} with ρt = Λt(ρ) satisfying the
following master equation

dρt

dt
= − i

2
st[σ+σ−, ρt] + γt(σ−ρtσ+ −

1
2
{σ+σ−, ρt}),
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where {·, ·} denotes the anti-commutator, σ± are the atomic raising and lowing operators, re-
spectively, and st = −2= Ġt

Gt
, γt = −2< Ġt

Gt
. Here Gt satisfies the equation Ġt = −

∫ t
0 ft−sGsds

with initial condition G0 = 1, and ft is the reservoir correlation function.
This dynamics is actually an amplitude damping channel. We can directly obtain the

Bloch vectors of the evolved states in ensemble Λt(E) as

~ri(t) =
(

ri|Gt| sin θi cos(φi + δt), ri|Gt| sin θi sin(φi + δt), 1− |Gt|2(1− ri cos θi)
)

.

Here δt is the argument of Gt. The derivative of quantumness of this evolved ensemble can
be calculated as

dQ(Λt(E))
d|Gt|2

=p(1− p)
[
k12(t) f12(t) + 2|Gt|2r2

1r2
2 sin2 θ1 sin2 θ2 sin2(φ1 − φ2)

+ k21(t) f21(t)− 2r1r2 sin θ1 sin θ2 cos(φ1 − φ2)l(t)
]
,

where

kij(t) =ri sin θi(1− |Gt|2(1− rj cos θj)), i, j = 1, 2,

fij(t) =ri sin θi(1− 3|Gt|2(1− rj cos θj)), i, j = 1, 2,

l(t) =1− 2|Gt|2(2− r1 cos θ1 − r2 cos θ2) + 3|Gt|4(1− r1 cos θ1)(1− r2 cos θ2).

We define

h(|Gt|) , min
p,ri ,θi ,φi

dQ(Λt(E))
d|Gt|2

and plot it in Figure 3. From the figure, we can easily get that h(|Gt|) < 0 when |Gt| > 1
4 ,

which implies that

dQ(Λt(E))
dt

≤ 0, ∀ E ⇔ |Gt| ≤
1
4

and
d|Gt|

dt
≤ 0.

If |Gt| > 1
4 , we can always find particular ensemble whose quantumness increases during

the evolution.

0 0.25 0.5 0.75 1

|G
t
|

0

h(
|G

t|)

Figure 3. h(|Gt|) as a function of |Gt|.

It can be directly verified from the definition of Equation (6) that the amplitude damp-
ing channel is Markovian if and only if γt = − 2

|Gt |
d|Gt |

dt ≥ 0, i.e., d|Gt |
dt ≤ 0, which is also
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in accordance with the result revealed by the measures based on the quantum trace dis-
tance (BLP-Markovianity), quantum mutual information (LFS-Markovianity), and quantum
Fisher information (see Refs. [41,43,46] and references therein). Based on this observation,
we know that Markovianity does not imply completely dequantumness. It means that
there exists a Markovian channel that can induce quantumness for some ensembles.

4.3. Random Unitary Dynamics

Consider the qubit dynamics Λ = {Λt : t ≥ 0} with ρt = Λt(ρ) described by the
master equation

dρt

dt
=

3

∑
i=1

γi(t)(σiρtσi − ρt),

where γi(t) are suitable real functions of time, and σi are the Pauli spin matrices. This
dynamic is actually a random unitary dynamic and can be written in the following
equivalent form

Λt(ρ) =
3

∑
i=0

pi(t)σiρσi.

Here p0(t) = (1 + ∑3
j=1 λj(t))/4 and pi(t) = λi(t)/2 + (1 − ∑3

j=1 λj(t))/4 with

λi(t) = e2
∫ t

0 (γi(s)−∑3
j=1 γj(s))ds.

The Bloch vectors of the evolved ensemble Λt(E) can be derived as

~ri(t) = ri(λ1(t) sin θi cos φi, λ2(t) sin θi sin φi, λ3(t) cos θi),

and the quantumness measure is

Q(Λt(E)) ∝ λ2
1(t)λ

2
2(t)m1 + λ2

1(t)λ
2
3(t)m2 + λ2

2(t)λ
2
3(t)m3.

From this expression, we can obtain that

d
dt

Q(Λt(E)) ≤ 0, ∀E ⇔ d
dt

λi(t)λj(t) ≤ 0, i 6= j,

which is equivalent to γ1(t) + γ2(t) + γ3(t) + γj(t) ≥ 0 for all j = 1, 2, 3.
Recall that it has been verified that the random unitary dynamics is Markovian by

the definition of Equation (6) if and only if γi(t) + γj(t) ≥ 0 for all i 6= j, i, j = 1, 2, 3 [47],
which is consistent with the result revealed by the measures based on the quantum trace
distance (BLP-Markovianity) [48]. From the above, we get that Markovianity implies the
completely dequantumness, while the inverse is not always true.

In summary, for several significant quantum channels, we have derived the conditions
for the dynamics to be completely dequantumness, and compare them with the Markovian
conditions. Their relationships are illustrated in Table 1.

Table 1. Relationship between completely dequantumness (CDQ) and Markovianity.

Channel Completely Dequantumness Markovianity Relationship

Phase Damping γt ≥ 0 γt ≥ 0 CDQ⇔Markovianity

Amplitude Damping |Gt| ≤ 1
4 and d|Gt |

dt ≤ 0 d|Gt |
dt ≤ 0 CDQ ⇒6⇐ Markovianity

Random Unitary γ1(t) + γ2(t) + γ3(t) + γj(t) ≥ 0 γi(t) + γj(t) ≥ 0, i 6= j CDQ 6⇒⇐ Markovianity

From the table, we find that the completely dequantumness channel is related with
Markovian channel, while they are different. There exists the Markovian channel, which
induces quantumness for some ensembles. Meanwhile, there are also some completely
dequantumness channel that are non-Markovian.
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5. Conclusions

In this work, we mainly investigate the dynamics of quantumness in ensembles,
and propose quantumness power and dequantumness power to characterize quantum
channels. Once the channel reduces quantumness for all the ensembles at all times, we call
it the completely dequantumness channel, whose relationship with the Markovian channel
is studied through several examples. This work illustrates new properties of quantum
channels from the perspective of the information flow in terms of quantumness brought by
the interaction between the system and environment. It is worth mentioning that although
we only focus on the qubit case and one special quantumness measure, the results can be
generalized to arbitrary dimensions and other measures of quantumness.

There are still some problems to be further investigated. (1) From Ref. [49], we can
obtain that the commutativity-preserving channels cannot increase the quantumness of
ensembles, which means the quantumness power is zero for the unital qubit channel. Can
we find any non-unital qubit channel without quantumness power? (2) Whether the convex
combination of completely dequantumness channels is still completely dequantumness?
Suppose Λ and Φ are two completely dequantumness channels, we need to check whether
αΛ + (1 − α)Φ is a completely dequantumness channel or not. Since quantumness of
ensembles plays an important role in quantum communication and quantum cryptography,
this work is expected to be helpful in guiding quantum information tasks.
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Appendix A

Here we give the proof of Equation (5). From the definition of the modified quantum-
ness power, we only need to focus on the ensembles without quantumness. By Equation (2)
we know that for an ensemble E = {(p, ρ1), (1− p, ρ2)} such that Q(E) = 0, it holds that

r1(or r2) = 0 or n1 = n2 = n3 = 0.

Towards these two cases, we calculate the quantumness of the ensemble E .
(i) For the case that ri = 0, i = 1 or 2, without loss of generality, we assume r1 = 0,

then from Equation (4) it follows that

Q(Λ(E)) = p(1− p)λ2(1− λ)r2
2 sin2 θ2 ≤

1
4

λ2(1− λ),

and the upper bound can be achieved by the ensemble E0 = {( 1
2 , ρ1), ( 1

2 , ρ2)} with ρ1 = 1
2 ,

and ρ2 = 1
2

(
1 e−iφ

eiφ 1

)
, ∀φ ∈ [0, 2π).

(ii) For the case that n1 = n2 = n3 = 0, from Equation (4) it follows that

Q(Λ(E)) =p(1− p)λ2(1− λ)(r2
1 sin2 θ1 + r2

2 sin2 θ2 − 2r1r2 sin θ1 sin θ2 cos(φ1 − φ2))

≤p(1− p)λ2(1− λ)(r2
1 sin2 θ1 + r2

2 sin2 θ2 + 2r1r2| sin θ1 sin θ2|)
=p(1− p)λ2(1− λ)(r1| sin θ1|+ r2| sin θ2|)2 ≤ λ2(1− λ),
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and the upper bound can be achieved by the ensemble E0 = {( 1
2 , ρ1), ( 1

2 , ρ2)} with

ρ1 = 1
2

(
1 e−iφ1

eiφ1 1

)
and ρ2 = 1

2

(
1 −e−iφ2

eiφ2 1

)
, ∀φi ∈ [0, 2π), i = 1, 2.

Combining these two cases, we get that the modified quantumness power of the
amplitude damping channel Λ is

C
′
2(Λ) = max

{E2 :Q(E2)=0}
Q(Λ(E2)) = λ2(1− λ).
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