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Abstract: In the fault monitoring of rolling bearings, there is always loud noise, leading to poor
signal stationariness. How to accurately and efficiently identify the fault type of rolling bearings
is a challenge. Based on multivariate multiscale sample entropy (mvMSE), this paper introduces
the refined composite mvMSE (RCmvMSE) into the fault extraction of the rolling bearing. A rolling
bearing fault-diagnosis method based on stacked auto encoder and RCmvMSE (SDAE-RCmvMSE)
is proposed. In the actual environment, the fault-diagnosis method use the multichannel vibration
signals of the bearing as the input of stacked denoising autoencoders (SDAEs) to filter the noise of
the vibration signals. The features of denoise signals are extracted by RCmvMSE and the rolling
bearing operation-state diagnosis is completed with a support-vector machine (SVM) model. The
results show that in the original test data, the accuracy rates of SDAE-RCmvMSE, RCmvMSE, and
commonplace features of vibration signals combined with SVM (CFVS-SVM) methods are 99.5%,
100%, and 96% respectively. In the data with noise, the accuracy rates of RCmvMSE and CFVS-SVM
are 97.75% and 93.08%, respectively, but the accuracy of SDAE-RCmvMSE is still 100%.

Keywords: entropy; bearing; vibration signal; SDAE-RCmvMSE; combine harvester

1. Introduction

Rolling bearings play an important role in agricultural machinery. Their vibration
signals tend to be unsteady and nonlinear due to the harsh operating environment and
complex bearing fault types [1,2]. Various nonlinear signal analysis and processing meth-
ods have been widely applied in bearing fault diagnosis [3]. Entropy has attracted the
attention of researchers in more and more fields due to its unique advantages in the field of
feature extraction, and a series of research achievements have been made [4,5]. Commonly
used entropy methods include sample entropy [6], permutation entropy [7], dispersion
entropy [8], etc. He [9] applied sample entropy and a support-vector machine (SVM) model
to rolling bearing fault diagnosis to great effect. Cheng [10] used permutation entropy
in bearing state monitoring, which effectively identified the working state of bearings.
Rostaghi [11] used dispersion entropy for biological signal analysis, and the results showed
that dispersion entropy algorithm had better stability and faster calculation speed and was
less affected by mutation signals.

Dispersion entropy, sample entropy, and permutation entropy are all single-scale
analysis methods based on time series, without considering nonlinear dynamics charac-
teristics in multiple time scales. The feature acquisition ability of time series is limited
and cannot reflect complex features. Azami [12] proposed refined multiscale dispersion
entropy (RCMDE) on the basis of dispersion entropy and applied it to biological signal
analysis. Comparison with multiscale dispersion entropy (MDE) showed that RCMDE has
certain advantages over MDE in feature extraction and calculation speed. Costa [13] used
multiscale sample entropy (MSE), which is a univariate method that can detect internal
correlation. Multiscale sample entropy firstly uses multiscale reconstruction of time series
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and then calculates sample entropy at different reconstruction scales. This method has
been used to measure the complexity of a single-channel physiological signal. In order to
evaluate the structural complexity of multivariate signals using multiscale sample entropy,
Ahmed [14] proposed multivariate multiscale sample entropy (MMSE) in multichannel
simulation signals and biomedical signals. The MMSE algorithm considers the correlation
within and across multiple data channels and evaluates them on multiple time scales, which
provides an assessment of the dynamic richness of multichannel observations.

Deep learning is a signal detection and analysis method that has developed rapidly
in recent years. The accuracy and generalization of deep learning in the field of fault
diagnosis have been greatly improved [15–18]. Vinvent [19] introduced noise into a stacked
autoencoder (SAE) [20] and formed a stacked denoising autoencoder (SDAE) algorithm.
The algorithm extracted noiseless data from the data containing noise and extracted the
deep features of the signal simultaneously. Li [21] used stacked autoencoders for rolling
bearing fault diagnosis, and the results showed that the diagnosis was superior to BPNN
and SVM models in terms of stability and accuracy.

In order to improve the stability and reliability of MMSE and give full play to the
advantages of multivariate multiscale sample entropy in extracting nonlinear dynamic
characteristics of multivariate signals, this paper proposes refined composite multivariate
multiscale sample entropy (RCmvMSE). In order to improve the denoising performance
of SDAEs, we propose an improved SDAE based on multiple noise distributions. The
method fused the improved SDAE and RCmvMSE for rolling bearing fault diagnosis
(SDAE-RCmvMSE). Firstly, the improved SDAE removed noise in the signals, then the
RCmvMSE algorithm extracted the entropy characteristics of the signals. Finally, an SVM
model was used to classify bearing faults.

2. Methods
2.1. Improved SDAE

DAE adds noise to the training data and extracts deep features from them, then
reconstructs the original training data from the deep features. Get noisy data by adding
noise to data sample, obtain deep features by encoder, and obtain the reconstruction result
of the data sample by decoder. Finally, obtain the DAE model through minimizing the
error between the data sample and reconstruction result. Stack all the DAEs to obtain
the SDAE. In order to improve the generalization and denoising ability of the model, the
improved SDAE uses Gaussian noises with different distribution centers to destroy the test
data during model training [21], which is shown in Figure 1.

Figure 1. Structure of improved SDAE model. Note: x is the data sample,
∼
X is the noise data, layer 1

and layer 2 are the feature representation layers, layer3 is the feature reconstructed presentation layer,
and y is the output.
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2.2. RCmvMSE

The main idea of refined composite technology is to generate a group of multivariate
coarse-grained time series and obtain the average performance of these time series as
the ultimate representation [22]. The refined composite multivariate multiscale sample
algorithm includes the coarse-grained process and calculating multivariate sample entropy
under various scale factors.

2.2.1. Coarse-Grained Process

The traditional coarse-grained multiscale method does not fully consider the rela-
tionship between adjacent elements at both ends of each segment because of intercepting
nonoverlapping segments. As the scale factor increases, the stability of the calculation
results becomes worse [23], so adopt an improved refined composition technique of multi-
variate time series to solve this problem. The first step of the refined composite multivariate
multiscale sample entropy algorithm is to generate a coarse-grained multivariate time
series zτ

α . The time series Y of the p channel is as follows:

Y =
{

yq,b

}c

b=1
q = 1, 2, . . . , p

(1)

where C is the length of each channel signal, and:

zτ
α =

{
xτ

α,q,i

}

xτ
α,q,i =

1
τ

iτ+α−1
∑

(i−1)τ+α

(yq,b − 1
τ

iτ+α−1
∑

(i−1)τ+α

yq,b)
2

1 ≤ i ≤
⌊ c

τ

⌋
, α = 1, 2, . . . , β

(2)

where τ is the delay coefficient and β the scale factor. For each τ, there is a corresponding
coarse-grained sequence Zτ

α . mvMSE only considers Zτ
1 , so obtains relatively little informa-

tion. The refined multivariate multiscale sample entropy algorithm uses coarse-grained
sequences with different scales.

2.2.2. Calculation for mvMSE

In order to calculate multivariate sample entropy [24] under a defined scale factor,
the multivariate embedding vector is first generated. Suppose there is a p-channel signal
X =

{
xq,i
}q=p,i=N

q=1,i=1 , where N is the length of each coarse-grained time series. The multivari-
ate embedded vector is defined as:

Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1
,

x2,i, x2,i+τ2 , . . . , x2,i+(m2−1)τ2
,

. . . , xp,i, xp,i+τp , . . . , xp,i+(mp−1)τp , ]
(3)

where M = [m1, m2, . . . , mp] is the embedding vector and the time-delay vector is
T = [τ1, τ1, . . . , τ1].

For the time series with p variables
{

Xq
}p

q=1, the calculation process of multivariate
sample entropy is as follows.

(1) Calculate the multivariate embedding vector Xm(i) ∈ Rm, where i = 1, 2, . . . , N − n,
n = max{m} ×max{T}.

(2) Calculate the distance between any two composite delay vectors Xm(i) and Xm(j) as
the maximum norm.

(3) For given Xm(i) and threshold r, calculate the quantity of Pi in d[Xm(i), Xm(j)] < r, i 6= j.
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The frequency of occurrence is

φm
i =

1
N − n

Pi (4)

and define a variable as

φm(r) =
1

N − n

N−n

∑
i=1

φm
i (r) (5)

(4) Extend the dimension of the multivariate delay vector in (3) from m to m + 1 (dimen-
sions of other variables remain unchanged).

(5) Repeat steps (1)–(4) and calculate φm+1
i (r), then take the average φm+1(r) of all the i

in m + 1 dimensions.
(6) Finally, the multivariate sample entropy is calculated:

mvSE(X, M, T, r) = −In
φm+1(r)

φm(r)
(6)

Based on the improved recombination technique, each scale factor β has a correspond-
ing coarse-grained sequence Zβ

α . For each Zβ
α , calculate φm

β,α and φm+1
β,α separately. Then,

calculate
−
φ

m

β,α and
−
φ

m+1

β,α over the range α = 1, 2, . . . β. Finally calculate RCmvMSE:

RCmvMSE(X, m, r, τ, β) = −In

−
φ

m

β,α

−
φ

m+1

β,α

(7)

2.2.3. Simulation Signal Analysis

In order to explain the characteristics of RCmvMSE in multivariate time series,
RCmvMSE was applied to generated four-variable time series [25,26]: (1) all the four
variable time series were Gaussian white noise; (2) three variables were Gaussian white
noise and one variable was 1/f noise; (3) two variables were Gaussian white noise and two
variables were 1/f noise; (4) all four variables are 1/f noise. The parameters of RCmvMSE
are set as follows: embedding dimension m = 3, category c = 5, threshold r = 0.15, delay
coefficient d = 1. The mean standard deviation of RCmvMSE of 20 scales for the four groups
of time series with 3072 data length is shown in Figure 2.

Figure 2. Mean chart of RCmvMSE.



Entropy 2022, 24, 1139 5 of 16

It can be seen from Figure 2 that the RCmvMSE of the multivariate time series of
each noise combination decreases with the increase of the scale factor. This shows that
the complexity of time series under different scale factors is different. In the four-variable
time series, with the decrease of the white noise time series variable, the variation range
of RCmvMSE value decreases and the standard deviation increases correspondingly. This
is because with the increase of 1/f noise, the dynamic characteristics of multivariate time
series tend to be regular and concentrated, and the variability of multivariate time series
is greater, leading to the increase in standard deviation. RCmvMSE can simultaneously
obtain more information for each channel of multiple time series.

To compare the stability of RCmvMSE at different data lengths, 100 bivariate Gaussian
white noise samples were used. The sample length of each group was 512, 1024, 1536, and
2048, respectively. The mean and standard deviation of RCmvMSE of 100 samples are
shown in Figure 3. As can be seen from Figure 3a, RCmvMSE is more dispersed when
the data length is low, and its value decreases with the increase in scale factor. When the
data length is 2000, the value of RCmvMSE changes slightly. This shows that RCmvMSE is
suitable for long time series. As shown in Figure 3b, the standard deviation of RCmvMSE
decreases with the increase in data length and the decrease in scale factor. RCmvMSE is
stable when the data length is 2048, so this article sets the sample length to 2048.

Figure 3. Mean and standard deviation of RCmvMSE in different signal lengths. (a) Mean value of
RCmvMSE; (b) standard deviation of RCmvMSE.

3. Fault-Diagnosis Method Based on SDAE-RCmvMSE
3.1. SDAE-RCmvMSE Bearing Fault-Diagnosis Process

Based on the characteristics of SDAE and RCmvMSE and combined with the classifica-
tion advantages of the support-vector machine (SVM) model [27–29], this paper proposes a
bearing fault-diagnosis model based on SDAE-RCmvMSE, and its fault-diagnosis process
is shown in Figure 4. The specific steps are as follows:

(1) Collect original vibration signals through the data acquisition system installed on the
bearing to be diagnosed.

(2) Filter the noise in the vibration signal by improved SDAE.
(3) RCmvMSE is used to extract the entropy features of vibration signals to obtain training

set and testing set.
(4) Sending the training set to SVM, parameters of SVM are updated by the error between

expected outputs and actual output. This step is iterated repeatedly until the classifier
accuracy requirement or the maximum number of iterations is reached. Then, the
SVM model is completed and the optimal parameters are obtained.

(5) The SVM model completed by training is used to classify the samples in the feature
testing set, so as to obtain the state types of bearings to be diagnosed.
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Figure 4. Flowchart of bearing fault diagnosis.

3.2. Bearing Fault-Diagnosis Experiment

To verify the effectiveness of the algorithm, it is applied to the single fault-state
identification experiment of a combine harvester detached from a roller bearing. The
test equipment in this paper is a threshing drum assembly of a combine harvester. The
test platform is mainly composed of a motor driving part, threshing assembly, and data
acquisition system. In the test, data acquisition was completed by TM0782A acceleration
sensor, NJK-5002C speed sensor, USB-6002 data acquisition card, computer, and Labview
2019 software. Figure 5a,b show the positions of the acceleration sensor and speed sensor.
The voltage sensitivity of the #1 to #4 accelerometers is 101.6 mV/g, 99.1 mV/g, 101.2 mV/g,
and 101.3 mV/g, respectively.

The test bearing is a 6307 deep-groove ball bearing at the rear end of the threshing
drum. The outer ring of the bearing is fixed on the bearing seat, and the inner ring rotates
with the threshing drum shaft. Other bearings in the system are normal bearings. Three
common fault types of 6307 deep-groove ball bearings were considered in this test: inner
ring crack (IRF), outer ring crack (ORF), and compound crack (CF). The detailed parameters
of each fault are shown in Table 1.

Bearing faults of different types and sizes were simulated by edM. Figure 6 shows
the rolling bearings with inner, outer, and inner ring composite faults, respectively. The
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vibration signals of bearing state were collected by data acquisition system under four
working conditions, namely, the speed of threshing drum was stable at 80 r/min, 160 r/min,
240 r/min, and 320 r/min, with sampling frequency of 5120 Hz and sampling time of each
group of states was 50 s. The time-domain waveforms of some fault types are shown in
Figure 7.

Figure 5. Schematic diagram of sensor installation of combine harvester test platform. (a) Installation
diagram of acceleration sensor of bearing under test. (b) Installation diagram of acceleration sensor
of bevel gearbox.
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Table 1. Parameters of different states.

State Fault Width/mm Fault Depth/mm

IRF07 0.7 3.7
IRF10 1.0 3.7
IRF12 1.2 3.7
IRF15 1.5 3.7
ORF07 0.7 3.2
ORF10 1.0 3.2
ORF12 1.2 3.2
ORF15 1.5 3.2
CF05 0.5/0.5 3.2/3.7
CF10 1.0/1.0 3.2/3.7

Figure 6. Different types of faulty bearings.

3.3. Analysis of RCmvMSE

The collected data are sequentially divided into data samples with a length of 2048,
and there are 300 data samples in each fault state and 3000 data samples in normal state.
RCmvMSE parameters are set as: embedding dimension m = 3, category c =5, threshold
r = 0.15, delay coefficient d = 1.

It can be seen from Figure 8 that RCmvMSE decreases with the increase in the scale
factor. However, when the scale factor is greater than 11, RCmvMSE tends to be stable
and the difference is small. When the scale factor is less than 9, the value separation of
RCmvMSE is also obvious [30,31].

Five samples of IRF07 were taken, a sample window with a data length of 2048 and a
step size of 32 was taken to sweep the sample, and the RCmvMSE curve with a scale factor
of 15 was drawn, as shown in Figure 9.
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Figure 7. Time domain waveforms of different faults. (a) CF05; (b) Normal; (c) IRF15; (d) ORF15.

Figure 8. Mean standard deviation chart of RCmvMSE.
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Figure 9. RCmvMSE curves under inner ring failure 1 state.

It can be seen from Figure 9 that the periodicity of RCmvMSE is very significant.
In order to research the impact of scale factors on model accuracy, 30 samples from each

type were used as test samples. RCmvMSE was used to extract the entropy characteristics
of the test samples under different scale factors, and then the trained SVM was used for
classification. The results are shown in Figure 10. It can be seen that the accuracy of the
model increases with the increase in the scale factor. When the scale factor is greater than
15, the accuracy of the model tends to be stable, but when the scale factor is greater than 20,
the accuracy of the model decreases slightly. The reason for the decrease in accuracy may
be that the scale factor is too large to produce information redundancy. Therefore, the scale
factor of the RCmvMSE is set to 15 in this paper.

Figure 10. Model accuracy varies with the scale factor.
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3.4. Analysis of Results
3.4.1. Analysis with Origin Data

SVM classifier was used to classify features extracted by RCmvMSE to realize fault
classification of rolling bearings. Firstly, 280 samples for each fault type of data and
2000 normal data samples were taken as the training set. The remaining samples were
taken as the testing set. Meanwhile, normal, IRF07, IRF10, . . . , CF05, and CF10 are
identified as 1, 2, . . . , and 11, respectively. Then, the training samples were input into the
SDAE-RCmvMSE model based on SVM for training.

In order to solve the impact of unbalanced samples on the model, adjust the weight
of fault-state data samples during model training, so that the error loss caused by fault
samples will have a greater impact on model parameters. Because of the SDAE-RCmvMSE
model, the vibration signal data has a certain denoising ability. Therefore, the trained SDAE-
RCmvMSE model was tested with noised vibration signal data and different degrees of
noised vibration signal data. At the same time, for further verification of the advantages of
SDAE-RCmvMSE, the vibration data in the third channel of the same training sample were
used to train SVM based RCmvMSE, and the tests were also carried out in noise-free and
noise-added data. To better display the performance of SDAE-RCmvMSE, commonplace
features of vibration signals combined with SVM (CFVS-SVM) were used for bearing fault
diagnosis in this paper. Common features include: time domain, frequency domain, and
time frequency domain. The time-domain features in this paper are 18, such as mean,
standard deviation, peak-to-peak value, median, quartile difference, waveform factor, peak
factor, impulse value, and margin. The frequency domain features include the amplitude
of Fourier transform, median of mean, quartile difference, and percentile difference, etc.
The time-frequency domain features are six energy features and their normalized energy
features obtained by five-order wavelet transform. Results of RCmvMSE, CFVS-SVM,
and SDAE-RCmvMSE models in the noise-free data test samples are shown in Table 2.
RCmvMSE reached 100% accuracy in noiseless data, which is much higher than CFVS-
SVM. The reasons may be as follows: 1. the test environment is ideal, and the feature
of each type of fault is obvious; 2. the fault type is simple and there is no compound
fault. SDAE-RCmvMSE and CFVS-SVM have the lowest diagnostic accuracy of IRF10 and
IRF07, which are both 85%. Meanwhile, the test time of single samples of RCmvMSE and
SDAE-RCMVMSE was 0.98 s and 1.13 s, respectively.

Table 2. Diagnostic results of SDAE-RCmvMSE, RCmvMSE, and CFVS-SVM in noise data.

State
Number of

Samples

Prediction Accuray/%

RCmvMSE SDAE-
RCmvMSE CFVS-SVM

Normal 1000 100.00 100.00 96.70
IRF07 20 100.00 90.00 85.00
IRF10 20 100.00 85.00 95.00
IRF12 20 100.00 100.00 100.00
IRF15 20 100.00 100.00 85.00
ORF07 20 100.00 100.00 95.00
ORF10 20 100.00 100.00 100.00
ORF12 20 100.00 100.00 100.00
ORF15 20 100.00 100.00 90.00
CF05 20 100.00 95.00 90.00
CF10 20 100.00 100.00 85.00
Total 1200 100.00 99.50 96.00

3.4.2. Analysis with Noise Data

Using Gaussian noise with a mean of 0 and a variance of 0.1 to randomly destroy the
original sample with a probability of 0.10, a noise test sample was obtained. Noise test
samples were used to test RCmvMSE, CFVS-SVM, and SDAE-RCmvMSE models, and the
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results are shown in Table 3. As can be seen from Table 3, the accuracy of RCmvMSE and
CFVS-SVM is 97.75% and 93.08%, respectively. Under the testing conditions of noisy data
samples, the accuracy is greatly reduced. The accuracy of IRF12 and ORF07 reaches 100%,
and its F1 measurement is 0.9137 [32], indicating that RCmvMSE has a general performance
in the data samples containing noise. Compared with the above two algorithms, the
accuracy of SDAE-RCMVMSE reaches 100% and the F1 measurement is 1, indicating that
the fault-diagnosis ability of the SDAE-RCMVMSE model is significantly better than the
CFVS-SVM and RCmvMSE models in the signal containing noise. For inner ring failure,
that of the original signal is shown in Figure 11, after adding noise the time-domain
waveform of the original signal is shown in Figure 12, and that of the original signal after
denoising is shown in Figure 13. It can be seen from Figures 11–13 that the SDAE model
has excellent denoising performance. The reason for the accuracy of 100% may be that the
difference of each fault type is large and the test conditions are relatively ideal.

Table 3. The diagnosis results of SDAE-RCmvMSE, RCmvMSE, and CFVS-SVM under noise data.

State
Number of

Samples

Prediction Accuracy/%

RCmvMSE SDAE-
RCmvMSE CFVS-SVM

Normal 1000 99.10 100.00 94.20
IRF07 20 95.00 100.00 85.00
IRF10 20 95.00 100.00 90.00
IRF12 20 100.00 100.00 90.00
IRF15 20 80.00 100.00 80.00
ORF07 20 100.00 100.00 90.00
ORF10 20 90.00 100.00 85.00
ORF12 20 90.00 100.00 90.00
ORF15 20 85.00 100.00 90.00
CF05 20 85.00 100.00 85.00
CF10 20 90.00 100.00 90.00
Total 1200 97.75 100.00 93.08

Figure 11. Original signal time domain waveform.
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Figure 12. Time domain waveform after the addition of noise to the original signal.

Figure 13. Time domain waveform after denoising.

In terms of information-processing time, the single-sample test time of RCmvMSE was
about 0.94 s and the single-sample test time of SDAE-RCMVMSE was about 1.13 s. The
single-sample test time of RCmvMSE was significantly lower than that of SDAE-RCMVMSE.
SDAE-RCMVMSE has excellent performance in noisy data, but the test time is relatively
long. The test time can be reduced by reducing the scale factor, but its stability may be
affected to some extent, and further research is needed.

3.4.3. Visualization of Classification Results

For all test samples in the rolling bearing data set, the visual distribution results of
features extracted by SDAE-RCMVMSE after t-SNE processing [33] are shown in Figure 14.
It can be seen from the figure that this method has great feature distribution and the samples
between classes are relatively dispersed. Except for the compound fault 2 category, the
samples within other classes have a high degree of aggregation. In compound fault 2, the
intraclass aggregation effect is poor, but it does not affect the accuracy of the diagnosis results.
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Figure 14. Visualization results of feature distribution.

3.4.4. Model Performance Analysis under Different SNR

In order to analyze the relationship between Gaussian noise with a mean of 0 and
a variance of 0.1 in the original data and the diagnostic accuracy of the model, white
Gaussian noise was added to the original vibration data according to the ratio of 0%, 10%,
20%, and 30% (the mean of 0 and variance of 0.1), and the average diagnostic accuracy
of different fault diagnosis methods calculated within 50 running times. As shown in
Figure 15, the accuracy of SDAE-RCMVMSE, RCmvMSE, and CFVS-SVM all declined with
the increase in the proportion of Gaussian noise. When the proportion of Gaussian noise
is less than or equal to 0.30, the accuracy of SDAE-RCMVMSE algorithm is always stable
at 99.7–98.8%, while the accuracy of the RCmvMSE algorithm decreases slightly and is
greater than 93%. This shows that the SDAE-RCmvMSE model has better fault-diagnosis
ability than CFVS-SVM and RCmvMSE in the signal containing noise, and has strong
antinoise performance.

Figure 15. The relationship between the accuracy and the proportion of Gaussian noise.
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4. Conclusions

In this paper, a bearing fault-diagnosis method based on SDAE-RCMVMSE is pro-
posed and verified by a bearing fault simulation test on a combine harvester test platform.
The experimental results verify the effectiveness of the method. The main conclusions are
as follows:

(1) The SDAE model can effectively remove noise points in the signal, laying a foundation
for accurate extraction of RCmvMSE;

(2) The improved SDAE model introduces Gaussian noises with different distribution
centers, which greatly improves the denoising ability of the model and makes the
model more robust;

(3) RCmvMSE feature extraction considers the relevant information of each channel in
multivariate variables, and the extracted entropy can better reflect the changes of
multivariate signals and has great stability.

The SDAE-RCmvMSE fault-diagnosis method proposed in this paper has excellent
antinoise performance, high recognition rate, and strong robustness, which provides a new
technical means for fault monitoring and diagnosis of rotating mechanical components.
Subsequent studies will further improve the real-time performance of the algorithm and
the effectiveness of complex fault diagnosis.
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