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Abstract: The effect of a reservoir on quantum communication depends on its spectral density. The
efficiency of quantum teleportation and dense coding is explored when each one of the channel qubits
is coupled simultaneously to multiple bosonic reservoirs. It is shown that the non-Markovianity
triggered by increasing the reservoir number can induce revivals of quantum advantages of the two
protocols after their disappearance. However, the backflow of information to the system that signifies
non-Markovianity does not always induce immediate revivals of the quantum advantages. There
may be a delayed effect for some initial states, and only as the backflow of information accumulates
to a certain extent can the revivals of quantum advantages be triggered.
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1. Introduction

Quantum communication protocols outperform their classical counterparts in many
aspects, e.g., they have high security and channel capacity [1]. Among the various protocols,
quantum teleportation is an archetype which uses the prior shared entanglement between
the sender Alice and receiver Bob as a physical resource [2]. It enables the disembodied
transmission of an unknown state by local operations and classical communication and
gives unity fidelity when the shared channel state is maximally entangled [2]. For a
general entangled channel state, this protocol shows a quantum advantage when the
average fidelity is larger than the classical limiting value 2/3 [3,4]. Another well-known
communication protocol is dense coding which also uses entanglement as a resource [5–7].
Different from quantum teleportation, there is one qubit being sent from Alice to Bob,
and this enables the transmission of two bits of classical information if the channel state is
maximally entangled. For certain non-maximally entangled states, this protocol can also
show a quantum advantage, that is, it may achieve a dense coding capacity that is not
achievable by any classical manner [8].

The quantum advantages of teleportation and dense coding strongly depend on the
shared entanglement [9–12], which is very fragile and might degrade rapidly due to the un-
avoidable interaction of the system with its environment [13]. Based on this consideration,
the effects of different noises on teleportation [14–18] and dense coding [19–23] have been
extensively studied. It was shown that their quantum advantages may exist for a relatively
long time by choosing specific channel states [24,25], by using the desired features (the
non-Markovianity, the correlated actions, etc.) of the noises [26–28], or by applying active
operations, such as local filtering operations [27] and weak measurements [29,30].

An important research direction concerning environmental effects is the case of the
qubits being immersed in reservoirs. In such a scenario, the decay behaviors of entan-
glement have been extensively studied [31–36]. Similarly, the behaviors of discord-like
correlations in bosonic reservoirs have also been studied [37–40]. These works focus on the
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cases in which the two qubits are coupled to two independent reservoirs or to a common
reservoir, and the results show that the non-Markovianity triggered by tuning the spectral
density of the reservoir is beneficial for protecting quantum correlations.

In this paper, we consider quantum teleportation and dense coding in the bosonic
reservoirs. For a single qubit coupled to N reservoirs (i.e., the multiple reservoirs), it has
been shown that the non-Markovianity will be triggered when N becomes larger than a
threshold [41]. Here, we go one step further from the single-qubit case to the two-qubit
case. Specifically, we suppose the two qubits serving as the quantum channel are subject
to two independent groups of multiple reservoirs. We will focus on their efficiency for
implementing the teleportation and dense coding protocols. Different from one’s intuition
that the addition of a reservoir introduces additional decoherence, the results show that
by increasing the number of involved reservoirs, one can observe revivals of the lost
quantum advantages for teleportation and dense coding, although for certain initial states,
the revivals do not occur synchronously with the occurrence of the backflow of information
from the reservoirs to the system. This shows the complex effects of the multiple reservoirs
on the implementation of the quantum protocols and may be useful for protecting the
quantum advantages of the teleportation and dense coding protocols.

2. Preliminaries

In this section, we recall the quantifiers that will be used to characterize the efficiency
of the quantum channel for implementing the tasks of quantum teleportation and dense
coding. Both these two tasks show quantum advantages over their classical counterparts if
the qubits constituting the quantum channel are entangled in a certain way.

We first consider the teleportation of an unknown state |ϕin〉 from Alice to Bob, which
can be implemented by Alice’s local operations on her qubits (i.e., the qubit encoding |ϕin〉
and the channel qubit at her hand) and Bob’s recovery operation on the channel qubit at
his hand based on the classical information received from Alice (i.e., Alice’s measurement
outcomes) [2]. Suppose Bob’s recovered state is ρout, then the quality of teleportation could
be quantified by the fidelity F = 〈ϕin|ρout|ϕin〉, which depends on |ϕin〉. To characterize
efficiency of the quantum channel for teleportation, one needs to consider the average effect
of all possible |ϕin〉, that is, by averaging F over all possible |ϕin〉. If |ϕin〉 is the single-qubit
state and an arbitrary two-qubit state ρAB is used as the quantum channel, the average
fidelity of teleportation optimized over the local quantum and classical communication
operations can be obtained as [3]

Fav(ρAB) =
1
2
+

1
6

N(ρAB), (1)

where N(ρAB) = tr
√

T†T is the trace norm of the correlation tensor T with elements Tij =
tr(ρABσi ⊗ σj), and σi (i = 1, 2, 3) are the Pauli operators. It has also been shown that the
average fidelity equals (Fmaxd + 1)/(d + 1), with d being the dimension of |ϕin〉 and Fmax
the maximal singlet fraction which is smaller than or equal to 1/d for the separable states, so
the best average fidelity via classical channel is 2/3 for d = 2 [42]. For certain entangled ρAB,
Fav(ρAB) can exceed this classical limiting value; thus, quantum teleportation outperforms
the purely classical protocols and shows quantum advantage [4].

Next, we recall the quantifier for characterizing dense coding. Different from quantum
teleportation that is implemented without sending any particle physically, dense coding
refers to the protocol with Alice’s channel qubit being sent to Bob after her local unitary
transformation. The purpose of this protocol is to show quantum advantage of ρAB for
transmitting classical information, the optimal amount of which is bounded from above by
the Holevo quantity [8,43]

χ(ρAB) = S(ρ̄AB)− S(ρAB), (2)

where ρ̄AB = 1
4 ∑3

k=0 ρk
AB is the ensemble state averaged over the signal states ρk

AB = (σk ⊗
1)ρAB(σk ⊗ 1) (σ0 = 1 represents the identity operator), while S(ρ̄AB) = −tr(ρ̄AB log2 ρ̄AB)
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is the von Neumann entropy of ρ̄AB, and likewise for S(ρAB). Because the Holevo quantity
is asymptotically achievable [44], one can dub χ(ρAB) as the dense coding capacity. This
protocol shows quantum advantage when χ(ρAB) > 1, and one has χ(ρAB) = 2 when ρAB
is maximally entangled.

3. Solution of the Model

Suppose the qubits A and B, serving as the quantum channel, are individually sub-
merged in two groups of multiple bosonic reservoirs, then the single “qubit+reservoirs"
Hamiltonian ĤS (S = A, B) can be written as

ĤS =
1
2

ω0σz +
NS

∑
n=1

(
∑
k

ωn,kb†
n,kbn,k + σ+Bn + σ−B†

n

)
, (3)

where Bn = ∑k gn,kbn,k with gn,k being the coupling strengths, the index k labels the
nth reservoir’s field mode with frequency ωn,k, and bn,k (b†

n,k) is the corresponding an-
nihilation (creation) operator. Moreover, ω0 is the transition frequency of the qubit and
σ± = (σ1 ± iσ2)/2 are the raising and lowering operators. Such a multiple interaction could
be realized by placing a two-level atom at the center of NS lossy cavities [33,41,45]. We
suppose that there is no initial correlation between the qubit and the reservoirs, and then
by tracing out the NS reservoirs, the evolving state of qubit S in the basis {|1〉, |0〉} can be
obtained as [33,41]

ρS(t) =

(
ρ11

S (0)|qS|2 ρ10
S (0)qS

ρ01
S (0)q∗S 1− ρ11

S (0)|qS|2

)
, (4)

where ρ
ij
S(0) = 〈i|ρS(0)|j〉 with ρS(0) being the initial state of qubit S, and qS is a time-

dependent parameter determined by the spectra of the multiple reservoirs.
For two qubits A and B coupled independently to two sets of multiple reservoirs, their

evolving state ρAB(t) at time t can be obtained from Equation (4) [31,46]. Here, we consider
the case that they are prepared initially in one of the Bell-like states:

|Ψ〉 = α|10〉+ β|01〉, |Φ〉 = α|11〉+ β|00〉. (5)

For the initial state |Ψ〉, the nonzero elements of ρAB(t) can be obtained as

ρ22
AB(t) = |αqA|2, ρ23

AB(t) = [ρ32
AB(t)]

∗ = αβ∗qAq∗B,

ρ33
AB(t) = |βqB|2, ρ44

AB(t) = 1− |αqA|2 − |βqB|2,
(6)

based on which one can obtain the average fidelity of teleportation and the dense coding
capacity as

Fav(ρAB) =
1
2
+

2
3
|αβqAqB|+

1
6
|1− 2(|αqA|2 + |βqB|2)|,

χ(ρAB) = 1 + H2(|βqB|2)− H2(|αqA|2 + |βqB|2),
(7)

where H2(x) = −x log2 x− (1− x) log2(1− x) denotes the binary Shannon entropy function.
Similarly, for the initial state |Φ〉, the nonzero elements of ρAB(t) can be obtained as

ρ11
AB(t) = |αqAqB|2, ρ14

AB(t) = [ρ41
AB(t)]

∗ = αβ∗qAqB,

ρ22
AB(t) = |αqA|2(1− |qB|2), ρ33

AB(t) = |αqB|2(1− |qA|2),
ρ44

AB(t) = 1− |α|2(|qA|2 + |qB|2 − |qAqB|2),
(8)
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then by denoting ε± = ρ11
AB(t)± ρ44

AB(t), the eigenvalues of ρAB(t) given in Equation (8)
can be obtained as

ε1 = ρ22
AB(t), ε2 = ρ33

AB(t), ε3,4 =
ε+ ±

√
ε2
− + 4

∣∣ρ14
AB(t)

∣∣2
2

, (9)

hence, one has

Fav(ρAB) =
1
2
+

2
3
|αβqAqB|+

1
6
|1− 2(ε1 + ε2)|,

χ(ρAB) = 1 + H2(|αqB|2) +
4

∑
n=1

εn log2 εn.
(10)

4. Behaviors of Average Fidelity and Dense Coding Capacity

For the given initial states, one can see from Equations (7) and (10) that both Fav(ρAB)
and χ(ρAB) are determined by |qA| and |qB|. By choosing α = β = 1/

√
2, we show in

Figure 1 their dependence on |qA| and |qB|, from which one can note that Fav(ρAB) is
symmetric with respect to |qA| = |qB|. For the initial state |Ψ〉, Fav(ρAB) = 2/3− |qA|2/6
when |qB| = 0, which decreases monotonically from 2/3 to 1/2 with the increase of |qA|.
When |qB|2 ∈ (0, 1/2), Fav(ρAB) first increases to its peak value of 2/3 and then decreases
to a minimum, after which it increases gradually to 1/3 + (|qB|+ 1)2/6 at |qA| = 1. Finally,
for |qB|2 > 1/2, Fav(ρAB) always increases with an increase of |qA|. When considering |Φ〉,
one still has Fav(ρAB) = 2/3− |qA|2/6 when |qB| = 0. However, when |qB| ∈ (0, 1/2),
Fav(ρAB) first increases to a peak value larger than 2/3 and then decreases to a minimum,
and when |qB| > 1/2, Fav(ρAB) always increases monotonically with the increase of |qA|.
Moreover, as is shown in the top two panels of Figure 1, Fav(ρAB) for the initial state |Φ〉
exceeds the classical limiting value of 2/3 in an extended region of (|qA|, |qB|) compared to
that for |Ψ〉.
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Figure 1. Average fidelity of teleportation Fav (the top two panels) and dense coding capacity χ

(the bottom two panels) versus |qA| and |qB| for the initial states |Ψ〉 and |Φ〉 with α = β = 1/
√

2.
In the top right corner of the black lines, the teleportation and dense coding protocol show quantum
advantages.

For the dense coding capacity χ(ρAB), as can be seen from the bottom two panels of
Figure 1, it is asymmetric with respect to |qA| = |qB|. We analyze its behaviors for the
initial state |Ψ〉 (its behaviors are structurally the same for |Φ〉). For |qB| = 0, χ(ρAB) =
1−H2(|qA|2/2), which decreases from 1 to 0 when |qA| increases from 0 to 1. For any fixed
|qB| ∈ (0, 1), however, χ(ρAB) first decreases to a minimum and then turns to be increased
gradually, and when |qB|2 > 1/2, one has χ(ρAB) > 1 in the region of |qA|2 > 2(1− |qB|2).
Finally, for |qB| = 1, one has χ(ρAB) = 2− H2[(1 + |qA|2)/2], which increases gradually
from 1 to 2 when |qA| increases from 0 to 1. On the other hand, for |qA| = 0, one has
χ(ρAB) ≡ 1, and for any fixed |qA| > 0, it increases monotonically with the increase of |qB|
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and shows quantum advantage when |qB|2 becomes larger than 1− |qA|2/2. Moreover,
different from that of Fav(ρAB), the initial state |Ψ〉 yields a wider region of (|qA|, |qB|) than
that of |Ψ〉 in which χ(ρAB) > 1.

In the following, we give some explicit examples of the multiple bosonic reservoirs
with different spectra to demonstrate the time dependence of Fav(ρAB) and χ(ρAB), as well
as their connections with the flow of information between the system and the multiple
reservoirs. Here, the spectral density of the multiple reservoirs can be written as J(ω) =

∑NS
n=1 Jn(ω), with Jn(ω) being the spectral density of the nth reservoir. For simplicity, we

concentrate on the case that all the reservoirs are the same, i.e., Jn(ω) ≡ J(ω), ∀n.

4.1. Lorentzian Spectrum

First, we consider the multiple bosonic reservoirs with the Lorentzian spectrum [47]

J(ω) =
1

2π

γλ2

(ω−ω0)2 + λ2 , (11)

where λ and γ represent, respectively, the spectral width of the reservoir and the decay rate
of the qubit. They are related to the reservoir’s correlation time τB and relaxation time τR
by τB ' λ−1 and τR ' γ−1 [47].

For such a spectral density, the decoherence factor qS(t) can be obtained as [31]

qS(t) = e−
1
2 λt
(

cosh
dSt
2

+
λ

dS
sinh

dSt
2

)
, (12)

where dS = (λ2 − 2NSγλ)1/2. Then, one can see that when λ > 2NSγ, qS(t) decays
exponentially with time and the evolution is Markovian. However, when λ < 2NSγ, dS
becomes an imaginary number and qS(t) oscillates with time; hence, the evolution will be
non-Markovian. For given λ and γ, there exists a threshold NS,cr = bλ/2γc+ 1 (bxc is the
nearest integer not larger than x). The non-Markovianity occurs when NS > NS,cr.

By substituting qS(t) into Equations (7) and (10), one can obtain the time dependence
of both Fav(ρAB) and χ(ρAB). By choosing NA = NB, we display their behaviors in
Figures 2 and 3 for the initial states |Ψ〉 and |Φ〉 with α = β = 1/

√
2 and different γ.

For Fav(ρAB) with the initial state |Ψ〉, it decreases monotonically from 1 to the classical
limiting value of 2/3 when γ is weak, and the chosen number of reservoirs does not help to
enhance the average fidelity, although the non-Markovian effect has already been triggered
when NS > NS,cr = 3 (a further numerical calculation shows that when NS > 208, there
exists a revival phenomenon in the time evolution process). When γ is strong (e.g., γ = 2.0λ
for which NS,cr = 1), Fav(ρAB) decays more rapidly than that with weak γ at the initial
time, but there is revival phenomenon for the relative small NS. For Fav(ρAB) with the
initial state |Φ〉, as is shown in the bottom two panels of Figure 2, the non-Markovianity
triggered by increasing the number NS of reservoirs induces revival of Fav(ρAB) only when
NS is large enough, and the amplitude of the revival increases with the increase of NS. One
can also note that Fav(ρAB) for the initial state |Φ〉 decays slower than that for |Ψ〉, that is,
the former is more efficient for teleporting the one-qubit state than the latter.

When considering χ(ρAB), its dynamical behaviors with different system parameters
are shown in Figure 3. For the Markovian case, χ(ρAB) first decays from 2 to a minimum
value and then increases asymptotically to the classical limiting value of 1. However, for
the non-Markovian case, either being triggered by increasing the coupling strength γ or
by increasing the number of reservoirs, χ(ρAB) shows damped oscillations with evolving
time t and also approaches 1 in the infinite-time limit. In particular, χ(ρAB) cannot exceed
1 after the first disappearance of χ(ρAB) > 1 at a critical time tc for the chosen γ and NS
in Figure 3. Looking at Figure 3, one can also observe that tc decreases with an increase
in γNS. Moreover, we would like to mention that for γNS > 120 for the initial state
|Ψ〉 and γNS > 252 for |Φ〉, one can still observe a reappearance of χ(ρAB) > 1 after
its first disappearance in the short-time region (we have not shown the plots here for the
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conciseness of this paper). This can be understood from Equation (12), as for very large γNS,
one has dS ' i(2NSγλ)1/2 and qS(t) ' e−λt/2 cos(|dS|t/2); hence, it is possible to observe
a revival of χ(ρAB) > 1 at the neighborhood of t0 = 2π/|dS|. For example, for the initial
state |Ψ〉 with γNS = 200, one has t0/π = 0.1 (in units of λ) and the numerical calculation
shows that the revival of χ(ρAB) > 1 occurs in the region of t0/π ∈ (0.0907, 0.1097).
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(a)
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Figure 2. Time evolution of Fav in the multiple Lorentzian reservoirs for the initial states |Ψ〉 (a,b)
and |Φ〉 (c,d) with α = β = 1/

√
2 and different γ. The solid black, dashed red, dash-dotted blue,

and dotted green lines correspond to NA,B = 1, 4, 8, and 32, respectively.
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|Ψ〉, γ = 2.0λ
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|Ψ〉, γ = 0.2λ
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Figure 3. Time evolution of χ in the multiple Lorentzian reservoirs for the initial states |Ψ〉 (a,b) and
|Φ〉 (c,d) with α = β = 1/

√
2 and different γ. The solid black, dashed red, and dash-dotted blue lines

correspond to NA,B = 1, 4, and 8, respectively.

4.2. Sub-Ohmic, Ohmic, and Super-Ohmic Spectra

In this subsection, we consider the multiple bosonic reservoirs with the following
spectra [48]

J(ω) = ηωsω1−s
c e−ω/ωc (13)

where η and ωc are the system–reservoir coupling strength and the cutoff frequency, which
are related to τB and τR by τB ' ω−1

c and τR ' η−1. The reservoir is said to be sub-Ohmic
when s ∈ (0, 1), Ohmic when s = 1, and super-Ohmic when s > 1.

For these kinds of J(ω), the decoherence factor qS(t) is determined by [49]

q̇S(t) + iω0qS(t) +
∫ t

0
qS(τ) f (t− τ)dτ = 0, (14)

and by denoting Γ(·) for the usual gamma function, the kernel function f (t− τ) can be
integrated as

f (t− τ) =
∫ ∞

−∞
dωJ(ω)e−iω(t−τ) =

Γ(s + 1)NSηω2
c

[1 + iωc(t− τ)]s+1 , (15)
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then Equation (14) can be rewritten as

qS(t) = 1−
∫ t

0

[
iω0 +

∫ t

τ
f (t1 − τ)dt1

]
qS(τ)dτ, (16)

where
∫ t

τ f (t1 − τ)dt1 can be integrated as

∫ t

τ
f (t1 − τ)dt1 = iΓ(s)NSηωc

{
1

[1 + iωc(t− τ)]s
− 1
}

, (17)

by the substitution of which into Equation (16), one can obtain a simplified integro-
differential equation. This equation can be solved numerically [50].

By fixing ωc = ω0 and taking s = 0.5, 1, and 3 as examples of the sub-Ohmic, Ohmic,
and super-Ohmic spectra, we show in Figure 4 time dependence of Fav(ρAB) for the two
initial states |Ψ〉 and |Φ〉. It can be found that for all the considered cases, increasing
the number of reservoirs can induce revivals of Fav(ρAB) > 2/3. The amplitudes of
these damped oscillations could be increased by increasing NS, although they approach
the classical limiting value of 2/3 in the infinite-time limit. This shows that the non-
Markovianity triggered by increasing the number of reservoirs is beneficial for enhancing
Fav(ρAB). Moreover, by comparing the lines in Figure 4 with different s, one can note
that the times of revivals of Fav(ρAB) > 2/3 as well as the amplitudes of the damped
oscillations are different for the multiple reservoirs with different spectra. Specifically,
while the super-Ohmic (sub-Ohmic) spectrum yields the maximum (minimum) revivals of
Fav(ρAB), the Ohmic spectrum yields the intermediate revivals. Hence, by tuning the value
of s, one can efficiently tune the decay rate of the average fidelity of quantum teleportation.

0 1 2 3
0.6

0.7

0.8

0.9

1.0

ω0t

F
a
v

(d)

|Φ〉, s = 0.5

(b)

|Ψ〉, s = 1

0 1 2 3

ω0t

(f)

|Φ〉, s = 3

(c)

|Ψ〉, s = 3
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F
a
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(a)

|Ψ〉, s = 0.5

0 1 2 3

ω0t

(e)

|Φ〉, s = 1

Figure 4. Time evolution of Fav in the multiple sub-Ohmic, Ohmic, and super-Ohmic reservoirs for
the initial states |Ψ〉 (a–c) and |Φ〉 (d–f) with α = β = 1/

√
2, η = 1, and ωc = ω0. The solid black,

dashed red, and dash-dotted blue lines correspond to NA,B = 1, 4, and 8, respectively.

Next, we see the dense coding capacity χ(ρAB), and the corresponding plots are
shown in Figure 5. One can see that χ(ρAB) also shows damped oscillations with evolving
time t. However, for small NS, the dense coding protocol loses its quantum advantage
after a short time. By increasing the number of reservoirs acting on each channel qubits,
the amplitudes of damped oscillations of χ(ρAB) are increased. In particular, there are
revivals of χ(ρAB) > 1 during the time evolution process if NS is larger than a threshold.
Moreover, from the point of view of suppressing the decay of χ(ρAB), the super-Ohmic
reservoir outperforms the sub-Ohmic reservoir, and the sub-Ohmic reservoir outperforms
the Ohmic reservoir.
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Figure 5. Time evolution of χ in the multiple sub-Ohmic, Ohmic, and super-Ohmic reservoirs for
the initial states |Ψ〉 (a–c) and |Φ〉 (d–f) with α = β = 1/

√
2, η = 1, and ωc = ω0. The solid

black, dashed red, dash-dotted blue, and dotted green lines correspond to NA,B = 1, 4, 8, and 32,
respectively. To better visualize the plots, we have not shown the dotted green lines for s = 3 due to
their high frequencies.

We have also performed calculations for other values of ωc. The results show that
there is also non-Markovianity being triggered, and both Fav(ρAB) and χ(ρAB) show similar
dynamical behaviors to those with ωc = ω0. The difference is that their frequencies of
damped oscillations will be increased with an increase of ωc, and they will approach their
asymptotic values faster. Thus, for the conciseness of this paper, we do not present the
corresponding plots here.

Although we considered in the above two subsections the initial Bell states, the results
can be generalized immediately to other initial states. As an example, we show in Figure 6
the time dependence of Fav(ρAB) and χ(ρAB) for the initial Werner state ρW = r|Φ+〉〈Φ+|+
(1 − r)1/4, where |Φ+〉 = (|11〉 + |00〉)/

√
2 and r ∈ [0, 1]. One can see that the non-

Markovian effect triggered by increasing the reservoir number also induces revivals of the
quantum advantages of teleportation. As for dense coding, though there is no revival of
the quantum advantage for the chosen system parameters, χ(ρAB) can also be enhanced
noticeably in a wide time region.

0 1 2 3 4 5 6
0.4

0.6

0.8

1.0

1.2

λt

χ

(c)Lorentzian

0 1 2 3 4 5 6

ω0t

(d)Ohmic

0 1 2 3 4 5 6
0.6

0.7

0.8

0.9

λt

F
a
v

(a)Lorentzian

0 1 2 3 4 5 6

ω0t

(b)Ohmic

Figure 6. Time evolution of Fav (a,b) and χ (c,d) in the multiple Lorentzian and Ohmic reservoirs for
the initial state ρW with r = 0.8, γ = 2.0λ, η = 1, and ωc = ω0. The solid black and dashed red lines
correspond to NA,B = 1 and 32, respectively.

From the above discussions, one can see that the dynamical behaviors of Fav(ρAB) and
χ(ρAB) are intimately related to the non-Markovianity of the multiple bosonic reservoirs.
To analyze in detail their relations, we consider the trace distance for two time-evolving
states ρ1(t) and ρ2(t):

D[ρ1(t), ρ2(t)] =
1
2

tr|ρ1(t)− ρ2(t)|, (18)
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the increase in which, with the evolving time, indicates a backflow of information from the
reservoirs to the system and the existence of non-Markovianity [51]. For the single-qubit
case, the optimal initial states are |ψ1,2〉 = (|0〉 ± |1〉)/

√
2; hence, one has D[ρ1(t), ρ2(t)] =

|qS(t)| [41].
In Figure 7, we present a comparison of D with Fav(ρAB) and χ(ρAB) in the multiple

reservoirs with Lorentzian and Ohmic spectra. For the Lorentzian spectrum, D suffers
instantaneous disappearance at tz,n = 2[nπ − arctan(|dS|/λ)]/|dS| and reaches to its peak
value at tp,n = 2(n− 1)π/|dS| (n ∈ N), while for the Ohmic spectrum, tz,n and tp,n can be
obtained numerically. In the time region t ∈ (tz,n, tp,n+1), there is a backflow of information
from the reservoirs to the system. For the initial state |Ψ〉, the backflow of information
does not always induce revivals of Fav(ρAB) > 2/3 and χ(ρAB) > 1, and there is a delayed
effect for the backflow of information on Fav(ρAB) and χ(ρAB), that is, the increase of D
induces revivals of Fav(ρAB) > 2/3 and χ(ρAB) > 1 only after it increases for a period of
time. However, the quantum teleportation and dense coding protocols lose their quantum
advantages gradually from the very beginning of the decrease of D. For the initial state
|Φ〉, the variation of D has a similar effect on χ(ρAB), while it varies synchronously with
the variation of Fav(ρAB).
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λt
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|Φ〉, Lorentzian

0 0.5 1.0 1.5 2

ω0t

(d)
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Figure 7. Comparison of the time evolution of D (solid black) with Fav (dashed red) and χ (dash-
dotted blue) in the multiple Lorentzian and Ohmic reservoirs for the initial states |Ψ〉 (a,c) and |Φ〉
(b,d) with α = β = 1/

√
2, γ = 2.0λ, η = 1, ωc = ω0, and NA,B = 32.

For the Lorentzian reservoirs, the peak values of Fav(ρAB) and χ(ρAB) at t = tp,n

can be written explicitly by substituting qS = e(1−n)λπ/|dS | into Equations (7) and (10),
e.g., Fav(ρAB) = (1 + 2|qS|)/3 for |Ψ〉 and Fav(ρAB) = (2 + |qS|4)/3 for |Φ〉. Because D =
|qS(t)|, this also explains why the increase of D does not always induce revivals of
Fav(ρAB) > 2/3 for |Ψ〉 and why D varies synchronously with Fav(ρAB) for |Φ〉.

In the above discussions, we considered the identical reservoirs for which the resultant
effects are equivalent to that obtained by scaling Jn(ω) ≡ J(ω) by NS for a single reservoir.
For the general nonidentical reservoirs, i.e., Jn(ω) 6= Jm(ω) for n 6= m, the expression of
qS(t) will be complicated. For example, for the spectral density Jn(ω) = ηnωsn ω1−sn

c e−ω/ωc ,
after a derivation similar to Equations (15)–(17), one can see that adding multiple reservoirs
will not be equivalent to scale Jn(ω) by NS for a single reservoir, and it is also not equivalent
to that obtained by summing the coupling strength of the qubit to each reservoir. However, a
further numerical calculation shows that even for this case, the non-Markovianity triggered
by adding multiple reservoirs is also beneficial for postponing the decay of the teleportation
fidelity and density coding capacity.

5. Summary

To summarize, we have investigated the efficiency of quantum teleportation and
dense coding for two channel qubits coupled to their respective groups of multiple bosonic
reservoirs. For those initial Bell-like states, we showed that both the average fidelity of
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teleportation and the dense coding capacity are determined by the decoherence factors
qS (S = A, B) and we obtained the valid regions of (|qA|, |qB|) in which the two protocols
show quantum advantages. As explicit examples, we further considered the cases that
the reservoirs have Lorentzian, sub-Ohmic, Ohmic, and super-Ohmic spectra. It is found
that the non-Markovianity, due to the increasing number of reservoirs acting on each chan-
nel qubit, can induce revivals of the quantum advantages after their first disappearance,
but the explicit processes are different for the teleportation and dense coding protocols.
To be explicit, the variation of the trace distance between two optimal initial states (the
contractiveness of which signifies the non-Markovian dynamics) does not always vary
synchronously with Fav(ρAB) and χ(ρAB). There exist circumstances under which there is
a delayed effect for the backflow of information on inducing the revivals of the quantum
advantages of teleportation and dense coding. These results might provide a way for pro-
tecting the quantum advantages of the communication and computation protocols relying
on non-Markovian evolutions, e.g., one could use the reservoir engineering technique to ex-
perimentally adjust the frequency distribution of a reservoir to the desired regimes [52–55].
Of course, we considered only the bosonic reservoirs with a single excitation. For the
reservoirs whose spectral densities have low-frequency components, [J(ω) is large for
ω � ω0], such that one needs to go beyond the single excited subspace, their effects on the
considered communication protocols may be different, and a further study on the details is
still needed.
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