
Citation: Zhu, J.; Yao, Y.; Tang, W.;

Zhang, H. Dynamic Parameter

Calibration Framework for Opinion

Dynamics Models. Entropy 2022, 24,

1112. https://doi.org/10.3390/

e24081112

Academic Editor: Federico Vazquez

Received: 25 July 2022

Accepted: 9 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Dynamic Parameter Calibration Framework for Opinion
Dynamics Models
Jiefan Zhu , Yiping Yao, Wenjie Tang * and Haoming Zhang

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
* Correspondence: tangwenjie@nudt.edu.cn

Abstract: In the past decade, various opinion dynamics models have been built to depict the evolutionary
mechanism of opinions and use them to predict trends in public opinion. However, model-based
predictions alone cannot eliminate the deviation caused by unforeseeable external factors, nor can they
reduce the impact of the accumulated random error over time. To solve this problem, we propose a
dynamic framework that combines a genetic algorithm and a particle filter algorithm to dynamically
calibrate the parameters of the opinion dynamics model. First, we design a fitness function in accordance
with public opinion and search for a set of model parameters that best match the initial observation.
Second, with successive observations, we tracked the state of the opinion dynamic system by the average
distribution of particles. We tested the framework by using several typical opinion dynamics models.
The results demonstrate that the proposed method can dynamically calibrate the parameters of the
opinion dynamics model to predict public opinion more accurately.

Keywords: opinion dynamics; data assimilation; public opinion; simulation calibration

1. Introduction

Public opinion is the embodiment of the opinions, attitudes, and emotions expressed
by the public, which affects multiple fields, such as human interactions, political orientation,
financial policy, and even the military. Therefore, predicting the evolution trend of public
opinion and providing valid explanations for its causes is a significant problem, both in
theory and practice. Researchers have solved this problem by building opinion dynamics
models. They simulate the interaction between individuals in society and changes in
people’s opinions, which can effectively reveal the generation, diffusion, and aggregation
of public opinion.

Faced with the problem of public opinion prediction and explanation, researchers have
attempted to reveal and analyze the laws of the public opinion system by establishing opin-
ion dynamics models. Earlier research in this field can be traced back to the French model
proposed in 1956 and its subsequent French–Degroot model [1]. Since then, multiple opinion
dynamics models have been proposed, which can be divided into two categories: discrete
and continuous. Typical discrete opinion dynamics models include the Voter [2], the majority
rule [3], and the Sznajd [4] models. The study of discrete opinion dynamics has become
popular in recent years [5,6]. In these models, agent opinions have only two values: mostly
“1” represents support and “−1” represents against. This makes them suitable for depicting ei-
ther/or cases; for example, political election prediction [7,8]. However, they cannot distinguish
between neutral and extreme opinions or situations that are more complicated. Continuous
opinion dynamic models have solved this problem. The most famous among them are the
Hegselmann–Krause (HK) model [9] and the Deffuant–Weisbuch (DW) model [10]. These
two models also introduced an important concept of opinion dynamics, that is, the bounded
confidence rule: individuals’ opinions are affected by others only when the difference between
their own opinions and others’ opinions is less than a threshold [11]. Based on this research,
researchers have proposed multiple extended models [12–16].
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However, it is still difficult to predict public opinion using only dynamic opinion
models. On the one hand, public opinion may be disturbed by unpredictable external
factors, such as emergent public events or the speaking of Internet celebrities. On the other
hand, because models are not the same as real systems, the result of model prediction
will inevitably fail owing to the accumulation of random and systematic errors over time.
Therefore, in addition to model construction, two questions need to be answered to use the
opinion dynamics model to predict the evolution of public opinion.

Problem 1 How to determine the initial values of the model parameters?
To solve this problem, the proposed framework determines the initial model pa-

rameters based on the genetic algorithm. We design a fitness function according to the
characteristics of opinion dynamics and public opinion, which enables the framework to
calibrate the parameters of the opinion dynamics models. Through selection, crossover, and
mutation operations, we search for the parameters that best match the initial observation.

Problem 2 How can parameters be adjusted dynamically when public opinion changes
owing to external factors or errors?

One feasible way to solve the above problem is to include empirical observation in
opinion dynamics research to predict public opinion more accurately.

Machine learning is a popular data-driven method in multiple fields. Many studies have
tried to predict the evolution of public opinion through machine learning methods [17–23].
However, compared with agent-based opinion dynamics models, machine learning cannot
explain the inner mechanism of the system; it lacks interpretability and requires too much
data to gain accuracy.

Traditional opinion dynamics models are mainly based on theoretical self-consistent
and deductive analyses, which cannot be directly applied to predict public opinion.
Recently, researchers have begun to import real social networks to test their models.
Wang et al. [24] proposed an opinion dynamics analysis framework for a weighted directed
complex network and imported a real email network to test their method. Zhu et al. [25]
proposed an opinion dynamics model based on individuals’ attitude-hiding behaviors
and simulated their model on real Epinions networks, which can well explain Duncan’s
online social experiments [26]. However, these models are not yet associated with real
observations; thus, they can only explain part of the public opinion phenomena and cannot
calibrate the parameters of the models through simulation.

Currently, some researchers attempt to introduce data obtained from real social net-
works to correlate theoretical models with empirical data. In most of their studies, a
part of the data was selected as the training set to learn the parameters of the model,
and the rest of the data were used as the test set to verify the prediction accuracy of the
model. De et al. [27] used the spectral projected gradient method to maximize the likeli-
hood function of the model parameters, thus realizing parameter calibration of their model.
Xion [28,29] collected data from the product review websites Epinions and Ciao, randomly
selected X% of the data as a training set to learn model parameters, obtain individual
opinions, and model-related topic vectors. The remaining data were used as a test set to
evaluate the accuracy of their model prediction. Moreover, Xiong gathered a large amount
of data from Twitter and conducted sentiment analysis using part of the early data for
parameter calibration and curve fitting; they then used the model to predict the remaining
opinion dynamics and compared the results with the rest of the real data [30]. Johnson
et al. [31,32] proposed an adapted genetic algorithm for modeling opinion diffusion and
tested the method using the Degroot model with limited data. Kotisz [33] proposed a mini-
mal opinion formation model that is flexible and can reproduce a wide variety of existing
micro-influence assumptions and models. The model was calibrated using datasets gath-
ered from real social networks [34,35]. Lu [36] collected large-scale data from Douban.com
and expanded the Ising model to explore how individuals behave and the evolutionary
mechanisms of their life cycles. The above studies introduced real data from social networks
to fit their model parameters, but their calibration work was static; they did not calibrate
their models with new observations. Monti et al. [37] proposed an inference mechanism
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that can fit the opinion dynamics model to the social trajectory in the real world, thereby
increasing the ability to fit real data. However, in different social networks, user interaction
behaviors and social trajectories may not be the same. Thus, it may not be suitable to
apply the mechanism to other online social networks with different structures. In addition,
compared to observing public opinion, collecting the social trajectories of users is more
complicated.

In summary, the field of opinion dynamics requires a dynamic calibration method that can
be widely applied to all types of online social networks according to successive observations.

Dynamic calibration is an important issue in the field of modeling and simulation.
Recently, many researchers have explored dynamic calibration methods [38–44]. However,
few have aimed at the field of opinion dynamics [45]. Thus, combining the advantages
of the theoretical model and data-driven method to predict public opinion is a direction
for future opinion dynamics research [46], and one way to achieve this is to introduce a
data assimilation method. Common data assimilation algorithms include the Kalman filter,
optimal interpolation, and the extended Kalman filter [47]. However, neither the Kalman
filter nor the optimal interpolation method can deal with non-normally distributed and
nonlinear systems. Furthermore, the extended Kalman filter requires that the probability
distribution of the system be expressed by simple parameters, which is also not suitable for
dealing with cases in opinion dynamics systems. Compared with other methods, a particle
filter can be applied to nonlinear systems [48,49]. Moreover, the use of particle filters to
realize data assimilation in discrete event simulation has also been proposed by researchers
in recent years [50,51]. This indicates that a particle filter has the potential to be used in the
prediction calibration of opinion dynamics.

Inspired by data assimilation methods, to predict the state of the changing opinion
dynamic system, the framework uses a particle filter algorithm to calibrate the parameters
of the models dynamically with successive observations. In the framework, we initialize
the particles according to the results of the initial parameter calibration and determine the
particle weights with successive observations. By continuously resampling the particles
and updating the particle weights, the framework enables models to track the changing
state of the opinion dynamic system by the average distribution of particles that hold the
largest weights.

We test the framework with four typical opinion dynamics models based on synthetic
data, which simulate the changing public opinion systems. The results show that the
framework can effectively determine the initial parameters of the models and dynamically
calibrate the parameters of the opinion dynamics models over time, thus predicting public
opinion more accurately.

As illustrated above, in this study, the main contributions to the fields of opinion
dynamics are as follows:

(1) We propose a framework that can dynamically calibrate the parameters of the opinion
dynamics model to predict public opinion more accurately.

(2) We combine model prediction and empirical data into opinion dynamics research.
(3) We verified the effectiveness of the framework by simulation experiments.

The remainder of this paper is organized as follows. Section 2 provides the basis for
our proposal. Section 3 describes the proposed framework in detail. Section 4 presents the
simulation testing analysis. Section 5 provides a summary of this study.

2. Preliminary

To provide a basis for our proposal, we introduce some basic concepts of opinion
dynamics and typical models, which will be used in the experiments in this study.

2.1. Brief Introduction of Opinion Dynamics

Opinion dynamics model the evolution process of agents’ opinions. Individuals in the
system interact with others according to preset rules, and constantly update their opinions.
As shown in Equation (1), let xi(t) be the opinion of individual i at time t. When an opinion
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dynamics system evolves to a steady state, it always shows an opinion distribution of
consensus, polarization, or fragmentation, as shown in Figure 1 [52].

xi(t + 1) = f
(
x1(t), x2(t) . . . xj(t)

)
(1)
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Generally, an agent’s opinion at the next moment is influenced by the opinions of
other individuals. Individuals whose opinions influence each other can be regarded as
having interactive relationships. The relationship between individual interactions can be
depicted as a graph. Social networks can be regarded as a directed graph G = (V, E),
where V denotes the set of nodes (agents) in the network and E is the edge set formed by
the connection of nodes, representing the interaction and influence relationship between
individuals in the network.

2.2. Typical Opinion Dynamics Models
2.2.1. Hegselmann–Krause Model

The HK model [5] is one of the classic opinion dynamics models. The model is based
on the bounded confidence rule; agents’ opinions are quantified as values ranging from
0 to 1, and xi(t) is the opinion of the ith agent at time t. Agent i only interacts with agent
j whose opinion satisfies the condition |xi(t)− x(t) < ε|. At each time step, individuals
update their opinions as follows:

xi(t + 1) =
1

Ni(t)
∑

|xi(t)−xj(t)<ε|
xi(t) (2)

2.2.2. Expressed and Private Opinion Model

The expressed and private opinion (EPO) model [7], proposed by Anderson, is an
improvement of the classic FJ model [53,54]. In the simulation process, the model updates
agents’ opinions using the following rules:

xi(t + 1) = λi

[
aiixi(t) +

n

∑
j 6=i

aij x̂j(t)

]
+ (1− λi)xi(0) (3)

x̂i(t) = θixi(t) + (1− θi)x̂avg(t− 1), (4)
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where aij is the influence weight individual i has on individual j, λi, θi denote agents’
stubbornness and adjustment coefficient, respectively. xi(t) is agent Ai’s private opinion at
time t and x̂i(k) is its expressed opinion at time t.

2.2.3. Adapted Deffuant–Weisbuch Model

The adapted Deffuant–Weisbuch (ADW) model was proposed in 2022 [27] and is an
adaptive model of the classic DW model. In the model, let xi(t) be individual i’s private
opinion at time t, x̂i(t) be its expressed opinion at time t, and µi, pi be related parameters for
individuals. In the process of simulation, the model will randomly select two individuals
in each iteration, if

∣∣xi(t)− x̂j(t)
∣∣< ε (ε is the bounded confidence threshold), individuals’

opinions will be updated by the following rules:

xi(t + 1) = (1− µi)xi(t) + µi x̂j(t) (5)

x̂i(t + 1) = (1− pi)xi(t + 1) + pi x̂avg(t) (6)

2.2.4. Attitude-Hiding Model

The attitude-hiding (AH) model was proposed in 2022 [10], which depicts online users’
behavior of hiding attitudes toward online social networks and can evolve multiple types
of opinion dynamics.

In this model, agents estimate the popularity of their expressible opinions in their
messages according to empirical knowledge. According to the outcome of their estimation,
they decide whether to post messages as usual or to remain silent. Let xi(t) be agent Ai’s
opinion at time t and mi(t) be the opinion Ai wants to express at time t. For Ai’s fan Aj,
the value of the feedback parameter Fj = 1, 0 or −1, depending on whether Aj likes, has
no comment, or disagrees after Aj receives Ai’s message with the opinion mi(t). Thus, the
feedback Fj is determined by

Fj =


1,

∣∣mi(t)− xj(t)
∣∣ < α

0, α <
∣∣mi(t)− xj(t)

∣∣ < β

−1,
∣∣mi(t)− xj(t)

∣∣ > β

(7)

where α is the boundary inside of which Aj would give positive feedback (Fj = 1), and β is
the boundary outside of which Aj would give negative feedback (Fj = −1).

Let inN(i) be the set of Ai’s fans and let #inN(i) denote the number of Ai’s fans. Ai’s
popularity of its messages to fans can be denoted by the feedback from its fans, which is

R(mi(t)) = ∑
j∈inN(i)

Fj/#inN(i) (8)

If φi be a given threshold (−1 < φi < 1), and if R(mi(t)) > φi, Ai would believe that the
potential gain from expressing opinions is large enough, it will express its opinion mi(t).

3. Dynamic Framework to Calibrate Opinion Dynamics Models

In this section, we introduce a detailed dynamic calibration framework for the predic-
tion of opinion dynamics. Let the opinions of agents in the models be variables ranging
from (0,1) and divide the opinion interval [0, 1] to K intervals uniformly. In this framework,
we suppose that the observation of public opinion at time t is a vector with K dimensions
−→
Ot = {o1, o2, . . . , ok}, where oi is the distribution of all the opinions in the ith opinion
interval. Let θ be the vector containing all parameters in opinion dynamics models and
let the public opinion corresponding to the opinion dynamics system with θ at time t be

a vector with K dimensions
−→

Mθt = {m1, m2, . . . , mk}, where mi is the distribution of all
agents’ opinions in the ith opinion interval.

Upon importing opinion dynamics models and initial observations into the framework,
we first calibrate the model parameters based on the genetic algorithm, searching for a set
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of parameters with high adaptability to the initial data. Second, we conduct a particle filter
based on the initial parameters obtained in the previous step and dynamically calibrate the
model parameters with successive observations. The overall process of the framework is
shown in Algorithm 1.

Algorithm 1 Framework of calibrating the prediction for opinion dynamics models

1: Initialize population; BPopulation codes parameters of opinion dynamics models

2: Evaluate population by
⇀

Ot0 ;
3: while the genetic algorithm method is searching do
4: Select population that best matches the observation;
5: Crossover to generate new population, so as to search more efficiently;
6: Mutate to realize local random search, and avoid unmature convergence;

7: Evaluate Population by
⇀

Ot0 ;
8: end while

9: Sample particles based on
⇀

Ot0 ; B Particles correspond to parameters of opinion dynamics models
10: If obtain new observation then do
11: Simulate opinion dynamics models according to the particles;
12: Update particle weights;
13: Estimate new system state through the average distribution of particles with the largest

weights;
14: Resample particles;
15: end if

3.1. Initial Parameter Calibration Based on Genetic Algorithm

The genetic algorithm is a global search algorithm that is conducted through selection,
crossover, and mutation operations to its generation during iterations, and evaluates its
generation by calculating the fitness function. The proposed framework calibrates the
initial parameters for the model based on the genetic algorithm and uses the results in the
next step.

In this section, we introduce details of the method used in the framework.

3.1.1. Fitness Function

In this framework, individuals in the genetic algorithm correspond to a set of parame-
ters of the opinion dynamics model. The smaller the deviation between the model output
and initial data, the higher the fitness of the individual with the corresponding parameters.
Let the fitness function f be the reciprocal of the total deviation between the model output
and initial data as follows:

f
( −→

Mθt,
−→
Ot

)
=

1

∑K
i=1(|mi − oi|)

(9)

3.1.2. Selection

Individuals in the current population are selected with a certain probability for the
next generation; this process is called selection. The probability of selection for the next
generation depends on the fitness of the individual. The higher the fitness value, the higher
the probability. In the proposed framework, we use one of the most popular selection
methods, the roulette wheel selection method. In this method, the selection probability of
each individual is proportional to its fitness value; the greater the fitness value, the greater
the selection probability. Therefore, individuals with a large fitness value have a greater
probability to be selected as a parent to generate a new individual. Let the probability
of an individual xi be selected as p(xi), the fitness value of (xi) be f (xi), and the sum of
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all individuals’ fitness values be S; the roulette wheel selection method can be presented
as follows:

p(xi) =
f (xi)

S
. (10)

3.1.3. Crossover

The genetic algorithm maintains the diversity of the population through a crossover
operator, which includes three steps. First, the number of individuals to be crossed is
set according to the crossover probability, and then randomly select individuals to be
exchanged. Second, the intersection position was randomly selected. Third, paired individ-
uals exchange their corresponding attribute strings at the crossing position, thus forming
new individuals. In this study, single-point crossing with a fixed crossover probability
is used for the replication operation, which is performed by taking two chromosomes,
dividing them at a randomly selected location, and swapping the right part, resulting in
two different daughter chromosomes. For cases where selecting an intersection location
has a certain meaning, single point crossover will cause less damage to the chromosomes.

3.1.4. Mutation

In a genetic algorithm, the diversity of the population can be guaranteed by a mutation
operation, which also prevents premature convergence. The mutation probability is small.
In the mutation operation, first, the number of genes to be mutated is determined by the
mutation probability, and then alleles to be reversed or replaced are randomly selected.

We code the parameter values in binary form in the chromosomes, as shown below:
Let the variable X to be optimized within the interval [a, b], the number of genes be m,

and the coding length be l, also the coding method is accurate to c decimal places, then:

m = log2(b− a) + c log2 10 (11)

l =
{

m , m is an integer
int(m) + 1 , else

(12)

Therefore, the mutation is to select a certain location of the chromosome according
to a fixed mutation probability and invert its value (0 becomes 1, 1 becomes 0), so as to
enhance the random search ability of the genetic algorithm. Because the genetic algorithm
can only search for one set of data and cannot retain historical information, the method
introduced in Section 3.1 is a calibration method for determining initial parameters. We
then combined more observations and used the data assimilation method to calibrate the
models dynamically.

3.2. Dynamic Calibration Based on Particle Filters

In this step, we first express the probability distribution of the system state as a particle
set. Particles are simulated to predict the prior distribution of the system state using the
Monte Carlo method. We then merged real-time observations to calibrate the posterior
distribution of the system state to ensure accurate analysis and prediction of the evolution
of public opinion in social networks.

Let each particle have a set of parameters corresponding to the opinion dynamics
model θi, and let the state of the particle at time t be θi

t. After parameter calibration, we
obtained a set of optimal parameters for the initial observation, θt0 .

For a particle, let particle i’s initial parameter state be sampled from a Gaussian
distribution, θt0 ∼ N

(
θt0 ,σ2), where σ2 is the preset sampling deviation. Simultaneously,

because of the nonlinear relationship between the opinion dynamics system and the output
of the model with different parameters, we retain some of the particles whose initial state
is sampled from a random distribution, θt0 ∼ U(0, 1). However, we assume that public
opinion is in a steady state before being disturbed. Therefore, before obtaining the latest
observation, the states of the particles remain the same, that is, θi

t+1 = θi
t.
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Let the state at time t be St, and the observation be
−→
Ot . According to the Chapman–

Kolmogorov equation, the prior probability density of St, p
(

St

∣∣∣∣ −→O1:t−1

)
can be calculated as

(
St

∣∣∣∣ −→O1:t−1

)
=
∫

p(St|St−1)p
(

St−1

∣∣∣∣ −→O1:t−1

)
dSt−1, (13)

where p(St|St−1) represents the probability function of the state transition, which corre-
sponds to the opinion dynamics model. Because we assume that the observed public
opinion is in a steady state before Ot is obtained, the models also output the results after
they have evolved to a steady state. Therefore, St = St−1 before a new observation was

obtained. The posterior probability density of St, p
(

St

∣∣∣∣ −→O1:t

)
can be formulated as:

p
(

St

∣∣∣∣ −→O1:t

)
= ηp(Ot|St), p

(
St

∣∣∣∣ −→O1:t−1

)
, (14)

where η is the normalization coefficient, and the above equation represents the calibration

process, which uses the likelihood p
(−→

Ot

∣∣∣∣St

)
between the state and observation to obtain

the posterior distribution of states at the next moment p
(

St

∣∣∣∣ −→O1:t

)
.

Because it is difficult to obtain analytical solutions for nonlinear and non-Gaussian
opinion dynamic systems, particle filters represent the posterior probability distribution of
St with a group of random samples (particles). When the number of particles is sufficiently
large, the posterior probability of the system can be approximated sufficiently. The process
of the proposed data assimilation method in the framework is illustrated in Figure 2.
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Figure 2. Data assimilation process for opinion dynamics based on particle filter.

In the particle filter, the posterior distribution is approximated by a set of particles{
Sk

t , wk
t

∣∣∣k = 1, . . . , N
}

. Here, Si
t represents the state of the ith particle and SMt is the model

output when evolving to a steady state under the corresponding settings of each particle.
wi

t is the weight of the ith particle. Each particle is a possible realization of a state; thus, the
posterior distribution of the opinion dynamics system at time t can be represented as:

P(St) ≈
N

∑
k=1

wi
t ∗ δ

(
St − Sk

t

)
(15)
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In the proposed framework, particles are a configuration set of the model, including the pa-
rameter setting and structure of the social interaction graph. Suppose

{
Sk

t−1, wk
t−1

∣∣∣k = 1, . . . , N
}

is known; then, the possible state at time t SMk
t can be inferred based on the opinion dynamics

model; thus, newly generated sets of particles can be regarded as the particle representation of
the prior distribution. Subsequently, each particle can calculate and update its weight according
to the following observation:

ŵk
t = p

(−→
Ot

∣∣∣∣Sk
t

)
∗ wk

t−1 (16)

In detail, according to the calculation of the fitness function in Section 4.1, the closer
the model output with parameters that correspond to a particle is to the observation, the
greater the particle weight; thus, we have

wi
t
( −→

Mθt,
−→
Ot

)
=

1

∑K
i=1(|mi − oi|)

(17)

After several iterations, the estimated variance of the particle weight gradually in-
creases, resulting in particle degradation; that is, the weight of most particles is too small
for the particle set to effectively express the posterior probability distribution of the system
state, and the simulation of these low-weight particles is not sufficiently meaningful. To
this end, the method resamples the particles from the particle sets

{
SMk

t

∣∣∣k = 1, . . . , N
}

.
Generally, the probability of selecting a particle is determined by its corresponding weight.
Particles with high confidence are sampled more, which ensures that the particles converge
to a state with high confidence and can obtain the posterior particle set

{
Sk

t

∣∣∣k = 1, . . . , N
}

.
After outputting the results, the framework continues to resample the particles. It retains
the ν particles with the highest weights. Let the average state of those particles be θt

avg,
and the new states of other particles be sampled from a Gaussian distribution N

(
θt

aνg,σ2).
Meanwhile, some particles are still selected, and their new states are sampled from the
random distribution U(0, 1).

4. Simulation Tests and Analysis

In this section, we use the AH, ADW, EPO, and HK models to test the proposed
dynamic calibration framework and solve the two problems. In Section 4.1, we calibrated
the initial parameters of the four models based on synthetic datasets to verify the feasibility
of the method proposed in Section 3.1. In Section 4.2, we solve the second problem, that is,
assuming that the model is correct, how to calibrate the model as public opinion changes
owing to external factors. Based on the results in Section 4.1, we initialized the particles and
dynamically calibrated the four models using the particle filter method. The reason to use
synthetic data is that the proposed framework is designed to solve the problem that, assume
the opinion dynamics model is correct, how to dynamically calibrate the parameters with a
new observation, so as to achieve more accurate model predictions. Whether the model
can evolve specific real public opinion is not what this study considered. Compared with
real public opinion data, synthetic data generated from opinion dynamics models fit better
with corresponding models, which is easier to demonstrate whether the framework can
dynamically calibrate model parameters to achieve more accurate predictions.

To quantitatively express the accuracy of the prediction and calibration, we propose
the concept of deviation distance:

Let a node in the parameter space have an N-dimensional coordinate (x1, x2, . . . , xn),
and the coordinates of the node that correspond to the actual parameters in the data are
(x̂1, x̂2, . . . , x̂n). Then, the deviation distance was.

Dev =
√

∑n
i=1 (xi − x̂n)

2 (18)
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4.1. Calibration to Determine Initial Parameters

In this section, we search for the optimal initial parameters of the AH, ADW, EPO,
and HK models using the parameter calibration method in the framework. For the initial
observation, we set a combination of parameters for the four models and took the model
output under these parameters as the synthetic initial observation.

For the AH model, we set $ = 0.4, λi = 0.5, φi = −0.5, α = 0.35, and β = 0.4 to
generate synthetic data. For the ADW model, we set µi = 0.1, pi = 0.8, and ε = 0.3. For
the EPO model, we set λi = 0.8 and θi = 0.3. For the HK model, we set ε = 0.1. The
number of agents in the above models is 1000, and for those models that include a social
network structure, we import a scale-free network with 1000 nodes. The initial opinions of
the agents in the models were randomly sampled.

Calibrating the initial parameters for the four models, the results are shown in Tables 1–4:

Table 1. Results of parameter calibration for AH model.

AH Model

Number of iterations 50 100 1000 Actual value
para1 0.685 0.750 0.786 0.8
para2 0.787 0.197 0.204 0.2

Deviation 0.598 0.050 0.015

Table 2. Results of parameter calibration for ADW model.

ADW Model

Number of iterations 50 100 1000 Actual value
para1 0.228 0.165 0.141 0.1
para2 0.826 0.795 0.796 0.8

Deviation 0.131 0.065 0.041

Table 3. Results of parameter calibration for EPO model.

EPO Model

Number of iterations 50 100 1000 Actual value
para1 0.85 0.866 0.787 0.8
para2 0.354 0.574 0.330 0.3

Deviation 0.071 0.282 0.033

Table 4. Results of parameter calibration for HK model.

HK Model

Number of iterations 50 100 1000 Actual value
para1 0.112 0.100 0.099 0.1

Deviation 0.012 0 0.001

As shown in the tables, as the number of iterations increased, the deviation in the
results for each model decreased. This indicates that the parameter calibration method
in the proposed framework can infer the initial parameters of opinion dynamics models,
thus answering Problem 1. The above results demonstrate the feasibility of the parameter
calibration method and the reliability of the initial parameters for the models.

Note that the genetic algorithm may still obtain a local optimal solution instead of a
global optimal solution. For example, in the results of the EPO model, the deviation with
100 iterations was greater than that with 50 iterations. A solution to this problem is to
calibrate the model multiple times to avoid such situations.

Because prior knowledge cannot be fully used by the genetic algorithm to calibrate the
model parameters with more observations, we then use the particle filter in the framework
to dynamically calibrate the above models.
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4.2. Dynamic Calibration with Successive Observation

First, we initialized the particles based on the results presented in Section 4.1. In the
following experimental results, we present the particles with the largest weight in the
parameter space.

In the experiments, synthetic data were generated after the models had evolved to a
steady state under the preset parameters. The first group of data was the initial synthetic data
used in Section 4.1. For the AH model, we changed $, λi, and the remaining groups of data
were generated with ($,λi) = (0.8, 0.2) and (0.5, 0.5). For the ADW model, we changed µi, pi,
and the remaining data were generated with (µi, pi) = (0.6, 0.4) and (0.3, 0.5). For the EPO
model, we changed µi and pi, and the remaining data were generated with (µi, pi) = (0.5, 0.5)
and (0.2, 0.8). For the HK model, the data were generated with ε = 0.2 and 0.05. The other
parameters and configurations of the four models were the same as those in Section 4.1. Five
hundred particles were used for the calibration of each model.

First, we present the results of the HK model. The results is shown in Tables 5–7. We
selected 10 particles with the greatest weight as the results (the top 10 particle weights
have been normalized), and it can be observed from the tables that, with the change in
observed data, the parameters of the optimal particle can always be around the position
corresponding to the real parameter.

Table 5. Results when the public opinion system reaches a steady state for the first time (parameter
value for the synthetic data is 0.1).

Actual Value Particle Value Particle Weight Deviation

0.1

0.100 0.175 0.001
0.100 0.175 0.001
0.097 0.113 0.027
0.102 0.104 0.019
0.097 0.098 0.029
0.104 0.073 0.038
0.104 0.073 0.038
0.100 0.064 0.003
0.095 0.063 0.046
0.094 0.062 0.057

Table 6. Results when the public opinion system reaches a steady state for the second time (parameter
value for the synthetic data is 0.2).

Actual Value Particle Value Particle Weight Deviation

0.2

0.180 0.148 0.097
0.180 0.148 0.099
0.180 0.114 0.098
0.181 0.113 0.097
0.222 0.110 0.112
0.255 0.107 0.275
0.185 0.078 0.074
0.158 0.061 0.208
0.162 0.061 0.190
0.192 0.059 0.040
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Table 7. Results when the public opinion system reaches a steady state for the third time (parameter
value for the synthetic data is 0.05).

Actual Value Particle Value Particle Weight Deviation

0.05

0.050 0.195 0.003
0.049 0.110 0.010
0.049 0.110 0.010
0.049 0.110 0.010
0.049 0.110 0.010
0.049 0.110 0.010
0.052 0.066 0.018
0.048 0.066 0.018
0.048 0.066 0.018
0.053 0.059 0.032

However, note that the original HK model is mainly used to analyze the dynamic
changes in opinion dynamics caused by different bounded confidence thresholds; the
model is not built to fuse observations. Although the data assimilation algorithm proposed
in this framework can be used to track and forecast self-generated synthetic data, the HK
model may not be able to evolve some situations in public opinion due to the social network
structure, other attributes of individuals, and even external influences.

We then show the results of the AH, ADW, and EPO models in Figures 3–5, respectively,
on scatter plots in the parameter space.
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Figure 5. Results of EPO model with 500 particles. The blue points are the parameters that generate
synthetic data, the red points correspond to the 15 particles with the largest weight after filtering.
(a) Results for the first observation. (b) Results for the second observation. (c) Results for the
third observation.

The average deviation of the above results is shown in Figure 6.
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position of the parameters for synthetic data.

From the above results, it can be concluded that the above models can track changes
in the observations and dynamically calibrate the model prediction under the proposed
framework. The positions of the calibrated particles in the parameter space can be ap-
proximately the positions of the parameters for the synthetic data. The results prove that
the framework can dynamically calibrate the parameters of opinion dynamics models as
public opinion changes and track the system through successive observations. Among
the above models, the ADW model has the highest precision for calibration on synthetic
datasets, whereas the distribution of particles of the EPO model for the second observation
in Figure 5b is relatively dispersed. This may be because the ADW model is affected less by
random factors than the EPO or the AH model. In addition, the results of the AH model
are less accurate than the others, which may be due to its complexity. The AH model is
built to predict real public opinion, and its mechanism is more complicated than that of
the other models. Furthermore, a different set of parameters in the AH model may derive
similar opinion dynamics, making particles that actually deviate from the real location
significantly increase in weight, thus affecting the accuracy of the results. Nevertheless,
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opinion dynamics models with different parameters might show similar output results,
leading to situations in which some particles in the above three experiments deviated
more from the synthetic values. In future work, we will attempt to avoid this problem by
improving the weight update rules.

5. Conclusions

In this study, a dynamic framework is proposed to calibrate the parameters of opinion
dynamics models to predict public opinion more accurately. The framework does not
require detailed observation from individuals’ social traces or activity records, but the
overall public opinion, which is easier to obtain comparing with others’ work. The sim-
ulation results for the AH, ADW, EPO, and HK models show that the framework can be
applied to multiple opinion dynamics models without changing the structure of the model,
integrating model output and observation, and dynamically calibrating model parameters.
However, due to time constraints, we did not test the framework with more particles on
multi-dimension parameters for opinion dynamics models. In future work we will further
improve the proposed framework by developing data crawling and sentiment analysis
methods to make a prediction system. In addition, we will try to adjust the algorithm to
achieve a parallel mechanism (both a genetic algorithm and a particle filter algorithm are
suitable for a parallel algorithm) and use high-performance computing to set more particles
and populations for simulation, so as to achieve more rapid and accurate prediction results
with good interpretation. Lastly, we will attempt to obtain real public opinion data and
improve the weight update rule and sampling strategy in the framework to support opinion
dynamics models to predict real public opinion.
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