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Abstract: The study of the evolution of the atmosphere requires careful consideration of multicompo-
nent gaseous flows under gravity. The gas dynamics under an external force field is usually associated
with an intrinsic multiscale nature due to large particle density variation along the direction of force.
A wonderfully diverse set of behaviors of fluids can be observed in different flow regimes. This poses
a great challenge for numerical algorithms to accurately and efficiently capture the scale-dependent
flow physics. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for a gas mixture is
developed, which can be used for the study of cross-scale multicomponent flows under an external
force field. The well-balanced scheme here indicates the capability of a numerical method to evolve
a gravitational system under any initial condition to the hydrostatic equilibrium and to keep such
a solution. Such a property is crucial for an accurate description of multicomponent gas evolution
under an external force field, especially for long-term evolving systems such as galaxy formation.
Based on the Boltzmann model equation for gas mixtures, the UGKS leverages the space–time integral
solution to construct numerical flux functions and, thus, provides a self-conditioned mechanism
to recover typical flow dynamics in various flow regimes. We prove the well-balanced property of
the current scheme formally through theoretical analysis and numerical validations. New physical
phenomena, including the decoupled transport of different gas components in the transition regime,
are presented and studied.

Keywords: fluid mechanics; kinetic theory; rarefied gas dynamics; multicomponent flows; well-
balanced schemes

1. Introduction

The challenge of modeling and simulating real gas evolution in engineering and
environmental applications has attracted continuous attention from the CFD community.
To be precise, the Earth’s atmosphere needs to be considered, at least as a binary mixture
of nitrogen and oxygen under a gravitational field. Compared with the classical fluid
dynamics of pure gas, theoretical and numerical studies on multicomponent gas systems
under an external force field are very limited. The goal of this paper is to advance the
cutting-edge research in this direction, with a particular focus on multiscale and non-
equilibrium flows.

The characteristic scale and flow regime is usually categorized by the Knudsen number
Kn. When Kn is large, the Boltzmann equation is established at the molecular mean free
path and traveling time between successive intermolecular collisions. Such spatiotemporal
scales can be referred to as the kinetic scale. Based on the first physical principle, it is
natural to extend the Boltzmann equation to gas mixtures by tracking the evolution of each
component. With a different molecular mass and gas constant R, different gas components
transport with different velocity u ∼

√
RT, where T is temperature, leading to strong

non-equilibrium transport phenomena. Such an effect occurs dramatically when the mass
ratio is large, such as the rounding motion of ions and electrons in plasma physics.

On the other hand, when Kn is small, the characteristic scale of flow structures is
basically much larger than the mean free path, and a macroscopic model is favored to
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describe the flow evolution collectively. In the hydrodynamic limit, the Euler and Navier–
Stokes equations are routinely used, where different gas components present consistent
collective behavior. Additional constitutive equations are required to track the evolution
of different components. Such additional equations can be the equations for the volume
fraction, mass fraction, or ratio of specific heats of a mixture [1,2]. It is a nontrivial task since
the information of particle interactions among different components at the kinetic scale is
lost during the coarse-grained process and should be modeled back to the macroscopic
system in a consistent fashion.

Different equations and the corresponding numerical algorithms are scale-dependent
methods to describe flows at a certain level. However, in real-world gaseous flows, there
may not exist a clear scale separation between different flow regimes. For example, under
the gravitational field, the density varies significantly along the direction of force, as does
the mean free path and local Knudsen number. As a result, the atmosphere can thus be
divided into several layers, and a continuous variation of flow physics will emerge from
the kinetic physics in the upper atmospheric layer to the hydrodynamics in the lower high-
density region. Due to such an intrinsic multiscale nature, the corresponding numerical
algorithm should have the capability of capturing the cross-scale flow physics effectively.

For a gas dynamic system under a steady external force field from an arbitrary initial
condition, the entropy-increasing process leads to a hydrostatic equilibrium state. Such
a static solution is achieved and preserved due to the balance between the external force
and inhomogeneous fluxes. The capacity to capture such an equilibrium solution along a
physically accurate path is the so-called well-balanced property, which is important for a
numerical algorithm to solve long-term fluid dynamics under an external force field. For
the equilibrium flow when Kn approaches zero, such as the gravitational Euler system,
many efforts have been devoted to the construction of well-balanced schemes for single-
component flow [3–5]. For more general gas dynamic equations with the inclusion of
viscosity and heat conductivity, a few works have been performed based on the gas-kinetic
scheme [6–8]. However, to the best of the author’s knowledge, the study of the cross-scale
modeling and computation of multicomponent gas dynamics under an external force field
is very limited.

In recent years, the unified gas-kinetic scheme (UGKS) has been developed for the
simulation of multiscale gaseous flow [9,10]. Based on the Boltzmann model equation, the
UGKS uses an analytical integral solution in the construction of numerical flux functions.
The coupled modeling of particle transport and the collision of the evolution solution
guarantees the multiscale nature of the method. For the gas dynamic system related to an
external force, in order to develop a well-balanced gas-kinetic scheme, it is important to
take the external force effect into the flux transport across a cell interface accurately. Based
on this idea, a well-balanced unified gas-kinetic scheme for single-component flow [11]
has been proposed. In this paper, a similar methodology is used in the flux function for
the further development of the unified gas-kinetic scheme for a gas mixture. It is worth
mentioning that, due to the versatility of kinetic theory, it is natural to develop kinetic
schemes for other multi-particle systems, including shallow water equations [12], radiative
transfer [13], weakly coupled plasma physics [14], etc.

This paper is organized as follows. Section 2 is a brief introduction of the kinetic
theory of multicomponent gases and the asymptotic analysis of the current Boltzmann
model. Section 3 presents the construction of the well-balanced unified gas-kinetic scheme
for a gas mixture under an external force field. Section 4 includes numerical examples to
demonstrate the performance of the scheme. The last section is the conclusion.
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2. Kinetic Theory
2.1. Boltzmann Equation and Relaxation Model

The kinetic theory describes the evolution of gases in a statistical fashion. The Boltz-
mann equation for single-component flows is written as

∂ f
∂t

+ ui
∂ f
∂xi

+ φi
∂ f
∂ui

= Q( f , f ),

where ui = (u, v, w) is the particle velocity, φi is the external forcing term, and Q( f , f )
denotes the two-body collision term. Here, Einstein’s summation convention is adopted
for tensor operations. The above equation can be extended to a gas mixture, where the
evolution equation for the distribution function of each species s is written as

∂ fs

∂t
+ ui

∂ fs

∂xi
+ φi

∂ fs

∂ui
= Qs( f , f ). (1)

The collision term can be written as

Qs( f , f ) =
N

∑
r=1

Qsr( fs, fr) =
N

∑
r=1

∫
R3

∫
S2
( f ′s f ′r − fs fr)gsrσsrdΩduri, (2)

where f ′ is the post-collision distribution and r is the index of different gas species. The
term gsr is the relative speed of two molecular classes, and σsrdΩ is the differential cross-
section for the collision specified. Here, Qss( fs, fs) is called the self-collision term and
Qsr( fs, fr) is the cross-collision term.

Due to the complexity of the collision integral in Equation (2), simplified kinetic models
have been proposed for single-component gas evolution [15]. Such a model is expected to
satisfy some key structures of the original Boltzmann equation, such as positivity, correct
exchange coefficients, entropy inequality, and indifferentiability. Here, we introduce a
BGK-type model proposed by Andries, Aoki, and Perthame (AAP) [16], which could satisfy
all the properties required above. In the AAP model, a single collision operator for species
s is defined as

Qs( f ) =
f+s − fs

τs
. (3)

Here, the equilibrium state is defined based on modified macroscopic variables, i.e.,

f+s = ns

(
ms

2πkBT′s

)3/2
exp

(
− ms

2kBT′s
(us −U′s)

2
)

, (4)

where {U′s, T′s} is the modified bulk velocity and temperature, ns is the number density, ms
is the molecular mass, and kB is the Boltzmann constant. The determination of modified
temperature T′s and velocity U′s can be found in [17] to take into account the interaction
among different gas species:

U′si = Usi + τs ∑
r 6=s

2
ρr

ms + mr
θsr(Uri −Usi),

3
2

kBT′s =
3
2

kBTs −
ms

2
(U′s −Us)

2

+ τs ∑
r 6=s

4ms
ρr

(ms + mr)2 θsr

(
3
2

kBTr −
3
2

kBTs +
mr

2
(Ur −Us)

2
)

,

(5)

where ρ = mn is the mass density.
The collision frequency is determined by

1
τs

= β ∑
r

θsrnr, (6)
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where β can be chosen as either theunit for simplicity or to coincide with the collision time
of the single-component gas when all components are the same species. The parameter θsr
is defined as

θsr =
4
√

π

3

(
2kBTs

ms
+

2kBTr

mr

)1/2(ds + dr

2

)2
, (7)

for the hard sphere model and

θsr = 0.422π

(
asr(ms + mr)

msmr

)
, (8)

for the Maxwell molecule, where ds, dr are the molecular diameters and asr is the propor-
tionality of the intermolecular force.

With the defined collision operator, the BGK-type kinetic model equation can be
written as

∂ fs

∂t
+ ui

∂ fs

∂xi
+ φi

∂ fs

∂ui
=

f+s − fs

τs
. (9)

2.2. Asymptotic Analysis

The macroscopic conservative flow variables can be obtained from the moments of the
particle distribution function , i.e.,

Ws =

 ρs
ρsUsi
ρsEs

 =
∫
R3

fsψdΞ,

where ψ =
(

ms, msui, 1
2 msuiui

)T
is a vector of moments for collision invariants and dΞ =

dudvdw. Taking the moments of Equation (9) yields the balance laws of density, momentum,
and energy in each species s, i.e.,

∂ρs

∂t
+

∂ρsUsi
∂xi

= 0,

∂ρsUsi
∂t

+
∂ρsUsiUsj

∂xj
+

∂Tsij

∂xj
= ρsφi +

∫
R3

uiQs( f )dΞ,

∂ρsEs

∂t
+

∂ρsEsUsi
∂xi

+
∂(TsijUsj + qsi)

∂xi
= ρsUsiφi +

∫
R3

1
2

uiuiQs( f )dΞ.

(10)

The term Tij is the stress tensor, and qi is the heat flux. It is noticeable that, due to the
momentum and energy exchanges among different species in the mixture, the collision
integrals

∫
uiQs( f , f )dΞ and

∫ 1
2 uiuiQs( f , f )dΞ are no longer equal to zero, while the total

density, momentum, and energy are still conserved in the flow evolution. Therefore,
summing up the above equations, we can obtain

∂ρs

∂t
+

∂ρsUi
∂xi

= −∂Jsi
∂xi

,

∂ρUi
∂t

+
∂ρUiUj

∂xj
+

∂Tij

∂xj
= ρφi,

∂ρE
∂t

+
∂ρEUi

∂xi
+

∂(TijUj + qi)

∂xi
= ρUiφi.

(11)

where Jsi =
∫
(ui −Ui) fsdΞ. As shown in [16], by inserting the Chapman–Enskog expan-

sion, e.g., the zeroth-order approximation:

fs ' f+s + O(τs),
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and the first-order approximation:

fs ' f+s − τs(∂t f+s + ui∂xi f+s ) + O(τ2
s ),

into the determination of the stress tensor and heat flux, one can derive the Euler and
Navier–Stokes equations, respectively.

For multicomponent flows, the mass transfer is another important topic. Here, we
used diffusive scaling to illustrate the mechanism of mass transfer and diffusion in the
current model. We introduce dimensionless variables denoted with asterisks:

t = t∗t0, x = x∗x0, ui = u∗i u0, f = f ∗ f0,

where t0 is the reference time scale, x0 is the reference length scale, and so on. With the
dimensionless terms plugged into Equation (9), we obtain (after immediately dropping the
asterisks)

St
∂ fs

∂t
+ ui

∂ fs

∂xi
+ φi

∂ fs

∂ui
=

1
Kn

Qs( f ),

where St = x0/u0t0 is the Strouhal number and Kn is the Knudsen number. In the diffusive
limit, we assume St ' Kn = ε. The stiff term 1/ε on the right-hand side implies that the
limiting solution limε→0 f ε

s is close to the local equilibrium. We make this assumption and
compute the moment system in the same way as Equations (10) and (11), which yields

ε
∂nε

s
∂t

+ ε
∂(nε

s Uε
si)

∂xi
= 0,

ε2 ∂ρε
s Uε

si
∂t

+ ε2
∂(ρε

s Uε
siU

ε
sj)

∂xi
+

∂(nε
s kBTε)

∂xi
=

1
ε

∫
msuiQs( f ε)dΞ + ε2ρε

s φi.

For simplicity, here, we adopt the number density in the continuity equation. Truncating
the above equations at the leading order in ε leads to

∂nε

∂t
+

∂nεUε
i

∂xi
= 0,

∂nε
s kBTε

∂xi
=

1
ε

∫
msuiQs( f ε)dΞ.

If the isothermal assumption is made, the second equation with ε→ 0 reduces to

∂nε
s

∂xi
=

1
εkBTε

∫
msuiQs( f ε)dΞ =

U′si −Usi

εkBT

= ∑
r 6=s

(Uri −Usi)

Dij
,

(12)

where the coefficients Dij are determined by the collision time in Equation (6) and the
interaction model in Equation (5). Equation (12) is exactly the Maxwell–Stefan diffusion
law [18]. As analyzed, even though the Maxwell–Stefan theory is basically understood as a
more generalized law than Fick’s law to describe mass transfer, its applicability is mainly
limited to the continuum limit and thermodynamic equilibrium. To study the mass and
heat transfer in multiscale and non-equilibrium fluids, we must resort to reliable numerical
methods, which is the core task in the next section.

3. Numerical Algorithm
3.1. Construction of Interface Distribution Function

The key ingredient in the UGKS is the integral solution constructed from the BGK-type
relaxation model. Here, we used the one-dimensional case to illustrate the construction of
the numerical algorithm first. Without loss of generality, we assumed the interface between
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two neighbor cells xi+1/2 = 0 and tn = 0. Given a local constant collision time τs, the
integral solution of Equation (9) along the characteristic line is written as

fs(0, t, uk) =
1
τs

∫ t

0
f+s (x′, t′, u′k)e

−(t−t′)/τdt′

+ e−t/τ( fs)0(x0, 0, u0
k),

(13)

where x′i = xi − u′i(t− t′)− 1
2 φi(t− t′)2 denotes the particle trajectories in physical space,

u′i = ui − φi(t− t′) is the particle velocities under acceleration, (x0, u0) is the initial location
in the phase space for the particle that passes through the cell interface at time t, and ( fs)0
is the particle distribution function of species s at the beginning of the n-th time step.

In the numerical algorithm, the initial gas distribution function ( fs)0 of each gas
component s around the cell interface xi+1/2 is reconstructed as follows:

( fs)0(x, 0, uk) =

{
( fs)

L
i+1/2,k + (σs)i,kx, x ≤ 0,

( fs)
R
i+1/2,k + (σs)i+1,kx, x > 0,

(14)

where ( fs)
L,R
i+1/2,k are the reconstructed values of the initial distribution functions from

both sides of the cell interface. Based on the reconstructed distribution functions, the
macroscopic conservative variables at a cell interface can be evaluated through

Ws = ∑
uk>0

f L
i+1/2,kψdΞ + ∑

uk<0
f R
i+1/2,kψdΞ,

which can be used to determine the modified macroscopic variables W′s in Equation (5) and
the equilibrium distribution ( fs)

+
0 in Equation (4).

For the second part of the integral solution, the equilibrium distribution is expanded
in space and time around a cell interface as

f+s = ( fs)
+
0

[
1 + (1− H[x])aLx + H[x]aRx + At

]
, (15)

where H[x] is the Heaviside step function. Here, aL
s , aR

s , and As are from the Taylor expan-
sion of a Maxwellian:

aL,R
s = aL,R

1 + aL,R
2 u + aL,R

3
1
2

u2 = aL,R
α ψα,

As = A1 + A2u + A3
1
2

u2 = Aαψα.

The spatial slopes aL
s , aR

s can be obtained from the slopes of modified conservative variables
on both sides of a cell interface:(

∂W′s
∂x

)L

=
∫

aL
s ( fs)

+
0 ψdΞ,

(
∂W′s
∂x

)R

=
∫

aR
s ( fs)

+
0 ψdΞ.

The time derivative As of f+s is related to the temporal variation of conservative flow
variables:

∂W′s
∂t

=
∫

As( fs)
+
0 ψdΞ,

and it can be calculated via the time derivative of the overall compatibility condition for
the gas mixture:

d
dt

∫ s

∑
r=1

( f+r − fr)ψdΞ |x=0,t=0= 0.

Once we determine all the coefficients, the integral solution can be rewritten as
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fs(0, t, uk) =
(

1− e−t/τ
)
( fs)

+
0

+
(

τ(−1 + e−t/τ) + te−t/τ
)

aL,R
s uk( fs)

+
0

−
[

τ
(

τ(−1 + e−t/τ) + te−t/τ
)
+

1
2

t2e−t/τ

]
aL,R

s φx( fs)
+
0

+ τ
(

t/τ − 1 + e−t/τ
)

As( fs)
+
0

+ e−t/τ

[(
( fs)

L
i+1/2,k0 +

(
−(uk − φxt)t− 1

2
φxt2

)
(σs)i,k0

)
H[uk −

1
2

φxt]

+

(
( fs)

R
i+1/2,k0 +

(
−(uk − φxt)t− 1

2
φxt2

)
(σs)i+1,k0

)
(1− H[uk −

1
2

φxt])
]

,

(16)

from which we can evaluate the numerical fluxes for both the particle distribution function
and macroscopic conservative variables.

3.2. Two-Dimensional Case

Following the integral solution of the relaxation model, it is natural to extended the
UGKS to the multidimensional case. Under the force φ = (φx, φy), the integral solution of
the AAP kinetic model in the two-dimensional Cartesian coordinate system is written as

fs(x, y, t, u, v) =
1
τ

∫ t

tn
f+s (x′, y′, t′, u′, v′)e−(t−t′)/τdt′

+ e−(t−tn)/τ( fs)
n
0 (xn, yn, tn, un, vn),

(17)

where x′ = x− u′(t− t′)− 1
2 φx(t− t′)2, y′ = y− v′(t− t′)− 1

2 φy(t− t′)2, u′ = u− φx(t−
t′), and v′ = v− φy(t− t′). For simplicity, we will drop the subscript s to denote a single
gas species.

In the unified scheme, at the center of a cell interface (xi+1/2, yj), the solution fi+1/2,j,k,l
is constructed from the integral solution Equation (17). With the notations xi+1/2 = 0, yj = 0
at tn = 0, the time-dependent interface distribution function for species s goes to

f (0, 0, t, uk, vl) =
1
τ

∫ t

0
f+(x′, y′, t′, u′k, v′l)e

−(t−t′)/τdt′

+ e−t/τ f0(−ukt +
1
2

φxt2,−vlt +
1
2

φyt2, 0, uk − φxt, vl − φyt).

To second-order accuracy, the initial gas distribution function f0 is reconstructed as

f0(x, y, 0, uk, vl) =

{
f L
i+1/2,j,k,l + σi,j,k,l x + θi,j,k,ly, x ≤ 0,

f R
i+1/2,j,k,l + σi+1,j,k,l x + θi+1,j,k,ly, x > 0,

(18)

where f L
i+1/2,j,k,l and f R

i+1/2,j,k,l are the reconstructed initial distribution functions on the
left- and right-hand sides of a cell interface. The slope of f at the (i, j)-thcell and the
(k, l)-thdiscretized velocity point in the x-direction and y-direction are denoted by σi,j,k,l
and θi,j,k,l .

The modified equilibrium distribution function around a cell interface is constructed as

f+ = f+0
[
1 + (1− H[x])aLx + H[x]aRx + by + At

]
,

where f+0 is the equilibrium distribution at (x = 0, t = 0). The coefficients above can be
determined in the same way as the one-dimensional case.
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The time-dependent interface distribution function is written as

f (0, 0, t, uk, vl) =
(

1− e−t/τ
)

f+0

+
(

τ(−1 + e−t/τ) + te−t/τ
)

aL,Ruk f+0

−
[

τ
(

τ(−1 + e−t/τ) + te−t/τ
)
+

1
2

t2e−t/τ

]
aL,Rφx f+0

+
(

τ(−1 + e−t/τ) + te−t/τ
)

bvl f+0

−
[

τ
(

τ(−1 + e−t/τ) + te−t/τ
)
+

1
2

t2e−t/τ

]
bφy f+0

+ τ
(

t/τ − 1 + e−t/τ
)

A f+0

+ e−t/τ

[(
f L
i+1/2,k0,l0 +

(
−(uk − φxt)t− 1

2
φxt2

)
σi,k0,l0

+

(
−(vl − φyt)t− 1

2
φyt2

)
θi,k0,l0

)
H[uk −

1
2

φxt]

+

(
f R
i+1/2,k0,l0 +

(
−(uk − φxt)t− 1

2
φxt2

)
σi+1,k0,l0

+

(
−(vl − φyt)t− 1

2
φyt2

)
θi+1,k0,l0

)
(1− H[uk −

1
2

φxt])
]

.

(19)

The extension of the above method to the three-dimensional case is straightforward.

3.3. Update Algorithm

With the cell-averaged distribution function for species s in the gas mixture:

fxi ,yj ,tn ,uk ,vl = f n
i,j,k,l =

1
Ωi,j(x, y)Ωk,l(u, v)

∫
Ωi,j

∫
Ωk,l

f (x, y, tn, u, v)dxdydudv,

the direct modeling for its evolution gives the conservation laws of macroscopic variables
and the particle distribution function in a discretized space:

Wn+1
i,j =Wn

i,j +
1

Ωi,j

∫ tn+1

tn ∑
i=1

∆Li · Fidt

+
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

Qi,jdxdydt +
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

Gi,jdxdydt,

(20)

f n+1
i,j,k,l = f n

i,j,k,l +
1

Ωi,j

∫ tn+1

tn ∑
i=1

ui f̂i(t)∆Lidt

+
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

Q( f )dxdydt +
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

G( f )dxdydt,

(21)

where Fi is the flux of conservative variables across the cell interface ∆Li = ∆Lini, f̂i is the
time-dependent gas distribution function at the cell interface, and ∆Li is the cell interface
length. Qi,j, Q( f ) are the source terms from intermolecular collisions, and Gi,j, G( f ) are
the external forcing terms:

Q( f ) =
f+i,j,k,l − f n+1/2

i,j,k,l

τ
,

Qi,j =
∫

Ωk,l

f+i,j,k,l − f n+1/2
i,j,k,l

τ
ψdudv,

(22)
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G( f ) = −φx
∂

∂u
f n+1/2
i,j,k,l − φy

∂

∂v
f n+1/2
i,j,k,l ,

Gi,j =
∫

Ωk,l

(
−φx

∂

∂u
f n+1/2
i,j,k,l − φy

∂

∂v
f n+1/2
i,j,k,l

)
ψdudv.

(23)

In the UGKS, we use the semi-implicit method to model the collision term and the
fully implicit one for the external forcing term:

f n+1
i,j,k,l = f n

i,j,k,l +
1

Ωi,j

(
Fi−1/2,j,k,l − Fi+1/2,j,k,l

)
+

1
Ωi,j

(
Fi,j−1/2,k,l − Fi,j+1/2,k,l

)

+
∆t
2

 f+(n+1)
i,j,k,l − f n+1

i,j,k,l

τn+1 +
f+(n)
i,j,k,l − f n

i,j,k,l

τn

− ∆t
(

φx
∂

∂u
f n+1
i,j,k,l + φy

∂

∂v
f n+1
i,j,k,l

)
.

(24)

In order to update the gas distribution function implicitly, we solve Equation (20) first,
and its solution can be used for the construction of the equilibrium state in Equation (24) at
tn+1. In the current scheme, the collision term for macroscopic variables is treated as

1
Ωi,j

∫ tn+1

tn

∫
Ωi,j

Qi,jdxdydt =
∆t
τ
[(W′)n −Wn], (25)

where (W′)n is the modified macroscopic conservative variable. For the external forcing
source, we adopted the numerical methodology proposed by Slyz and Prendergast [19],
where the energy source term from the external force can be absorbed into the energy flux
as ΦFρ, where Fρ is the mass flux, to ensure the accurate conservation of energy. A similar
implicit upwind update as [11] was adopted to update the particle distribution function.

With the help of the implicit update algorithm, the time step is not restricted by the
collision time and is fully determined by the CFL condition:

∆t = CFL min
{

∆x∆y
umax∆y + vmax∆x

,
∆u∆v

|φx|∆v + |φy|∆u

}
, (26)

where CFL is the CFL number, {umax = max(|uk|), vmax = max(|vl |)} is the largest dis-
cretized particle velocity of all gas components in the x- and y-directions, and {∆u, ∆v} is
the distance between two neighboring velocity points.

3.4. Analysis on the Well-Balanced Property

In this part, we prove the well-balanced property of the current scheme theoretically. In
the continuum regime with intensive intermolecular collisions, the fluid element picture can
be used to describe the bulk property of flow transport. We adopted the one-dimensional
Euler equations for multicomponent flow under force field Φ, i.e.,

(ρ1)t + (ρ1U)x = 0,

(ρ2)t + (ρ2U)x = 0,

(ρU)t + (ρU2 + p)x = ρφx,

(ρE)t + ((ρE + p)U)x = ρUφx.

where ρ, ρU, ρE, p are the total density, momentum, energy, and pressure. It is clear that the
equations above allow a simply hydrostatic solution where the macroscopic flow is absent
and the pressure gradient is balanced by the density stratification:

ρ = ρ(x) = ρ1(x) + ρ2(x), U = 0, px = (p1)x + (p2)x = (ρ1 + ρ2)φx.
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Given a constant force field φx, the above solution can be rewritten as

ρ = ρ1 + ρ2 = ρ0 exp
(

φxx
RT

)
, U = 0, p = p1 + p2 = p0 exp

(
φxx
RT

)
, (27)

where R is the gas constant. Such a steady-state solution needs to be maintained due to the
exact balance between the gravitational source term and the inhomogeneous flux function
for each gas component in the mixture, i.e.,

1
∆x

∫ tn+1

tn
(Fi−1/2 − Fi+1/2)dt +

1
∆x

∫ tn+1

tn

∫ xi+1/2

x1−1/2

Gidt = 0. (28)

In the hydrodynamic scale where ∆t � τ, under hydrostatic balance, the intensive
particle collision will converge the interface distribution function in Equation (16) to

fi+1/2 = f+0 − τau f+0 − τ2aφx f+0 . (29)

The velocity moments
∫

uα f+0 du = ρ〈uα〉 of the above solution can be evaluated analytically.
The coefficient a in Equation (29) can be determined by the slopes of conservative variables:

a3 =
4(λ′0)

2

(K + 1)ρ0

[
2(ρE′)x +

(
(U′0)

2 − K + 1
2λ′0

)
ρx − 2Ū0(ρU′)x

]
,

a2 =
2λ′0
ρ0

[
(ρU′)x −U′0ρx

]
−U′0a3,

a1 =
1
ρ0

ρx −U′0a2 −
1
2

(
(U′0)

2 +
K + 1
2λ′0

)
a3,

where (U′0, λ′0) are the modified primitive variables in Equation (5). In the isothermal and
static case, the above equation can be further reduced to

a1 =
1
ρ0

∂ρ

∂x
, a2 = a3 = 0.

Therefore, the fluxes of density, momentum, and energy can be obtained via Fi+1/2 =∫
u fi+1/2ψdu, i.e.,

Fρ
i+1/2 = 0,

FρU
i+1/2 =

ρi+1/2

2λ′
,

FρE
i+1/2 = 0.

At the same time, the source term in Equation (28) is

Gi =
∫
−φx fuψdu.

The source term from the external force can be integrated as

Gρ = 0,

GρU = ρφx,

GρE = ρUφx = 0.

For the momentum balance equation, we can use the exponential density distribution in
Equation (27) to check the well-balanced relationship in Equation (28). As the temperature
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is uniform in the flow domain, the modified λ′ is equivalent to each component’s λ, and
the balance relationship is∫ xi+1/2

xi−1/2

GρU
i dx =

∫ xi+1/2

xi−1/2

ρφxdx = RT(ρi+1/2 − ρi−1/2) = −(Fi−1/2 − Fi+1/2),

from which we can see that the well-balanced property is precisely satisfied in the current
scheme.

In another limit of the Knudsen regime, where τ � ∆t, the current method recovers a
purely upwind method:

fi+1/2,k =


f L
i+1/2,k0 +

(
−ukt +

1
2

φxt2
)

σi,k0 , uk −
1
2

φxt ≥ 0,

f R
i+1/2,k0 +

(
−ukt +

1
2

φxt2
)

σi+1,k0 , uk −
1
2

φxt < 0.

With the forcing effect on each particle, the particle distribution function will become
distorted in the velocity space, and the deviation from the equilibrium state is restricted
with the particle collision time τ. There is no more isothermal equilibrium due to the
non-equilibrium heat transfer induced by the force field, as analyzed in [20]. In this case,
the good hydrostatic balance is only a coarse-grained concept based on statistical averaging.

3.5. Summary of the Algorithm

A detailed numerical solution algorithm for the current well-balanced UGKS is pro-
vided in Figure 1, and its implementation is available at the GitHub repository [21].

Calculate time step by Equation (26)

Reconstruct the distribution function by Equation (14) and Equation (18)

Calculate the interface flux based on the time-dependent solution Equation (16) and Equation (19)

Calculate source terms from the external force and interspecies collision

Update the conservative variables Wn+1 by Equation (20)

Calculate the equilibrium distribution f+(n+1) and collision time τn+1

Calculate the external forcing source with an upwind finite difference approach

Update the distribution function f n+1 by Equation (24)

Figure 1. Numerical algorithm of the UGKS.

4. Numerical Experiments

In this section, we present numerical examples of a binary gas mixture to validate
the well-balanced UGKS for multiscale and multicomponent flow. Multiscale simulations
from free molecule flow to continuum two-species Euler solutions under a external force
field are presented to demonstrate the capability of the unified scheme. The flow features
in different regimes can be well captured by the unified scheme. Some interesting non-
equilibrium phenomena, such as the characteristic behavior of different gas components in
different flow regimes, are discussed. The hard sphere (HS) monatomic gas was employed
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in all test cases. With the overall number density n = n1 + n2 and molecular diameter
d = (d1 + d2)/2, the Knudsen number can be defined as

Kn =
1√

2πd2n
,

and the parameter θ12 in Equation (7) becomes

θ12 =
4
√

π

3

(
1

λ1
+

1
λ2

)1/2 1√
2πKn(n1 + n2)

,

with which we can determine the modified macroscopic variables and collision frequency
in Equations (5) and (6). The parameter β in Equation (6) was chosen to be the unit.

In the current calculations, we considered a binary gas mixture with γ = 5/3 only.
With the defined reference molecular mass and number density:

mre f =
m1n1re f + m2n2re f

n1re f + n2re f
, ρ0 = mre f nre f = mre f (n1re f + n2re f ),

the dimensionless variables are introduced as

x̂ =
x
L0

, ŷ =
y
L0

, ρ̂ =
ρ

ρ0
, T̂ =

T
T0

,

ûi =
ui

(2kT0/mre f )1/2 , Ûi =
Ui

(2kT0/mre f )1/2 , f̂ =
f

n0(2kT0/mre f )3/2 ,

P̂ij =
Pij

ρ0(2kT0/mre f )
, q̂i =

qi

(ρ0/2)(2kT0/mre f )3/2 , φ̂i =
φi

2kT0/(L0mre f )
,

where ui is the particle velocity, Ui is the macroscopic flow velocity, Pij is the stress tensor,
qi is the heat flux, and φi is the external force acceleration. We drop the hat notation to
denote dimensionless variables for simplicity henceforth.

4.1. Validation

In this part, we provide benchmark test cases to validate the current method. Both
convection-dominated and diffusion-dominated flow problems are considered.

4.1.1. Normal Shock Structure

The first case is the normal shock structure for a binary gas mixture [22]. The two
components A and B are assumed to have a molecular diameter and different masses
mA/mB = 2. The upstream and downstream statuses are coupled by the Rankine–Hugoniot
relationship, and the initial distribution functions are set as Maxwellian.

In the simulation, 100 uniform physical meshes were employed in physical domain
x ∈ [−25, 25] and 101 quadrature points were used in velocity space u ∈ [−10, 10]. The
upstream Mach number was Ma = 1.5, and the Knudsen number was Kn = 1.0. The CFL
number was set to be 0.7. Different number density fractions nA/(nA + nB) = 0.1, 0.5, and
0.9 were considered.

Figures 2–4 present the normalized numerical solutions under different density con-
centrations. The benchmark solutions from the full Boltzmann equation computed by
the fast spectral method [23,24] are provided as a reference. As can be seen, the results
from the UGKS and the Boltzmann equation exhibit good agreement under different
number density fractions. This test case validates the UGKS in convection-dominated
non-equilibrium flows.
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Figure 2. Normal shock profiles at nA/(nA + nB) = 0.1. (a) Number density. (b) Velocity. (c)
Temperature.
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Figure 3. Normal shock profiles at nA/(nA + nB) = 0.5. (a) Number density. (b) Velocity. (c)
Temperature.
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Figure 4. Normal shock profiles at nA/(nA + nB) = 0.9. (a) Number density. (b) Velocity. (c)
Temperature.

4.1.2. Fourier Flow

The second case is the Fourier flow. The two gas components were set in the same
way as Section 4.1.1. The heat transfer problem was considered between two walls with
different temperatures, i.e., TL = 1 and TR = 0.5. Maxwell’s diffusive boundary condition
was considered at both ends. The initial gas was stationary and had a uniform density and
temperature.

In the simulation, 100 uniform physical meshes were employed in physical domain
x ∈ [0, 1] and 72 quadrature points were used in velocity space u ∈ [−8, 8]. The CFL
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number was set to be 0.7. Different Knudsen numbers were considered, i.e., Kn = 1 and
0.1.

Figures 5 and 6 present the temperature and density profiles. The benchmark full
Boltzmann solutions are provided as a reference. It is clear that good agreement between
the UGKS and reference solutions was achieved. In the rarefied regime, the number density
profiles of two components deviate. Due to the different average molecular speeds, light
molecules B tend to move towards hot regions, while heavy molecules to cold regions. This
is a typical non-equilibrium flow phenomenon, which corresponds to the Soret effect [25].
In addition, the conservation of the system was checked. After 50 dimensionless time units
when the convergent solution was obtained, the absolute error of the total mass was below
0.004‰. This test case validates the UGKS in diffusion-dominated non-equilibrium flows.
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Figure 5. Kn = 0.1. (a) Temperature. (b) Number density .
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Entropy 2022, 24, 1110 15 of 28

4.2. Perturbed Hydrostatic Equilibrium Solution

In the first test case, we studied the one-dimensional wave propagation from the
hydrostatic equilibrium flow field [3]. The binary gas mixture was stillinitially at the
hydrostatic equilibrium solution, and the domain x ∈ [0, 1] was under the external force
field φx = −1.0, which points towards the negative x-direction, i.e.,

ρ0(x) = p0(x) = exp(φxx), u0(x) = 0.

The equilibrium solution was perturbed by the following pressure perturbation:

p(x, t = 0) = p0(x) + 0.01 exp(−100(x− 0.5)2).

Here, ρ0 and p0 are the total density and pressure. In the gas mixture, the molecular mass
ratio m2/m1 and number density ratio n2/n1 need to be specified to distribute the partition
of density and pressure for each gas component.

In the simulation, 100 uniform physical meshes were employed in the physical domain
and 101 quadrature points were used in the velocity space. The continuum flow regime
was considered, and the Knudsen number was set as 10−5. Two cases were simulated
with different molecular mass and number density ratios. The first case was set up with
m2/m1 = 0.8, n2/n1 = 1, while in the second case, m2/m1 = 0.5, n2/n1 = 0.25. Figure 7
shows the pressure profiles at t = 0.18 in the two cases. It can be seen that the small
perturbation was well captured by the current well-balanced scheme without destroying
the equilibrium solution in the bulk region. Such a capability is due to the unified treatment
of particle transports and collisions under an external force field, as analyzed in [3,6]. Due
to frequent intermolecular collisions in the continuum regime, different gas components
behave coincidentally as a simple gas.
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Figure 7. Pressure perturbation from a hydrostatic equilibrium solution. (a) m2/m1 = 0.8, n2/n1 = 1.
(b) m2/m1 = 0.5, n2/n1 = 0.25.

4.3. Riemann Problem under an External Force Field

Next, we considered the discontinuous solutions developed in the hyperbolic system.
The Sod shock tube problem was employed as the test case [7]. Similarly, two cases were
considered with different molecular mass and number density ratios. In the first case, it
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was set up with m2/m1 = 0.5, n2/n1 = 1, and m2/m1 = 0.5, n2/n1 = 0.25 in the second
case. The initial condition was set as

ρ = 1.0, U = 0.0, p = 1.0, x ≤ 0.5,

ρ = 0.125, U = 0.0, p = 0.1, x > 0.5.

In the simulation, the external force φx = −1.0 that points leftwards was considered.
Different Knudsen numbers in the reference state were considered, Kn = 0.0001, Kn = 0.01,
and Kn = 1.0, with respect to different flow regimes. The computational domain x ∈ [0, 1]
was divided into 100 cells, and 101 quadrature points were used in the velocity space. The
specular reflection boundary condition was employed at both ends.

The profiles of macroscopic variables at t = 0.2 are presented in Figures 8 and 9. Under
an external force field, the particles were driven towards the negative x-direction, resulting
in the appearance of negative flow velocity near the left tube end. In comparison with
the case without gravity, the thermodynamic quantities such as density, temperature, and
pressure in the left side of the tube increase all together.

This numerical experiment validates the capability of the current method to simulate
discontinuous cross-scale flow physics under an external force field. In the continuum
limit with Kn = 0.0001, the limited resolution in space and time results in the two-species
Euler solution, and the current scheme plays the role of a shock-capturing algorithm. The
frequent collisions prevent the particle penetration between fluid elements, and different
gas components show consistent behaviors, just like a single gas. With the increment of
the Knudsen number and the collision time, the degree of freedom for the free transport
of individual gas components increases and the flow physics changes significantly. There
is a smooth transition from the Euler solution of the Riemann problem to a collisionless
Boltzmann solution. As different gas components have a specific molecular mass, the
light gas transports much faster than the heavier one in the tube, which is shown in
Figures 8b and 9b.
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Figure 8. Sod test under an external force field with m2/m1 = 0.5, n2/n1 = 1. (a) Number density.
(b) Velocity. (c) Temperature. (d) Pressure.
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Figure 9. Sod test under an external force field with m2/m1 = 0.5, n2/n1 = 0.25. (a) Number density.
(b) Velocity. (c) Temperature. (d) Pressure.

4.4. Rayleigh–Taylor Instability

We turn to the two-dimensional case and consider the Rayleigh–Taylor instability [3].
The initial condition of the gas dynamic system in a polar coordinate (r, θ) was set as

ρ0(r) = e−α(r+r0), p0(r) =
1.5
α

e−α(r+r0), U0 = 0,

where
α = 2.68, r0 = 0.258, r ≤ r1,

α = 5.53, r0 = −0.308, r > r1,
and


r1 = 0.6(1 + 0.02 cos(20θ)), for density,

r1 = 0.62324965, for pressure.

The molecular mass and number density ratio in the gas mixture was set up with m2/m1 =
0.8, n2/n1 = 1, and m2/m1 = 0.25, n2/n1 = 1. The external force potential satisfies
dΦ/dr = 1.5, and the force points towards the origin of the polar coordinates. Different
Knudsen numbers in the reference state were considered as Kn = 0.0001, 0.01, and 1.0, The
computational domain was divided into 60× 60 uniform cells, and 29× 29 quadrature
points were used in the velocity space. The specular reflection condition was considered
at all boundaries. Due to the density inversion contained in the initial flow field, the
Rayleigh–Taylor instability will occur naturally as time evolves. A well-balanced method
is expected to capture the flow motions around the unstable interface, while keeping the
hydrostatic equilibrium solution in the bulk region.

Figures 10 and 11 plot the density contours and cross-sections of densities in all cells
versus the radius with m2/m1 = 0.8 at different output times under different Knudsen
numbers Figures 12 and 13 present the same results with m2/m1 = 0.25. As can be seen, in
different flow regimes, different flow physics emerge around the Rayleigh–Taylor interface.
In the continuum regime, the frequent intermolecular interactions provide the effective
mechanism to quickly initiate and strengthen the flow mixing. As the Kn increases, the
particle transport phenomena dominate the flow evolution, and thus, the particles have
a greater chance of penetrating directly through the mixing layer into the inner zone.
Therefore, the strength of the Rayleigh–Taylor instability is greatly reduced. Due to the
fact that different gas components have different molecular masses, the profiles of different
species can be different, corresponding to different Knudsen numbers. Figure 14 presents
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the density profiles of the two components at t = 0.08 and Kn = 0.01. It is clear that,
while the lighter components have already completed the density inversion, the heavy
components are still in the mixing process. This is due to the fact that molecules with
smaller masses have a faster mean speed. In all cases, it is clear that the hydrostatic
solution is well preserved by the current well-balanced scheme, and the mixing of fluids
occurs locally.
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Figure 10. Density evolution under gravity at m2/m1 = 0.8 and reference Knudsen numbers 0.0001
(1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0. (e) t = 0. (f) t = 0.08.
(g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.
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Figure 11. Density distribution along the radial direction at m2/m1 = 0.8 and reference Knudsen
numbers 0.0001 (1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0.
(e) t = 0. (f) t = 0.08. (g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.
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Figure 12. Density evolution under gravity at m2/m1 = 0.25 and reference Knudsen numbers 0.0001
(1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0. (e) t = 0. (f) t = 0.08.
(g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.
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Figure 13. Density distribution along the radial direction at m2/m1 = 0.25 and reference Knudsen
numbers 0.0001 (1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0.
(e) t = 0. (f) t = 0.08. (g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.

Radius

D
e

n
s

it
y

0.2 0.4 0.6 0.8 1 1.2 1.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Species 1

(a)
Radius

D
e

n
s

it
y

0.2 0.4 0.6 0.8 1 1.2 1.4

0.02

0.04

0.06

0.08

Species 2

(b)

Figure 14. Density distribution for two gas components along the radial direction at t = 0.08 with
reference Knudsen number 0.01. (a) Species 1. (b) Species 2.

4.5. Lid-Driven Cavity under Gravity

The lid-driven cavity problem is a standard test case for both hydrodynamic and
kinetic solvers, which contains complex flow physics related to compressibility, shearing
structure, heat transfer, the boundary effect, non-equilibrium effects, etc. In this case, we
calculated a lid-driven cavity problem under an external force, which serves as a typical
case for the multiscale algorithms.
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A binary gas mixture is enclosed by four walls with L = 1. The upper wall moves
in a tangential direction with a velocity Uw = 0.15. The external force was set to be
φy = 0.0,−0.5,−1.0, respectively, in the negative y-direction. The magnitude of gravity φy
is denoted by g. The initial density and pressure were set up with

ρ(x, y, t = 0) = 2 exp(φyy), p(x, y, t = 0) = exp(φyy).

The molecular mass and number density ratio in the gas mixture was set up with m2/m1 =
0.5, n2/n1 = 1.

The Knudsen number in the reference state was set as Kn = 0.05. There were 45× 45
uniform cells used in the physical space and 41× 41 quadrature points used in the velocity
space. Maxwell’s diffusive boundary condition was used throughout the computation, and
the wall temperature was Tw = 1.

Figures 15–17 present the numerical solutions related to different magnitudes of the
external force. Due to the existence of a force field, along the forcing direction, the gas
density changes significantly along the vertical direction of the cavity, as does the local
Knudsen number. As as result, the gas inside the cavity, depending on the position of the y-
axis, can stay in different flow regimes. Similar to the results of a single-component gas [26],
the temperature of the gas around the upper surface of the cavity decreases in spite of the
viscous heating effect. Such a phenomenon happens during the energy exchange among
gravitational and kinetic energy and can be explained as a result of the non-equilibrium
heat transfer driven by an external force. Different from the equilibrium thermodynamics,
the shift and distortion of the gas distribution function due to the external forcing term
provide the dominant mechanism for particle transports, especially in the rarefied regions.
The density and velocity distributions at the central lines of the cavity, as well as the local
Knudsen number are presented in Figures 18 and 19. As plotted, the increased external
force results in the stabilizing effect, i.e., to reduce the rotating speed of the main vortex.
With the increment of the force magnitude, the velocity profile is flattened, indicating a
weaker vortex motion. This numerical results validates the current well-balanced method
for the study of non-equilibrium flows under an external force field.
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Figure 15. Lid-driven cavity solutions at Knre f = 0.05 and φy = 0. (a) Number density. (b) U-velocity.
(c) V-velocity. (d) Temperature.
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Figure 16. Lid-driven cavity solutions at Knre f = 0.05 and φy = −0.5. (a) Number density. (b) U-
velocity. (c) V-velocity. (d) Temperature.
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Figure 17. Lid-driven cavity solutions at Knre f = 0.05 and φy = −1.0. (a) Number density. (b) U-
velocity. (c) V-velocity. (d) Temperature.
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Figure 18. U,V velocity along the horizontal and vertical center lines of the cavity. (a) U-velocity.
(b) V-velocity.
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Figure 19. Number density and local Knudsen number along the vertical center line of the cavity.
(a) Number density. (b) Local Knudsen number.

5. Conclusions

The atmosphere is composed of multicomponent flows under an external force. In
this paper, a well-balanced unified gas-kinetic scheme for multicomponent flows has been
developed. The well-balanced property of the unified scheme was validated through both
theoretical demonstrations and numerical tests. The detailed strategy for the construction of
the current algorithm was illustrated. Many numerical cases were provided to validate the
scheme. New physical observations, such as the consistent transport in the hydrodynamic
regime and the decoupled transport in the rarefied regime of different components, were
clearly identified and discussed. The well-balanced UGKS provides an alternative choice
for the study of real non-equilibrium gaseous flow on the Earth and beyond, which is
useful in astronautical and astrophysical applications.
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