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Abstract: The relationship between the Chinese market and the US market is widely concerned by
researchers and investors. This paper uses transfer entropy and local random permutation (LRP)
surrogates to detect the information flow dynamics between two markets. We provide a detailed
analysis of the relationship between the two markets using long-term daily and weekly data. Cal-
culations show that there is an asymmetric information flow between the two markets, in which
the US market significantly affects the Chinese market. Dynamic analysis based on weekly data
shows that the information flow evolves, and includes three significant periods between 2004 and
2021. We also used daily data to analyze the dynamics of information flow in detail over the three
periods and found that changes in the intensity of information flow were accompanied by major
events affecting the market, such as the 2008 financial crisis and the COVID-19 pandemic period. In
particular, we analyzed the impact of the S&P500 index on different industry indices in the Chinese
market and found that the dynamics of information flow exhibit multiple patterns. This study reveals
the complex information flow between two markets from the perspective of nonlinear dynamics,
thereby helping to analyze the impact of major events and providing quantitative analysis tools for
investment practice.

Keywords: stock market; transfer entropy; information flow; surrogates

1. Introduction

Both China and the United States are large economies with high influence, so analyzing
the relationship between the two stock markets is of great significance for investment
practice and risk management. Currently, there are many studies analyzing the relationship
between the two markets based on different datasets, in which multiple empirical tools
are used. For example, Goh et al. found that some economic variables in the United
States can improve the forecast performance of the Chinese stock market [1]. Jian Chen
et al. found that US economic variables can help predict the monthly volatility of the
Chinese market [2]. In addition, previous studies have also shown that US economic policy
uncertainty can significantly explain the returns of China’s A-share market [3]. Researchers
not only pay attention to how economic variables and policies in the US market affect
the Chinese market but also directly discuss the relationship between the returns of the
two markets. These studies focus on the impact of special events on the relationship
between markets, such as the 2007–2009 crisis [4–10], the Eurozone crisis [11], and the
COVID-19 pandemic [12–14]. Empirical analysis shows that the financial crisis has had a
significant impact on the BRICS and emerging markets, such as leading to significant risk
spillover effects and risk contagion [5–7]. In particular, the Chinese market was significantly
affected by the US market during the crisis [4–6,8,10,11]. These studies used many types of
quantitative tools, such as multivariate GARCH models [4,6,10], Granger causality test [5],
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latent factor models [9], correlation contagion tests [8], etc. In particular, recently, the
COVID-19 pandemic has significantly impacted the Chinese market and the US market [12].
For example, research reveals that China’s stock market and the US stock market have
significant spillover effects during the pandemic [13]. In addition, the pandemic has also
impacted the correlation structure between market indexes [14].

Existing studies have revealed that there are extensive links between markets, and the
Chinese market is significantly affected by the US market, especially under the impact of
major events. However, previous studies have not fully analyzed the long-term relationship
between the two markets. For example, most studies only analyze the static relationship
in a specified period but do not focus on dynamics. This study analyzes the long-term
relationship between the two markets from the perspective of nonlinear information flow
dynamics. We use transfer entropy (TE) to quantitatively characterize nonlinear relation-
ships [15], and analyze the dynamics in detail by surrogate time series [16]. Surrogates is
an effective technique for analyzing nonlinear time series, which generates simulated time
series by keeping some characteristics of the original time series [17–19].

At present, transfer entropy has expanded into a “toolbox” that includes multiple tools.
For example, Marschinski et al. introduced effective transfer entropy by shuffling the source
time series, where the shuffling process is used to destroy the correlation [20]. Further,
the group transfer entropy and the effective group transfer entropy can be constructed
by considering multiple time series [21]. Jizba et al. constructed the Rényian transfer
entropies by extending Shannon entropy to Rényi entropy [22]. Papana et al. extended the
transfer entropy method to analyze non-stationary time series [23]. Recently, Nie proposed
a method to detect local information flow [16]. This method obtains the baseline TE value
from local surrogates so that it is possible to observe the contribution of observations within
a small computational window to the original TE value. An advantage of this method is
that changes in the intensity of the information flow can be clearly observed, so that we can
identify the impact of events on the information flow [16].

Since transfer entropy is a non-parametric method that effectively extracts the causal
relationship between variables, it is suitable for analyzing high-complexity financial time
series. For example, methods based on transfer entropy have been widely used to analyze
financial time series, such as the relationship between stock markets [24–28], the price—
volume relationship [16,29–31], and the foreign exchange market [32]. In particular, early
empirical research shows that the US market is a core source of information for global
financial markets [28]. Kim et al. considered 10 important indexes and found that the
structure of the information transfer network was affected by the crisis [33].

This study focuses on analyzing the evolutionary characteristics of the information
flow between China’s A-share market and the US market. We use nonlinear analysis
methods to characterize the complex information flow dynamics between the two markets
and, in particular, identify periods of high information flow intensity by TE and LRP. This
study reveals the details of information transfer between markets based on long-term data
and from multiple time scales. In the following, we first describe the data set and analyze
basic descriptive statistics. Secondly, we review the concept and calculation method of
transfer entropy, and the steps of LRP-based analysis. Third, we use weekly data and
daily data to analyze the information flow between the two markets. Finally, we analyze
the information flow between the S&P500 index and the industry indices of the Chinese
A-share market.

2. Data

This paper uses three datasets, which include closing indices for two market composite
indices and some industry indices. The composite index data includes daily and weekly
closing data of S&P500 and CSI300 indices, as well as weekly closing data of some industry
indices in the Chinese A-share market. All data are extracted from the iFinD database of
Tonghuashun company. For the original closing index time series P = {P(t)}, we calculate
the series R = {R(t)}, where R(t) = log(P(t + 1))− log(P(t)).
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For weekly data, we use Rus and Rcn to represent the return series of the S&P500 index
and the CSI300 Index, respectively. We considered the data from 31 December 2004 to
17 June 2022, a total of 890 observations, so that each preprocessed series includes 889 obser-
vations. Table 1 lists some descriptive statistics of the two series. In addition, the Pearson
correlation coefficient of the two-time series is 0.2118, which implies a weak correlation.

Table 1. Descriptive statistics of preprocessed time series.

Series Average Std Skewness Kurtosis

Rus 0.0012 0.0261 −2.0557 23.1000
Rcn 0.0016 0.0359 −0.2955 2.2400
R1

us −1.2752× 10−4 0.0179 −0.4871 9.0371
R1

cn 4.3938× 10−4 0.0242 −0.5126 2.0974
R2

us 3.9919× 10−4 0.0077 −0.2361 4.2776
R2

cn 5.8243× 10−4 0.0161 −0.9794 6.7738
R3

us 6.0558× 10−4 0.0138 −1.0405 17.2147
R3

cn 2.0142× 10−4 0.0134 −0.3052 3.6399
R1

ind 0.0007 0.0437 −0.2044 2.0224
R2

ind 0.0016 0.0460 −0.3658 2.0825
R3

ind 0.0007 0.0391 −0.3157 1.7477

In addition to the weekly data, we also analyzed the daily data of the two indexes. To
clearly analyze the impact of major events, we divide the daily data into three periods. For
the preprocessed index data, we use R1

cn and R1
us to represent the data of the first period and

use similar symbols for other periods. The time intervals corresponding to the three data
sets are 4 January 2007–31 December 2010, 2 January 2014–29 December 2017, and 2 January
2018–31 December 2021 respectively. Since the trading days of the two markets are not
synchronized, we remove the missing values in the two series, leaving observations with
the same time stamp. The time series of the three periods without missing values include
944, 948, and 942 observations, respectively. Table 1 lists the basic descriptive statistics of
each return series. Here, we always use the rounding method to keep four decimal places.

We can find from Table 1 that all the averages are close to zero. In three of the four
pairs of time series, the standard deviation of the series in the Chinese market is greater
than that in the US market. In addition, all skewness values are less than zero, and in
particular, all excess kurtosis values are greater than zero. Here, we report the excess
kurtosis obtained by subtracting 3 from the original kurtosis value. The kurtosis values
imply that all distributions have peak characteristics and are not normal.

In addition to the market composite index, we used 31 industry indices compiled by
SWS Research Co., Ltd. Here, we used three of them for dynamic analysis. Table 1 lists
the descriptive statistics of the return series for the three indices. The symbols R1

ind, R2
ind

and R3
ind correspond to the industry index codes, 801040.SL (Steel industry), 801180.SL

(Real estate) and 801960.SL (Petrochemical industry), respectively. It can be found that
the average of R2

ind is significantly larger than the other two indices, while the difference
between the standard deviations is small. In particular, all skewness values are less than 0,
and kurtosis values are greater than 0.

3. Method
3.1. Transfer Entropy

We consider two random variables I and J, the marginal probability distribution is
pI(·) is pJ(·), and the joint distribution is pI,J(·). We assume that the underlying dynamic
structure conforms to a stationary Markov process, where I and J correspond to orders
k and l, respectively. For I, the conditional distribution of state at time t + 1 (it+1) is
independent of state in t− k (it−k), that is, pI(it+1|it, · · · , in−k+1) = pI(it+1|it, · · · , in−k).
Similarly, for J, pJ(jt+1|jt, · · · , jn−k+1) = pJ(jt+1|jt, · · · , jn−k), where jt represents the state
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at time t. The transfer entropy of J → I is defined as Equation (1) [15], where the symbols
ik
t = (it, · · · , in−k+1) and jk

t = (jt, · · · , jn−k+1). In this article, we set l = k = 1.

TEJ→I = ∑ p(it+1, ik
t , jl

t)log
p(it+1|ik

t , jlt)
p(it+1|ik

t )
(1)

3.2. The Method Used to Estimate the Transfer Entropy

For a time series, we can encode it into a time series including states and then estimate
the transfer entropy. Here, we use a method proposed in previous studies to encode the
time series [25,26,34], which encodes the original time series through a group of quantiles.
One of the advantages of this method is that a large weight can be assigned to the tail
of the distribution, thereby focusing on the influence of extreme values in the financial
market [25,26]. In addition, we use the R package RTransferEntropy developed by Behrendt
et al. [34].

If the time series s = {s(t)} is coded into n states, n− 1 quantiles Q = {q1, q2, · · · , qn−1}
are required, as shown in Equation (2). For example, if the observation s(t) is between the
quantiles q2 and q3 of the distribution, then s

′
(t) = 2. The converted time series s

′
= {s′(t)}

includes n states, and can be used for conditional distribution and joint distribution.

s
′
(t) =


1 s(t) ≤ q1
2 s(t) ∈ (q2, q3)
· · ·

n− 1 s(t) ∈ (qn−2, qn−1)
n s(t) ≥ qn−1

(2)

In order to comprehensively analyze the significance of information flow at different
quantile parameters, we set the following five sets of parameters: Q1 = {q(0.05), q(0.5),
q(0.95)}, Q2 = {q(0.10), q(0.5), q(0.90)}, Q3 = {q(0.15), q(0.5), q(0.85)}, Q4 = {q(0.20),
q(0.5), q(0.80)} and Q5 = {q(0.25) , q(0.5), q(0.75)}, where the symbol q(α) represents
α-quantile. From the first to the fifth set of parameters, the weight of the extreme values of
the tail decreases. In the first group, extreme values are given the greatest weight, and the
distribution in the fifth group is equally divided into four parts.

Here, we use the method proposed by Dimpfl et al. to test the significance of TE [25,34].
The method first estimates the dynamics between two variables through the Markov process.
Secondly, based on the Markov process, a pair of simulated time series whose dependence
has been eliminated can be generated, and the TE value can be estimated. Third, we
repeatedly generate the simulated time series Nboot times to obtain a TE value distribution
for comparison. Finally, the p-value is generated by comparing the original TE value with
the quantile of the baseline distribution. In this article, we always set Nboot = 1000.

3.3. LRP-Based Analysis

The local random permutation (LRP) method uses RP surrogates locally to estimate
the intensity of the information flow within a period [16]. Previous studies have confirmed
that this method can effectively describe changes in information flow through toy mod-
els [16]. In particular, to maintain the correlation between series, LRP provides surrogates
that keep the Pearson correlation unchanged.

We consider the information flow s1 → s2 between the series s1 = {s1(t)} and
s2 = {s2(t)}, where each series includes N observations. We assume that the length of
the calculation window for constructing local RP surrogates is Lw, and the TEs1→s2 value
is significant.

1 We extract the observations in the time interval [1, Lw] to obtain the sub-time se-

ries s[1,Lw ]
1 = {s1(1), · · · , s1(Lw)} and s[1,Lw ]

2 = {s2(1), · · · , s2(Lw)}, and shuffle the

observations of the sub-sequences s[1,Lw ]
1 and s[1,Lw ]

2 . In the scrambling step, the cor-
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respondence between the timestamps of the two series does not change, that is, the
series {(s1(k), s2(k))} composed of pairs is scrambled.

2 We calculate the transfer entropy value between the time series obtained by local

scrambling in step 1, and denoted it as TE[1,Lw ]
s1→s2(1).

3 We repeat steps 1 and 2 a total of M times to obtain a distribution of TE values used

as a benchmark (TE1
ben = {TE[1,Lw ]

s1→s2(k)|k = 1, 2, · · · , M}).
4 We calculate the Z-score Z[1,Lw ] =

TE−m[1,Lw ]

s[1,Lw ]
.

5 We move the calculation window one observation each time, and repeat steps 1–4

to get the distribution TEi
ben = {TE[i,Lw ]

s1→s2(k)|k = 1, 2, · · · , M} and the Z-score. For
example, the second Z-value is obtained by scrambling all observations in the interval
[2, Lw + 1]. Finally, we get the Z-score sequence {Z[i,i+Lw−1]|i = 1, 2, · · · , N− Lw + 1}.
The estimation of the TE value requires setting the parameter Qk, so the parameter

may affect the calculation result. Here, we use the following method to synthesize the
calculation results of different parameters. For a sequence of Z-scores ({zk(t)}) gener-
ated by a parameter Qk, we construct a 0–1 sequence using Equation (3), where Zth is
the threshold. We set the threshold Zth = 1.645 here. In this way, we obtain a series
Ik = {Ik(t)|t = 1, 2, · · · , N − Lw + 1} based on Z-scores, in which observations only take
values in {0, 1}. If TEi

ben is a normal distribution, then the original TE value is greater than
most of the values (95%) in TEi

ben, which implies that there is a significant information flow
in the period [i, i + Lw − 1]. In this article, we always set M = 1000. Then, we calculate the
series I = {I(t)} (I(t) = ∑k Ik(t)).

Ik(t) =
{

1, zk(t) ≥ zth
0, zk(t) < zth

(3)

Since each Z-score corresponds to an interval, in this article, we use the following
convention to plot the figure: the right end of the interval corresponding to the value is
used as the time stamp in the figure. For example, for the value Z[1,Lw ], the time label in the
figure is the timestamp corresponding to Lw. Similarly, we plot the time series {I(t)}.

4. Results
4.1. Information Flow Analysis Based on Weekly Data
4.1.1. TE Values of Different Parameters

We use a group of parameters Qk (k = 1, · · · , 5) to calculate the information flow
between Rus and Rcn. Table 2 shows the calculated results, all TEus→cn values are significant
at the significance level α = 0.05, and three of the p-values are less than 0.01. In addition, all
TEcn→us values are not significant. Table 2 suggests that there is an asymmetric information
flow between the Chinese market and the US market, and the US market is a dominant
information source.

Table 2. Information flow analysis of long-term weekly data.

Qk TEcn→us pcn→us TEus→cn pus→cn

Q1 0.040537 0.054 0.048419 0.006
Q2 0.0352622 0.261 0.0519378 0.005
Q3 0.0381743 0.141 0.0449418 0.039
Q4 0.0357750 0.183 0.0492554 0.008
Q5 0.047230 0.014 0.044303 0.031

The minimum p-value of 0.005 corresponds to the parameter Q2, which means that
significant information flow can be detected when a large weight is assigned to extreme
values. In addition, the p-value corresponding to the equally divided quantile interval is
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also less than 0.05. This means that significant us→ cn information flow can be detected
regardless of whether a greater weight is given to the extreme values.

In summary, there is sufficient evidence to support the existence of information flow
us → cn. The change of the p-value with the change of the parameter implies that the
analysis of the information flow depends on the choice of the parameter, and thus the
calculation results of multiple parameters need to be integrated.

4.1.2. Information Flow Dynamics for Weekly Data

In the previous section, we analyzed the information flow between the two markets
globally. However, the static analysis only shows the existence of information flow in the
considered period, thus lacking local dynamic analysis. Below, we use LRP to analyze
the dynamics of information flow, in particular, to detect periods with localized strong
information flow.

We set five sets of parameters Qk (k = 1, · · · , 5) and Lw = 96, where the calculation
window corresponds to two years of trading weeks. The five subfigures of Figure 1 show
the Z-score time series. We observe that all subfigures include local peaks larger than 1.645,
implying non-trivial information flow dynamics between series. These peaks correspond to
periods of localized strong information flow. For example, for Figure 1a, it can be seen that
the Z-score increased rapidly in 2008 and dropped significantly thereafter. Furthermore,
we can also observe that the number of peaks in all Z-score series is greater than 1. For
example, three localized peaks can be observed in Figure 1b, implying the existence of three
periods of strong information flow.

The numbers of local peaks for the five Z-score series are 2, 3, 2, 3, and 3, respectively.
Table 3 lists the periods corresponding to these peaks. We use T1, T2, and T3 to represent
the time intervals in three periods, where each period corresponds to two endpoints. For
example, the starting time corresponding to T1 (Q1) is 8 June 2007, and the closing time is
24 April 2009. The first line indicates that there is a significant flow of information in the
period 8 June 2007–24 April 2009. We list the Z-score at the corresponding time interval in
the fourth column. The maximum value corresponds to the T1 period, while the minimum
value corresponds to the T2 period.

Table 3. Three significant periods of the information flow of parameter.

Q Ti t Z Period

Q1 T1 24 April 2009 4.0550 8 June 2007–24 April 2009
Q1 T2 17 November 2017 2.2084 1 January 2016–17 November 2017
Q2 T1 9 January 2009 3.0700 2 March 2007–19 January 2009
Q2 T2 15 May 2015 2.5980 19 July 2013–15 May 2015
Q2 T3 12 October 2018 2.4534 2 December 2016–12 October 2018
Q3 T1 8 May 2009 2.9067 22 June 2007–8 May 2009
Q3 T2 17 April 2015 2.9681 21 June 2013–17 April 2015
Q4 T1 2 January 2009 3.6279 16 February 2007–2 January 2009
Q4 T2 8 November 2013 1.8349 23 December 2011–8 November 2013
Q4 T3 28 February 2020 3.2564 13 April 2018–28 February 2020
Q5 T1 9 April 2010 3.0202 23 May 2008–9 April 2010
Q5 T2 21 November 2014 1.8017 18 March 2013–21 November 2014
Q5 T3 13 March 2020 2.0941 27 April 2018–13 March 2020

We find that most of the local peaks correspond to periods that are close to each
other, such as the T1 period of parameter Q1 and the T1 period of Q2 are 8 June 2007–
24 April 2009 and 2 March 2007–19 January 2009 respectively. Table 3 shows that the
2008 crisis significantly affected the information flow of us→ cn. In addition, the periods
corresponding to several local peaks also include major events. For example, the third
peak of Q5 includes the oil crisis and the collapse of the US stock market. In summary, the
LRP-based method identifies some local peaks, indicating that the dynamics of information
flow are non-trivial.



Entropy 2022, 24, 1102 7 of 16

Dec 15 2006 Jan 07 2011 Jan 02 2015 Jan 04 2019 Jun 17 2022

Time series of Z−scores 2006−12−15 / 2022−06−17

−1

 0

 1

 2

 3

 4

−1

 0

 1

 2

 3

 4

(a)

Dec 15 2006 Jan 07 2011 Jan 02 2015 Jan 04 2019 Jun 17 2022

Time series of Z−scores 2006−12−15 / 2022−06−17

−1

 0

 1

 2

 3

−1

 0

 1

 2

 3

(b)

Dec 15 2006 Jan 07 2011 Jan 02 2015 Jan 04 2019 Jun 17 2022

Time series of Z−scores 2006−12−15 / 2022−06−17

−1

 0

 1

 2

 3

−1

 0

 1

 2

 3

(c)

Dec 15 2006 Jan 07 2011 Jan 02 2015 Jan 04 2019 Jun 17 2022

Time series of Z−scores 2006−12−15 / 2022−06−17

−1

 0

 1

 2

 3

−1

 0

 1

 2

 3

(d)

Dec 15 2006 Jan 07 2011 Jan 02 2015 Jan 04 2019 Jun 17 2022

Time series of Z−scores 2006−12−15 / 2022−06−17

0

1

2

3

0

1

2

3

(e)

Figure 1. The figure shows the Z-scores for different parameters Q, where (a–e) correspond to
Q1–Q5, respectively.

4.1.3. Comprehensive Analysis of Z-Score Series

We roughly identified three important periods by Z-scores in the previous subsection.
Below, we calculate the I series from the Ik series of five Z-score series. The series I takes the
value in the set {0, 1, 2, 3, 4, 5}. If Ik(t) = 0, the observations in the time period [t− Lw + 1, t]
do not significantly affect the analysis results of the information flow. On the contrary, if
I(t) = 5, it implies that the information flow within the period [t− Lw + 1, t] is significant
and does not depend on the choice of parameters. A large I(t) value implies that there is
information flow in multiple quantile intervals {Qk|k = 1, · · · , 5.}.

Figure 2 shows the I series. There are three periods where most observations are
greater than or equal to 1. In particular, the analysis shows that there is a period where
most observations are greater than or equal to 3, that is, 8 February 2008–24 September 2010.
During the 2008–2009 crisis in the US market, there was strong information flow us→ cn.
We use Ni to represent the number of observations equal to i in the I series, as shown in
Table 4. It can be found that if the calculation results of 5 parameters are integrated, nearly
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half of the observations are greater than or equal to 1. This implies that information flows
widely exist between the two markets during the period under consideration. Table 5 lists
the three periods identified by Figure 2. Each period includes some major events that affect
the market. The first period corresponds to the 2007–2009 crisis in the US market. The
second period includes the crisis in the Chinese stock market in 2015. In addition, before
the stock market crash in 2015, the bubble was generated in the second half of 2014. The
second period not only includes the breakage period of the bubble, but also the generation
period. The third period includes a series of major events, such as the circuit breaker in
the US market in March 2020, and the COVID-19 pandemic. Based on this table, we divide
three periods for the analysis of daily data in the next section: 2007–2010, 2014–2017, and
2008–2021.

Dec 15 2006 Jan 01 2010 Jan 04 2013 Jan 01 2016 Jan 04 2019 Jan 07 2022

I 2006−12−15 / 2022−06−17

1

2

3

4

1

2

3

4

Figure 2. The I time series obtained from five sets of parameters, and takes values in {0, 1, 2, 3, 4, 5}.
It includes three local peaks, and the maximum corresponds to the 2008 crisis.

Table 4. Statistics of I series.

Ni N1 N2 N3 N4 N5 Sum

Number 142 80 29 66 24 341

Table 5. Significant periods identified by Figure 2.

Ti Period

T1 8 February 2008–24 September 2010
T2 15 August 2014–20 November 2015
T3 13 April 2018–19 March 2021

4.2. Information Flow Analysis of Daily Data
4.2.1. Global Analysis of Daily Data

In this section, we analyze the relationship between the daily data of the two indices.
Table 6 lists the transfer entropy values TEus→cn of different parameters. For the first and
third periods, all TE values are significant at significance level α = 0.05. For the second
period, the TE values of parameters Q1 and Q2 were not significant. However, the p-value
for the TE value of Q4 was less than 0.01. This implies that extreme values have little
effect on information flow in the second period. In summary, we still found significant
information flows in the three periods of daily data. Below, we use LRP-based analysis to
discuss the dynamics of information flow in each period.
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Table 6. Analysis of TE value of daily data.

Period 2007–2010 2014–2017 2018–2021

Q1 0.0573 (<0.001) 0.0322 (0.262) 0.0587 (<0.001)
Q2 0.0490 (0.006) 0.0286 (0.529) 0.0630 (<0.001)
Q3 0.0510 (0.002) 0.0505 (0.002) 0.0545 (<0.001)
Q4 0.0601 (<0.001) 0.0489 (0.006) 0.0519 (<0.001)
Q5 0.0600 (<0.001) 0.0407 (0.041) 0.0577 (<0.001)

In the next subsection, for the first period and the second period, we choose the
parameter Q corresponding to the maximum TE value in Table 6. In the analysis of the
first and third periods, the parameter Q was set to Q4 and Q2, respectively. In addition, the
second period is a special period, in which both Q1 and Q2 correspond to insignificant TE
values, suggesting that extreme values in this period weakly affect the level of information
flow. For the second period, we set Q3 and Q4 for calculation.

4.2.2. Information Flow Dynamics for 2007–2010 Data

Figure 3 shows the Z-score series for the 2007–2010 data. If the threshold is 1.645,
the series includes three significant periods: 26 November 2007 (28 June 2007)–25 June
2009, 28 October 2009 (1 June 2009)–8 January 2010, and 24 May 2010 (21 December 2009)–
19 October 2010. Here, the date in parentheses is the left endpoint of the calculation window
for the first Z-score greater than 1.645 within the period. In particular, the maximum value
(3.9880) is in the first period and the calculation window is 3 November 2008–7 April 2009.

Jun 12 2007 Jun 02 2008 Jun 01 2009 Jun 01 2010

Time series of Z−scores 2007−06−12 / 2010−12−31

−1

 0

 1

 2

 3

−1

 0

 1

 2

 3

Figure 3. The figure shows the Z-score time series between R1
us and R1

cn, where Lw = 100.

The calculation results clearly show that the 2007–2009 crisis in the US market sig-
nificantly affected the Chinese market. In addition, we also observe that the us → cn
information flow also exists in the post-crisis period. These results imply not one peak with
strong information flow, but multiple peaks with different intensities.
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4.2.3. Information Flow Dynamics for 2014–2017 Data

Figure 4 shows the information flow dynamics for the 2014–2017 data. Figure 4a
includes a major significant period: 6 January 2016 (6 August 2015)–10 May 2016. The
results show that the information flow in the us → cn direction is enhanced after the
Chinese market bubble burst. Figure 4b shows the calculation results corresponding to
Q4. We found that it also includes a major significant period: 30 December 2016 (1 August
2016)–1 March 2017. The period included an important event that affected US markets: the
2016 presidential election. A previous study showed that the event significantly affected
correlation dynamics in the US stock market [35]. The analysis here suggests that there was
a significant information flow from the US stock market to the Chinese stock market around
this event. The two results in Figure 4 show that from 2 January 2014 to 29 December 2017,
the US market significantly influenced the Chinese market in two periods, and both periods
included major events.

Jun 10 2014 Jun 01 2015 Jun 01 2016 Jun 01 2017

Time series of Z−scores 2014−06−10 / 2017−12−29

−1

 0

 1

 2

−1

 0

 1

 2

(a)

Jun 10 2014 Jun 01 2015 Jun 01 2016 Jun 01 2017

Time series of Z−scores 2014−06−10 / 2017−12−29

−1

 0

 1

 2

−1

 0

 1

 2

(b)

Figure 4. The figure shows the Z-score time series between R2
us and R2

cn, where (a,b) correspond to
parameters Q3 and Q4, respectively.

4.2.4. Information Flow Dynamics for 2018–2021 Data

Figure 5 shows the calculation results for the 2018–2021 data. The period includes
several sub-periods greater than the critical Z-score, suggesting that from 2 January 2018 to
31 December 2021, the flow of information between the two markets was active and strong.
These sub-periods are as follows: 7 June 2018 (3 January 2018)–31 July 2018 (T1), 22 February
2019 (12 September 2018)–15 May 2019 (T2), 19 June 2019 (11 January 2019)–30 July 2019
(T3), 27 August 2019 (29 March 2019)–5 February 2020 (T4), 27 February 2020 (19 September
2019)–29 July 2020 (T5), 3 March 2021 (24 September 2020)–2 August 2021 (T6). We label
the different subperiods with Ti. It can be found that T2, T3, T4 and T5 can be combined
into an important period. There were several major events in this period: Sino-US trade
friction, the oil crisis, the COVID-19 pandemic, the US stock market crisis in March 2020.
In addition, periods T1 and T6 still belong to the period of Sino-US trade friction and the
period of the COVID-19 pandemic, respectively. In particular, the calculation window
corresponding to the maximum value (3.4339) is 21 October 2019–23 March 2020. Several
major events are included in this period, such as the oil crisis, the COVID-19 pandemic,
and the March 2020 market crisis. To sum up, it is reasonable to speculate that the impact
of multiple major events led to the active information flow during the period.
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Jun 07 2018 Jun 03 2019 Jun 01 2020 Jun 01 2021

Time series of Z−scores 2018−06−07 / 2021−12−31

0

1

2

3

0

1

2

3

Figure 5. The figure shows the Z-score series for R3
us and R3

cn, which includes two main peaks
(Q = Q2, Lw = 100).

4.3. Information Flow between Industry Indices in the Chinese Market and the S&P500 Index
4.3.1. Global Information Flow Analysis between Industry and Market Index

Since the composite index includes stocks belonging to various industries, in this
section, we analyze the relationship between the S&P500 index and the industry index in
the Chinese market. Here, we consider the case where a larger weight is given to the tail of
the distribution, i.e., Q = Q1. Table 7 lists the TE values and p-values, where the symbol
“ind” represents the industry index, and the code is listed in the second column.

The fourth and sixth columns show that there are several industry indices that are
closely related to the S&P500 index. For example, there is a significant bidirectional flow of
information between the petrochemical industry and the S&P500 index. In addition, some
unidirectional effects can also be found, such as in real estate. It should be noted that not
all industry indices are affected by the S&P500 index, such as the public utilities index and
the architectural ornament index. To sum up, Table 7 shows that the information flow from
S&P500 to Chinese market industry indices is heterogeneous.

Table 7. TE values of industry indices and S&P500 index.

Industry Code TEind→us pind→us TEus→ind pus→ind

AFAF 801010.SL 0.0341 0.254 0.0444 0.011
Basic chemicals 801030.SL 0.0448 0.012 0.0394 0.061
Steel industry 801040.SL 0.0350 0.093 0.0686 0.000

Nonferrous metals 801050.SL 0.0353 0.125 0.0475 0.005
Electronics 801080.SL 0.0325 0.334 0.0413 0.034

Household Electric Appliance 801110.SL 0.0280 0.551 0.0622 0.000
Food and beverage 801120.SL 0.0293 0.491 0.0443 0.012

Textile, clothing. 801130.SL 0.0415 0.055 0.0483 0.004
Light manufacturing 801140.SL 0.0378 0.102 0.0504 0.000

Bio-pharmaceutical industry 801150.SL 0.0294 0.499 0.0418 0.036
Public utilities 801160.SL 0.0431 0.022 0.0359 0.121

Transportation industry 801170.SL 0.0338 0.257 0.0519 0.001
Real estate 801180.SL 0.0304 0.427 0.0469 0.008

Retail business 801200.SL 0.0388 0.079 0.0358 0.154
Social services 801210.SL 0.0407 0.040 0.0428 0.028

Comprehensive company 801230.SL 0.0296 0.482 0.0476 0.007
Building material 801710.SL 0.0347 0.213 0.0468 0.009
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Table 7. Cont.

Industry Code TEind→us pind→us TEus→ind pus→ind

Architectural ornament 801720.SL 0.0393 0.072 0.0302 0.379
Power equipment 801730.SL 0.0279 0.559 0.0347 0.160

National defense industry 801740.SL 0.0342 0.239 0.0314 0.351
Computer industry 801750.SL 0.0253 0.719 0.0383 0.096

Media industry 801760.SL 0.0309 0.334 0.0484 0.006
Communication industry 801770.SL 0.0423 0.047 0.0414 0.031

Banking 801780.SL 0.0457 0.021 0.0333 0.220
Non-bank Financial Institutions 801790.SL 0.0251 0.775 0.0372 0.087

Automobile industry 801880.SL 0.0270 0.591 0.0508 0.004
Mechanical equipment 801890.SL 0.0443 0.021 0.0447 0.017

Coal industry 801950.SL 0.0418 0.031 0.0424 0.016
Petrochemical industry 801960.SL 0.0510 0.001 0.0469 0.004

Environmental protection 801970.SL 0.0282 0.595 0.0475 0.006
Beauty care 801980.SL 0.0337 0.258 0.0436 0.017

AFAF : agriculture, forestry, animal husbandry, and fishery.

4.3.2. The Dynamics of Information Flow between Industry Index and S&P500 Index

In the previous section, we found diversity in the relationship between the S&P500
index and industry indices, with some industry indices having a stronger flow of infor-
mation between them and the S&P500 index. A related issue is whether the dynamics of
information flow for different industry indices have similar patterns. Here, we select three
industry indices and compare information flow dynamics. The three indices are 801040.SL
(Steel industry), 801180.SL (Real estate) and 801960.SL (Petrochemical industry), and all
have significant us→ ind information flow.

We analyze dynamics using weekly data and always set Q = Q1 and Lw = 96 weeks.
Figure 6 shows the dynamics of information flow for us→ 801040.SL. The Z-score series
includes 794 values, and 396 values are greater than the critical threshold, implying that
there is a continuous flow of information us→ 801040.SL during the period. In addition,
it includes several local peaks, and the corresponding periods of the two main peaks are
18 April 2008 (2 June 2006)–15 April 2011 and 24 October 2014 (21 December 2012)–30 June
2017, respectively.

Dec 15 2006 Jan 01 2010 Jan 04 2013 Jan 01 2016 Jan 04 2019 Jan 07 2022

Time series of Z−scores (801040.SL) 2006−12−15 / 2022−06−17

−1

 0

 1

 2

 3

 4

−1

 0

 1

 2

 3

 4

Figure 6. The figure shows the Z-score time series for the industry index 801040.SL (Steel industry)
and the S&P500 index, including two clear local peaks.

Figure 7 presents the Z-score series for the S&P500 Index→ Real estate Index. For
this Z-score series, there are only 124 values greater than the critical threshold. It shows
a different pattern from Figure 6, such as observations in the period 4 September 2020
(26 October 2018)–16 July 2021 contribute significantly to the information flow. In addition,
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another major peak corresponds to the period 25 December 2009 (15 February 2008)–24
June 2011.

Dec 15 2006 Jan 01 2010 Jan 04 2013 Jan 01 2016 Jan 04 2019 Jan 07 2022

Time series of Z−scores (801180.SL) 2006−12−15 / 2022−06−17

−1

 0

 1

 2

−1

 0

 1

 2

Figure 7. The figure shows the Z-score time series for the industry index 801180.SL (Real estate) and
the S&P500 index, with only a few Z-score values above the critical threshold.

The information flow analysis result of us→ 801960.SL is shown in Figure 8. We find
that it included a period with most values greater than the critical threshold: 10 October
2014–9 June 2017. This period is close to that of the second peak in Figure 6. However, for
the series shown in Figure 8, it includes some values less than the critical threshold.

Dec 15 2006 Jan 01 2010 Jan 04 2013 Jan 01 2016 Jan 04 2019 Jan 07 2022

Time series of Z−scores (801960.SL) 2006−12−15 / 2022−06−17

−1

 0

 1

 2

−1

 0

 1

 2

Figure 8. The figure shows the Z-score time series of the industry index 801960.SL (Petrochemical
industry) and S&P500 index, and most of the Z-score values greater than the critical threshold are in
the period 2014–2017.

The results in Figures 6–8 show that the information flow dynamics of us→ ind exhibit
multiple patterns, thus indicating a high complexity of information flow between markets.

5. Discussion

This study examines periods of strong information flow between two important
markets, where these periods are accompanied by major events. This implies that long-term
major events may affect market relations more deeply. This provides a forward-looking
analysis for analyzing the relationship between the two markets. In particular, we can
analyze the dynamics of information flow in detail to identify changes in the relationship
between markets when markets are impacted by major events. A related topic that can be
studied is whether non-linear information flow helps predict future returns in the market.
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Several previous studies have revealed that major events affect the relationship be-
tween markets [4–14]. Unlike previous studies, we analyze long-term data and focus on the
dynamics of information flow. In particular, LRP-based analysis characterizes the strength
of the local information flow, so that the time-varying characteristics of the information
flow in a period can be observed in detail.

6. Conclusions

We discussed the long-term relationship between the Chinese market and the US
market and found that there is an asymmetric information flow, where the US market is
the source of information flow. Calculations show that the information flow between the
Chinese market and the US market is not stable, but there are some significant periods.
The LRP-based analysis identified three periods of significant information flow. All three
periods include some major events affecting the market, such as the 2008 crisis, the oil
crisis, and the COVID-19 pandemic, thus suggesting that the dynamics of information flow
may be impacted by major events. In addition, we conducted a detailed dynamic analysis
with daily data. Calculations show that each period includes nontrivial dynamics, some of
which appear as local peaks, suggesting dramatic changes in information flow.

We also analyzed the information flow between the S&P500 index and some industry
indices in the Chinese A-share market. Calculations show that the S&P500 index does not
always significantly affect each industry index. Some industries are significantly affected,
such as the steel industry and real estate. However, analysis based on weekly data shows
that the dynamics of information flow between the industry indices and the S&P500
index exhibits multiple patterns. In addition, there are also some significant information
flows from the Chinese market to the US market, thus demonstrating the heterogeneity of
information flow.

This study demonstrates the high complexity of nonlinear causal relationships between
two important markets and facilitates quantitative studies of the impact of major events.
In particular, empirical analysis suggests that the heterogeneity of information flow in
industry indices needs to be taken into account when discussing risk spillovers between
markets. In this article, we only consider the information flow between the two markets.
A related and important topic is the study of how major events affect information flow
networks that include multiple markets. Since LRP-based methods involve two variables,
for the information flow network, we need to construct a method that includes multiple
variables. An alternative approach is to characterize changes in network structure by
shuffling observations. In addition, the relationship between industry indices within a
market can be analyzed in detail through LRP-based methods and high-frequency data.
For example, for a trading day, we can analyze how important announcements impact the
information flow network constructed by multiple industry indices.
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