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Abstract: A self-organization hydrodynamic process has recently been proposed to partially explain
the formation of femtosecond laser-induced nanopatterns on Nickel, which have important appli-
cations in optics, microbiology, medicine, etc. Exploring laser pattern space is difficult, however,
which simultaneously (i) motivates using machine learning (ML) to search for novel patterns and
(ii) hinders it, because of the few data available from costly and time-consuming experiments. In this
paper, we use ML to predict novel patterns by integrating partial physical knowledge in the form of
the Swift-Hohenberg (SH) partial differential equation (PDE). To do so, we propose a framework to
learn with few data, in the absence of initial conditions, by benefiting from background knowledge in
the form of a PDE solver. We show that in the case of a self-organization process, a feature mapping
exists in which initial conditions can safely be ignored and patterns can be described in terms of PDE
parameters alone, which drastically simplifies the problem. In order to apply this framework, we
develop a second-order pseudospectral solver of the SH equation which offers a good compromise
between accuracy and speed. Our method allows us to predict new nanopatterns in good agree-
ment with experimental data. Moreover, we show that pattern features are related, which imposes
constraints on novel pattern design, and suggest an efficient procedure of acquiring experimental
data iteratively to improve the generalization of the learned model. It also allows us to identify
the limitations of the SH equation as a partial model and suggests an improvement to the physical
model itself.

Keywords: machine learning; PDE solving; neural networks; deep learning; physical knowledge
incorporation; self-organization process

1. Introduction

Self-organization is prevalent in Nature. It is responsible for the interesting patterns
and structures that we observe in systems outside equilibria, from the clouds of Jupiter
to how the leopard got his spots. Without self-organization, we would observe mostly
disordered states with no discernible structure [1].

Laser-irradiated surfaces are a chief example of a self-organizing system, as one ob-
serves coherent, aligned, chaotic, and complex patterns that emerge at the microscale and
the nanoscale [2]. These patterns are of great practical interest, with a number of potentially
groundbreaking optical, hydrophobic and microbiological applications suggested in the
literature [3–6]. Laser texturing can be used as a method to reduce bacterial coloniza-
tion of dental and orthopedic implants [7], as it can change surface wettability [8,9] and
morphology, the interplay of which affect antibacterial properties [10] of the surface.

Laser-induced periodic structures on stainless steel surfaces were also shown to act
as a surface grating that diffracts light efficiently [11–13]. Since the orientation of the
induced structures depends strongly on laser parameters, and it is possible to have multiple
orientation structures with spatial overlap, surfaces can be decorated in such a way that
different colors and patterns appear when white light is irradiated on the surface from
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different directions or even selectively displayed using structural color, with applications
to encryption and anti-counterfeiting.

Crucially, laser texturing is reliably reproducible, meaning that these groundbreaking
applications have the potential to be turned into industrial processes. In this respect, laser
texturing has significant advantages over other surface functionalization methods such as
electrochemical etching [14], for example, laser-induced structures can be generated in a
simple, single-step process [5] that is reliable, reproducible and scalable, applicable to a
great variety of materials [15], and large surfaces [16].

Put simply, under controlled experimental conditions, observed patterns are a function
of the laser parameters. This functional dependence is complex, with abrupt boundaries
between pattern types for continuous variation of laser properties [17]. Pattern features of
interest, such as rotational invariance, characteristic length, and feature height, for example,
also show interesting dependence on laser parameters [2,17,18] and novel structures that
can be reproduced reliably have recently been observed [18,19].

The variety of patterns and their potentially groundbreaking applications, combined
with the controllability and reproducibility of laser-induced structure formation, motivate
an exhaustive search of laser parameter space. This search is unfortunately impractical, as
each experimental manipulation is costly and time-consuming. Having a model to guide
the initialization of laser parameters would thus be of great interest.

A first solution to guide laser parameter selection would be to have a physical model
explicitly relating pattern characteristics and laser parameters. Such a model is however
not available. While a physical process has recently been proposed to explain the hexagonal
patterns observed in experiments [17], the full picture is complex and strict conditions are
required for the process to occur upon ultrashort laser irradiation [2]. The photoexcited
material evolves in a non-deterministic way due to stochastic surface roughness that may
trigger local nonlinear optical response and collective thermomechanical response. In
that far from equilibrium conditions, a deterministic approach is able to explain specific
nanostructuring regimes [19] but fails to predict the coexistence and the transition between
several nanopatterns.

In the absence of an explicit physical model, a second solution to guide laser parameter
selection is to use machine learning, which can produce data-driven models with remark-
able results. The quality of these results, however, depends on the quantity of training data
available. More precisely, drawing from the language of statistical learning theory [20],
let h be some hypothesis (a model) chosen from some class of hypotheses H of a given
complexity C (such as Vapnik-Chervonenkis dimension, Rademacher complexity, uniform
stability or algorithmic robustness to cite a few), which is chosen by using some algorithm
based on minimizing the expected loss (intuitively, expected error) on training data Xtrain
drawn from an unknown distribution D. Then ∆E, the expected difference in error that we
make by evaluating our model on unseen test data Xtest drawn from the same distribution
is bounded above by g, a function of the model complexity and the number of training
examples |Xtrain|. Crucially, it can be shown that g is an increasing function of model
complexity C and g→ 0 as |Xtrain| → ∞

∆E ≤ g(C, |Xtrain|), (1)

which means that to keep ∆E small with little data, we must keep the model complexity
small. In this sense, the complexity of the model is bounded by the quantity of data: with
little data, we can only learn simple models. This is precisely the case with laser-induced
pattern experimental data since the difficulty in data acquisition both motivates and hinders
the construction of a machine learning model. This situation is far from being exceptional,
as most “natural” scenarios are neither in the high data regime [21], nor in the high model,
little data regime [22].

There are a variety of methods and techniques to learn from data, in this case, namely
by integrating physical information to guide the ML model. This collection of techniques is
generally grouped under the “Physics-guided” or “Physics-informed” machine learning
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topic where, among other things, some approaches aim to integrate physical knowledge
in the form of a PDE to solve a certain task [23–27]. This paper falls into the scope of
this scenario. As a physical model of the convective process that is at the origin of the
observed physical structures, we use in this paper the Swift-Hohenberg partial differential
equation (PDE) on the plane [28], a simple and well-studied model of complex pattern
formation under Rayleigh-Bénard convection [1]. We leverage this PDE because, in spite
of it being a considerable simplification with respect to the actual process taking place
in laser irradiated surfaces, it is still compatible with the physical situation. Pattern-like
solutions of the Swift-Hohenberg (SH) equation are remarkably similar to the ones that
we can observe in the irradiated surfaces Scanning Electron Microscope (SEM) images, as
can be seen in Figure 1. In spite of its simplicity and longevity, the variety of pattern-like
solutions of the SH equation still makes it a topic of active research [29].

Stripes &  Bumps
genreal

HSFL & Humps
real gen

Hexagons
real gen

Stripes
real gen

Figure 1. Comparison between real SEM images (red) and SH-generated images (green). SH-
generated images are able to reproduce a variety of patterns (e.g., stripes, hexagons, bumps, HSFL,
humps) and scales. A couple of model simplifications can be observed in this comparison: first, since
the SH model is an isotropic model, global symmetries are only apparent (e.g., oriented stripes),
whereas SEM images retain some measure of global symmetry from laser polarization. Second, since
the SH model is a single scale model (in the sense that there is a single critical wavelength), it can
only match a single pattern, even for SEM images that contain a superposition of patterns (such as
e.g., 7th column, top image).

The main objective of this paper is to design new physics-guided ML techniques that
allow us to integrate partial physical information and learn with few data the relationship
between patterns and laser parameters given that the patterns were produced via a SH convective
instability. While the complexity of the resultant model is still bounded by the same quantity
of data, we expect it to be more faithful. To be precise, although the difference in error
∆E in (1) might be small, the minimum error that can be attained in H, which measures
the quality of our model, might still be quite large. But if integrating physical knowledge
Hmakes it more compatible with the physical situation (in this sense more faithful), the
minimum error will be smaller. As an extreme example, consider learning the sine function,
which has an infinite power series expansion (complex) and a one-term expansion in
Fourier series (simple).

In situations where similar patterns are observed, there is considerable information
contained in the parameters of the Swift Hohenberg equation, which determines the type
and general features of the pattern solutions for a range of initial conditions. In this sense,
for the purpose of predicting novel patterns, there is too much physical information in the
SH solutions, and a feature transformation F exists such that in the image of F, patterns can
be effectively described using model parameters alone (see Figure 2 for details).
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Figure 2. (top) The naive approach to learning the relationship between laser parameters θ ∈ R3 and
fields ∈ R224×224 (224 by 224 pixels SEM images) is to seek the minimizer h∗ of the loss L in the large
setH. With few observations, this is unfeasible. (middle) Physical knowledge can guide the search
by restricting it to mappings that are compatible with the SH model—the much smaller subset ofH
in blue. The learned mapping is now only between θ ∈ R3 and SH parameters ∈ R4. We still have to
minimize over initial conditions u0 ∈ I , to which we do not have experimental access. Again this is
unfeasible. (bottom) Since we are only interested in general pattern features, and the SH model is
based on a self-organization process, a feature mapping F exists such that in the image of F, patterns
can be described using model parameters alone. We safely ignore initial conditions (e.g., choosing
u∗0) and seek the minimizer over mappings that are compatible with SH patterns—the much smaller
subset ofH in blue. This is feasible with little data.

As we shall see in the sequel, this key insight informs our contribution which is five-
fold: (i) we present a Bayesian inference formulation for solving the dual inverse problem
of estimating state and model parameters in the case of self-organization, (ii) we design an
efficient solver of SH PDE allowing the generation of a large amount of SH (parameters-
patterns) pairs of data (iii) from this large dataset, we learn a differentiable-Neural Network
(NN) surrogate of the SH PDE, (iv) we leverage this pre-trained NN, on the one hand, and
the SH (parameters-patterns) pairs, on the other, to learn two alternative end-to-end models
from the laser parameters to the patterns obtained by laser irradiation; (v) we conduct
experiments showing a good agreement between the generated images and experimental
data for some parameter ranges, which can serve as a guide for laser initialization and
suggest improvements to the SH model.

The rest of this paper is organized as follows: in Section 2 we frame the problem of
learning novel laser patterns by integrating partial physical information in the form of a
PDE and discuss related work. In Section 3 we present a framework for solving the dual
inverse problem with few data by integrating partial physical information in the context of
systems with self-organization. In Section 4 we apply this framework to the specific case
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of learning novel laser-induced patterns on monocrystalline Nickel (Ni) at the nanoscale:
we begin by briefly presenting the SH equation as a partial model of the physical situation
in Section 4.1.1; we proceed by presenting a pseudo-spectral second-order solver of the
SH equation combining accuracy and speed in Section 4.1.2; we continue by discussing,
in Section 4.2, a particular feature mapping that we chose for our problem, which allows
considerable simplification, and that we validate via a quality measure based on expert
clustering results in Section 3.4.1; and finally, we present two alternative models to learn the
relationship between laser parameters and SH parameters, which will allow us to predict
novel patterns in Section 4.3. In the next Section 5 we present and discuss experimental
results; notably, we see that pattern features are correlated and that more than one SH
process may be at play. We conclude in Section 6 and discuss future research.

2. Related Work

Given a physical phenomenon modeled by a PDE, the problem of predicting the result
of measurements is known as the forward problem, while estimating unobserved states and
parameters that characterize the system—which is needed to solve the forward problem—is
called the inverse problem. The solution of the forward problem for deterministic PDEs is
generally unique, but that of the inverse problem is not. It is rather naturally expressed as a
probability distribution, which motivates a rigorous formulation of the inverse problem in
terms of Bayesian inference, with well-established methods going back to Laplace [30].

Incorporating prior knowledge and combining it with data is the key problem in
Bayesian estimation. Since priors and data are domain-specific, it should come as no
surprise that methods to tackle the inverse problem have been developed in parallel in
several domains where physical knowledge can be expressed in terms of a PDE and data
is abundant.

In geophysics and climate science, physical models are sophisticated and well-established
but there is only partial information about state: satellite data, for example, is given in
patches, but forecasting using the physical model requires knowledge of the full state;
solving this inverse problem in this domain is commonly done using a collection of methods
known as data assimilation [31].

In the physics community, on the other hand, one can often carefully prepare exper-
iments to set the initial state, and the main goal is now physical model development or
validation. When the initial state is known, the inverse problem of finding the distribution
of model parameters is thus the main focus. It is known as model calibration [32], and a
host of recent results exist using machine learning techniques, notably deep learning [33],
to learn the parameters of either the full model (which is typically carefully constrained
as to incorporate the right biases, and can thus be seen as already incorporating physical
knowledge) or a correction to incomplete physical knowledge [34] (an augmented model)
from data.

More specifically in photonics, the focus is on inverse design [35]—algorithmic tech-
niques for discovering optical structures based on desired functional characteristics —,
with neural networks being used to speed up optimization of nano-photonics structures,
by replacing the forward model with a much faster to evaluate neural network surro-
gate [36,37], for example. The task is reminiscent of our own. Unlike in our case, however,
the physical model is assumed to be complete, the system state can be prepared, and data
is abundant. Crucially, there is a specific functional characteristic to optimize for, whereas
we are interested in exploration rather than design.

In reality, there is always some uncertainty with respect to either model parameters or
system state. To solve the joint inverse problem of finding state and model parameters, sev-
eral approaches involving machine learning were recently proposed in the climate sciences.
The main idea is to alternate a data assimilation step to estimate state and a machine learn-
ing step to learn model parameters from data [38–41]. Because in the climate science case
the dynamics are generally well-known, the models that are jointly learned can be seen as
corrections to partial physical knowledge given as a governing PDE, and the goal is to learn
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them from data (although the correction itself also commonly incorporates physical knowl-
edge or symmetries in the form of constraints imposed during training [42–46] and/or in
the network architecture [38,47]).

In these terms our task of predicting new laser patterns can be framed as follows: we
have a complex system in which the laser-matter interaction takes place; Xt, the state of
this system at time t is unknown but for its noisy image through an observation operator
Yt = HXt + ε, which consists in the laser parameters and the SEM images of the material at
the zone of incidence of the laser spot after solidification (the solidification time is not fixed
and depends, among other things, on laser fluence). As in the climate science approaches
above, we have an explicit partial model for the transition from state Xt to Xt+1, the Swift-
Hohenberg equation with unknown parameters ϕ, which we can see as a first order model
of the physical phenomenon, and we have no access to the hidden state. Crucially, unlike
these approaches, we have a single observation for each evolution and several orders of
magnitude fewer evolution data. This makes the dual inverse problem of inferring initial
state and model parameters unfeasible, and the aforementioned methods inapplicable.

We shall overcome this difficulty by recasting the problem in such a way that for our
purposes, in the case of self-organization pattern forming dynamics, the state determination
inverse problem is unnecessary, in the sense that a feature transformation F exists such
that in the image of F, patterns can be effectively described via model parameters alone.
This feature transformation is shown to exist in Section 3.4.2 for the case of models with
pattern-like solutions (which is our case, as detailed below in Section 4.1.1). This turns the
high-dimensional ill-posed inverse problem into a much lower-dimensional problem of
learning the relationship between laser parameters and model parameters using data.

3. Integrating Partial Physical Information to Learn with Few Data and No Knowledge
of Initial Conditions

In this section, we derive a principled approach to the problem of learning a complex
relationship between an observable quantity θ and a physical field u, given only little
data, by taking advantage of partial contextual physical knowledge in the form of a
differential equation on u not explicitly depending on θ, in the absence of knowledge of
initial conditions. We strive for generality but we shall refer to the main subject of this
paper for examples and clarification.

This problem is fundamentally difficult in three interacting ways: first, the dearth
of experimental data makes learning a complex relationship directly, from data alone,
impossible. This is usually where a physical model can be of assistance, typically via data
augmentation: one uses a differential equation solver—or a neural network surrogate
of a differential equation solver—to generate more θ, u pairs in a principled, physically
consistent manner, which we can then use to complement the small dataset size. Even
if the physical information is not complete, it can still be of use: if the model is only
approximate, one splits the field into two components, one which is exactly modeled
by the physical model, and a second which can be seen as a perturbation of the former,
and which can be learned from data [34]. But producing a model explicit on θ is the
second difficulty, particularly in the earlier stages of the experimental process or in the case
where θ are difficult to interpret in terms of known physical quantities commonly used to
parameterize the physical model. This is not an insurmountable difficulty: we may lack
explicit physical knowledge, but it is rarely the case that we approach a physical situation
without any sort of background knowledge. In most situations, a general model relating
common physical observables and the physical field can be produced, derived from first
principles or symmetry arguments. This can be a considerable simplification, as it may
allow us to turn the problem of learning the relationship between the θ and u into one
of learning the relationship between the θ and the general model parameters ϕ. As the
dimension of ϕ is generally lower than the dimension of u, it is much easier to learn the
latter. Herein lies the third difficulty: if the general model is good and the observables
are sufficiently informative, one can hope that the number of data required for calibration
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be small. But calibration data is of a different nature as it is typically done via a series of
carefully designed experiments [1]. Learning the parameters of a differential equation in
time typically involves knowledge of u at different times, which is not necessarily part of
the original θ, u data—we need then knowledge of initial conditions for u.

We propose to address these difficulties as follows: we first show that in the case of
self-organization, and pattern-forming processes, the information contained in the initial
conditions u0 is small, in the sense that a non-injective feature transformation F exists
such that they can be losslessly expressed in the lower-dimensional F(u0), which makes
the dependency on initial conditions less important. We then proceed by making two
assumptions on the physical process and its relationship with the observables, allowing us
to propose a method to take advantage of self-organization physical knowledge to learn
with little data. We note that these assumptions hold in a number of interesting cases,
namely climate models, where our method could be also applied to find the relationship
between observed quantities and features of rare events, for example (extreme event
prediction, of which, by definition, we have few data).

3.1. Problem Statement

Consider a physical field u(x, t) := u which we believe is mainly the result of a certain
physical process, the evolution of which can be described in terms of physical process
parameters ϕ and initial conditions u0 which are compatible with the physical situation and
by a PDE u̇ = f (ϕ, u0) (throughout this section we assume periodic boundary conditions
and that u is a real field; we further assume that conditions are satisfied such that u is
unique; existence is posited since we are assuming that the process is modeled by this
equation and we observe the fields). Assume we have no knowledge of either ϕ or u0—
although the latter is assumed to belong to a large set U0 of “reasonable” initial conditions
compatible with the physical situation. We also assume that a certain observed quantity θ
(which in our case will correspond to the laser parameters) exists which affects ϕ—although it
may also affect other unknown latent variables, which may, in turn, affect u (Figure 3, left).

u

?ϕ u0

θ

N

F(u)

ϕ u0 ?

F(u)>

θ

N

F(u)

ϕ u0 ?

F(u)>

θ

N

Figure 3. (Left): Observable θ influences a physical process ϕ, among others (marked “?”), which,
together with unobserved initial conditions u0, determine observed field u. (Center): A feature
transformation exists such that u = (F(u), F(u)⊥), and the observable F(u) is useful and independent
of initial conditions u0. (Right): in addition, the feature transformed observable is not affected by the
other physical processes.
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We would like to sample from the distribution of u given a certain value of the
observed quantity θ. Unfortunately, since we have no knowledge of the initial conditions,
p(u|θ) cannot be calculated directly

p(u|θ) = ∑
u0

∑
ϕ

p(u, u0, ϕ|θ)

= ∑
u0

∑
ϕ

p(u|u0, θ, ϕ)p(u0, ϕ|θ),

(where sums are to be replaced by integrals in the continuous case) and we shall need to
make a hypothesis about the physical process to proceed.

3.2. Two Hypotheses on the Physical Process

The distribution p(u|θ) may be impossible to calculate directly, but the quantity of
interest is often not u, but rather a certain function of u, F(u), where F(u) is typically
simpler than u, which motivates the following hypotheses:

Hyphothesis 1. A function F of the field u exists such that the knowledge of the physical process
ϕ suffices to determine the likelihood of F(u) conditioned on θ. Precisely, p(F(u)|u0, θ, ϕ) =
p(F(u)|θ, ϕ). We call feature space the image of F on the domain of u.

Under Hypothesis 1, and assuming that the initial conditions are independent of the
physical process ϕ and the observed quantity θ (as shown in Figure 3), we have

p(F(u)|θ) = ∑
u0

∑
ϕ

p(F(u)|u0, θ, ϕ)p(u0, ϕ|θ)

= ∑
u0

∑
ϕ

p(F(u)|θ, ϕ)p(u0|ϕ, θ)p(ϕ|θ)

= ∑
u0

∑
ϕ

p(F(u)|θ, ϕ)p(u0)p(ϕ|θ)

= ∑
ϕ

p(F(u)|θ, ϕ)p(ϕ|θ).

To proceed, we make the following additional assumption:

Hyphothesis 2. The observed quantity θ determines the physical process: p(ϕ|θ) is peaky, in
the sense that there is a ϕ̃ such that p(ϕ|θ) = 0 for ϕ 6= ϕ̃. In particular, if p is continuous,
p(ϕ|θ) = δ(ϕ− ϕ̃(θ)), where δ(·) refers to the peaky distribution related to physical process.

Under this assumption, ϕ̃ is a function of θ, which implies that θ is at least locally a
function of ϕ̃ and we can write

p(F(u)|θ) = ∑
ϕ

p(F(u)|θ, ϕ)p(ϕ|θ)

= p(F(u)|θ(ϕ̃), ϕ̃)p(ϕ̃|θ)
= p(F(u)|θ(ϕ̃), ϕ̃)

= p(F(u)|ϕ̃).

How can we find ϕ̃(θ)?

3.3. Learning by Maximizing the Likelihood

Our general method to learn ϕ̃(θ) is to maximize the likelihood of the observations. In
the sequel, we propose two strategies to do so: one in which we maximize it directly, and
another in which we maximize a lower bound.
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3.3.1. Maximizing the Likelihood Directly

Having access to experimental data
{

θi, ui}
i=1...N , we can parameterize ϕ̃ with a

Neural Network (α), for example, and maximize the log likelihood of observing the F(ui):

ᾱ = arg max
N

∑
i=1

log p
(

F(ui)|ϕ̃(θi); α
)

. (2)

If u is high-dimensional, the relationship between F(u) and ϕ̃ is potentially complex,
and thus requires N large to model satisfactorily. Having physical knowledge in the
form of a differential equation solver u = Solver(ϕ̃, u0), however, considerably simplifies
the problem.

In feature space, for a process respecting Hypothesis 1, we can choose arbitrary initial
conditions and fit only the relationship between θ and the parameters of the differential
equation, which generally has a much lower dimension than the field u. Since this is a much
simpler task, we expect that a much smaller N will suffice to produce a satisfactory model.

Assuming data is generated i.i.d. from a fixed-variance Gaussian distribution, this
corresponds to minimizing the mean squared error between the images, through F, of
experimental fields, and fields generated by the PDE solver for an arbitrary initial condition
u0 ∈ U0.

ᾱ = arg min
1
N

N

∑
i=1

∥∥∥F(ui)− F(Solver(ϕ̃α(θ
i), u0))

∥∥∥2
(3)

Note that this optimization is more conveniently done with a differentiable surrogate of
the solver.

3.3.2. Maximizing a Lower Bound of the Likelihood

Note that

log(p(F(u)|θ(ϕ̃), ϕ̃)p(ϕ̃|θ)) = log p(F(u)|θ(ϕ̃), ϕ̃) + log p(ϕ̃|θ)
= log p(F(u)|ϕ̃) + log p(ϕ̃|θ).

(we recall that even though we are under the conditions of Hypothesis 2—ϕ is a function
of θ —, we don’t know which function that is, which explains keeping around the term
log p(ϕ̃|θ), which we will maximize for experimental data in order to find ϕ̃).

Let ϕ̃1 be the maximizer of the first term, ϕ̃1 = arg maxϕ̃ log p(F(u)|ϕ̃). Then

max
ϕ̃
{log p(F(u)|ϕ̃) + log p(ϕ̃|θ)} ≥ log p(F(u)|ϕ̃1) + log p(ϕ̃1|θ). (4)

Provided we find ϕ̃i
1 for each ui, we can replace the log-likelihood maximization

objective with that of maximizing a lower bound:

ᾱ = arg max
α

N

∑
i=1

log p
(

ϕ̃i|θi; α
)

(5)

which, repeating the argument above, corresponds to minimizing the mean squared error,

ᾱ = arg min
α

1
N

N

∑
i=1

∥∥∥ϕ̃i − ϕ̃α(θ
i)
∥∥∥2

.

We can replace this task with maximizing a lower bound, after having found the
first maximizer. It remains to find the ϕ̃i. To do so, we note that by having an efficient
solver and assuming sufficient regularity, one can pre-generate sufficiently many fields
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Ug =
{

uk
g

}
k=1...M

such that the expected distance to the nearest neighbor in feature space,
given by F, is as small as one would like:

δ =
1
M

M

∑
k=1

min
j 6=i

∥∥∥F(uk
g)− F(uj

g)
∥∥∥2

=
1
M

M

∑
k=1

∥∥∥F(uk
g)− F(ûk

g)
∥∥∥2

,

where we denoted ûk
g as the nearest neighbor in Ug of uk

g, in feature space. Denoting
Solver(ϕ̃α, u0) := uα for simplicity and ûα its nearest neighbor in Ug, we have

min
α

1
N

N

∑
i=1

∥∥∥F(ui)− F(uα)
∥∥∥2

=
1
N

N

∑
i=1

min
α

∥∥∥F(ui)− F(ûi
p) + F(ûi

p)− F(uα)
∥∥∥2

≤ 1
N

N

∑
i=1

∥∥∥F(ui)− F(ûi
p)
∥∥∥2

+ min
α

1
N

N

∑
i=1

∥∥∥F(ûi
p)− F(uα)

∥∥∥2

≤ 1
N

N

∑
i=1

∥∥∥F(ui)− F(ûi
p)
∥∥∥2

+ δ

≤ 2δ.

Since δ→ 0 we can set ϕ̃i as the solver parameter of the nearest neighbor in feature
space, among pre-generated fields, of ui.

3.4. Generality of the Two Hypotheses

The hypotheses above correspond to the following desiderata:

• A useful, simplifying, and separating feature space F exists.
• In F, the task is independent of initial conditions.
• In F, the physical process ϕ is essentially a function of the observed θ.

which we now examine in turn.

3.4.1. Choosing a Useful, Simplifying, Separating Feature Space

In the exploratory stages of research, an explicit measure of usefulness is typically not
available, because future applications are unknown. It is thus important to keep the feature
transformation F as discriminating as possible. Without imposing further constraints, this is
trivially satisfied by choosing a bijection. On the other hand, we want F to be simplified, in
the sense that it is invariant to quantities that we do not care for. Without further constraints,
this objective is satisfied trivially by choosing F as a projection to a single point. These
two objectives, which we illustrate in Figure 4, are in contradiction, and fulfilling them
simultaneously is not trivial.
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F

F

F

F

F
F

Figure 4. One would like the feature transformation of choice F to be simplifying in the sense that it
abstracts away pattern minutia while still being discriminating in the sense that patterns which are
different will be mapped to different points.

This strategy could still be pursued in principle by training a model for a set of broadly
defined constraints, but doing so is expensive in terms of time and data, and cannot be
justified in practice in the early stages of research. The problem is reminiscent of that
in [48], in which F is called a physical rescaling; as in our paper, the assumption is that it
is inconvenient to train a model to find such a rescaling, which is thus obtained based
on physical knowledge and/or statistical properties leaving the target variables invariant.
This method is interesting but, in a setting of partial physical information and little data,
explicitly defining discriminating invariant feature transformations based on physical or
statistical arguments is challenging.

A reasonable alternative in this setting is to choose a simplifying feature transformation
F which, applied to similar data, is known to allow a broad task to be performed, which is
the strategy that we propose. This has the inconvenience of the feature transformation F
not being uniquely defined, which is why we now propose a method to compare several
such transformations.

For concreteness and the sake of clarity, we present this strategy in the context of
our specific task of finding a feature space for predicting novel laser-induced nanoscale
patterns (shape and scale). The shape of the patterns observed in SEM images is described
by the experts in somewhat loose terms such as ‘labyrinthine’, ‘hexagons’, ‘bumps’, ‘peaks’.
Different patterns are believed to have different applications with different utilities. How-
ever, this strategy can in principle be generally used in the context of the early stages of the
experimental process, with little data and partial knowledge, and where a specific measure
of utility is not yet established.

A Quality Measure for the Feature Transformation

We define as a measure of the quality of a feature transformation F with respect to
physically relevant patterns, the accuracy of the classification task where the patterns are
classified as the modal pattern in the clusters obtained by k-means in feature space. To see
why, consider u(p1)

i , u(p1)
j two fields with the same pattern. If F is invariant with respect to

this pattern, then F(u(p1)
i ) = F(u(p1)

j ). If F is discriminating, for all patterns pk, if k 6= l then

for all i, j, F(u(pk)
i ) 6= F(u(pl)

j ). It follows that if F is invariant and discriminating, it solves
the task of clustering fields according to patterns. This motivates our definition.

In practice, as mentioned in [48], a fully invariant non-trivial mapping is difficult or
impossible to find, which leads us to define invariance with a given tolerance. This moti-
vates our measure of invariance as the accuracy of a distance-based clustering algorithm,
which we take as the k-means modal classifier for simplicity.

We note that identification of the modal pattern and choice of the number of clusters
k require physical knowledge, and were therefore performed by an expert. On the other
hand, this knowledge does not have to be explicitly defined, which allows our method
to be applied in the context of partial physical knowledge, in the early stages of the
research process. Finally, we also note that the choice of invariant, discriminating feature F
transformation is not unique: if F is such a transformation, we can obtain another one by
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adding a constant feature, for example. All things being equal, we would rather choose an
F as simple as possible.

3.4.2. Independence of Initial Conditions

In general, we cannot guarantee that a feature transformation exists that allows ab-
stracting away initial conditions, but we now show that this is the case for pattern-forming
systems via a deterministic process. To ground intuition, we recall that patterns are often
formed because Fourier modes are selectively amplified/attenuated during the dynamics,
the set of frequencies that are not driven to zero laying on a band around some critical
frequency (of which there could be more than one). To see that necessarily implies that the
initial conditions are redundant, we begin by establishing notation and a few definitions:
Let u be a real field defined on a finite interval of length L with periodic boundary condi-
tions (the extension to polytopes is straightforward). Setting L = 2π for simplicity, in the
frequency domain, the maximum wave number compatible with such boundary conditions
is 2π/L = 1. The possible wave numbers are thus 2π

L n = n for integers n ≥ 1, and we can

write the field as u =
∞
∑

n=1
an fn where fn is the Fourier mode with frequency n and an ∈ C

its amplitude.
To each field, we can associate a distribution of its amplitude among the modes by

setting pn = |an |2
∞
∑

n=1
|an |2

.

Finally, to this distribution we can associate the following Shannon Entropy H(u):

H(u) = −
∞

∑
n=1

pn log pn (6)

the general idea of the proof is the following:

1. Let u be a real field on a bounded domain Ω at a fixed time t, which is the result of a
deterministic physical process for given initial conditions i. If that is the case, then
there is a function Lt : Ω→ Ω such that u = Lt(i). The mutual information between
the field u at time t and its initial value i is thus I(u, i) = H(u)−H(u|i) = H(u),
since u = Lt(i) andH(Lt(i)|i) = 0.

2. We prove that for general initial conditions the entropy for a self-organization physical
process is decreasing H(u) < H(i).

3. If Lt were a bijection, an inverse L−1
t would exist and I(u, i) = I(L−1

t (i), i) = H(i) by
the same argument as above, which would imply H(i) = H(u). Since this is not the
case, Lt must map to a lower-dimensional space.

4. In this lower dimensional space, the initial conditions completely determine the field
u (identically, since u = Lt(i)).

5. Hence, for such a physical process, there is necessarily redundant information in the
specification of initial conditions.

It remains to show the following proposition:

Proposition 1. The entropy of a self-organization process is decreasing for general initial conditions.

Proof. Consider now a variation in the distribution of amplitudes ( ṗ1, · · · , ṗk, · · · ) := ṗ,
where the dot denotes a time derivative. The corresponding time derivative of the entropy
is then:

Ḣ = −
∞

∑
n=1

ṗn(log pn + 1) (7)

:= −ṗ · (log p + 1), (8)
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The maximal change in entropy will be for ṗ aligned with log p + 1, which is clearly not
generally the case for some initial distribution of amplitudes p. For self-organization
physical processes, patterns are often formed because a certain range of nodes in the
neighborhood of a critical wave number n0 is amplified, all others being attenuated. One
can generally describe this evolution in terms of the amplitude of each node:

an(t) = e−(n−n0)
2tan(0) (9)

where we dropped the absolute value for notation simplicity (the previous statements are
strictly true for a Type 1S instability, near onset, and for a small perturbation of the u = 0
solution in the linear approximation, see [1] for details). Assuming that there is no large
power mode (all pk < 1/2, which is indeed the case for k > 2 for the maxent distribution of
Fourier power spectrum, which is the uniform distribution), all components of the vector
log p + 1 are negative. Further assuming that the physical process has the property that

the l2 norm of the field is constant,
∞
∑

n=1
|an(t)|2 := 1/α we have, by replacing (9) in the

time derivative of the entropy above, that the entropy of the self-organization process Hso
decreases for every initial distribution of amplitudes:

Ḣso = −
∞

∑
n=1

ṗn(log pn + 1)

= −α
∞

∑
n=1

˙(a2
n)(log pn + 1)

= −2α
∞

∑
n=1

ȧnan(log pn + 1)

= α
∞

∑
n=1

(n− n0)
2a2

n(log pn + 1) < 0,

which proves the claim. As we mentioned above, this decrease is not maximal as it is
not necessarily so that to low power modes there will correspond a greater decrease in
amplitude.

3.4.3. The Likelihood Is Peaky: ϕ Is a Function of θ

We cannot control whether or not the likelihood p(ϕ|θ) is peaky. If it is not, then there
are several ϕ that can be associated with the same θ and the log-likelihood is

log p(F(u)|θ) = log ∑
ϕ

p(F(u)|θ, ϕ)p(ϕ|θ).

we can proceed to maximize the likelihood of the data as before

N

∑
i=1

log p(F(ui)|θi) =
N

∑
i=1

log ∑
ϕ

p(F(ui)|θi, ϕ)p(ϕ|θi),

but in this case, Hypothesis 2 does not apply and so the expression does not simplify. If
that is the case, we propose a generalization of Hypothesis 2 which may still hold.

Likelihood is Peaky in Different Subsets of Data

If we can split the data in subsets (we chose a two dataset partition for ease of pre-
sentation but the reasoning extends straightforwardly to an arbitrary number of sets.)
D1 =

{
(ui, θi)

}
i=1...N−P and D2 =

{
(ui, θi)

}
i=N−P+1...N , where the data were possibly

reordered, such that for data in D1 the likelihood p(F(ui)|θi, ϕ) is close to zero for all
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but single ϕ̃1 and likewise for D2, then we obtain the following upper bound for the log
likelihood of observing the data:

N

∑
i=1

log p(F(ui)|θi) =
N

∑
i=1

log ∑
ϕ

p(F(ui)|θi, ϕ)p(ϕ|θi)

=
N−P

∑
i=1

log ∑
ϕ

p(F(ui)|θi, ϕ)p(ϕ|θi)

+
N

∑
i=N−P+1

log ∑
ϕ

p(F(ui)|θi, ϕ)p(ϕ|θi)

=
N−P

∑
i=1

log p(F(ui)|θi, ϕ̃1)p(ϕ̃1|θi)

+
N

∑
i=N−P+1

log p(F(ui)|θi, ϕ̃2)p(ϕ̃2|θi).

we thus have effectively two separate maximization problems, which we can proceed to
solve in either of the likelihood maximization strategies presented above. The reasoning
extends to an arbitrary number of subsets. We note that i indexes observations, hence that
θi = θ j for i 6= j. It could very well be that every θ j is repeated. If that is the case, there
are two concurrent physical processes, which we would discover by fitting each subset of
the data.

Combining Separate Models

The method produces effectively two models for the same dataset. In order to recom-
bine these models, assume for simplicity that every observed θ is in both D1 and D2, the
same number of times. Then the likelihood is

N

∑
i=1

log p(F(ui)|θi) =
N/2

∑
i=1

log p(F(ui)|θi, ϕ̃1)p(ϕ̃1|θi) +
N

∑
i=N/2+1

log p(F(ui)|θi, ϕ̃2)p(ϕ̃2|θi)

=
N/2

∑
i=1

log p(F(ui)|θi, ϕ̃1) +
N

∑
i=N/2+1

log p(F(ui)|θi, ϕ̃2)+

N/2

∑
i=1

log p(ϕ̃1|θi) +
N

∑
i=N/2+1

log p(ϕ̃2|θi).

if we use the second method (maximizing a lower bound of the likelihood), we use the sum
of the distance to the nearest neighbors of each datum as a measure of the likelihood of the
data associated with each process.

3.4.4. A Remark on Learning the Feature Space

As we noted in Section 3.3, learning the relationship between θ and the parameters
of a differential equation is a considerable simplification. We do so by choosing a feature
projection with the desired characteristics.

It is certainly possible to learn this feature projection, given enough data. To understand
what is at stake, consider the setting of Section 3.4.3: we are to use the same number of

training examples to maximize the likelihoods
N
∑

i=1
log p(F(ui)|θi, ϕ̃) and

N
∑

i=1
log p(ϕ̃|θi),

where now F is to be learned.
To ground intuition, consider the problem of learning a linear mapping—the number

of parameters of the linear mapping is a lower bound of the more general task. Consider
the first task, that of learning the relationship between the parameters of the differential
equation and the physical observables. Typically, the number of parameters of a differential
equation nϕ is of order zero, and the number of physical observables nθ is of order one.
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The number of parameters to learn a linear mapping between these spaces nϕ × nθ is thus
of order one. As for the second task, consider that physical fields are typically discretized
n, and typically take values on a m-polytope, for a total number of features of nm. In the
task of predicting laser patterns, we have n = 224 and m = 2. The number of features is
of order three, which brings the number of parameters of the linear mapping between the
two spaces to order seven—seven orders of magnitude more than in the previous case.

If the number of training examples is large, the two tasks can be solved in the sense
that a small bound on generalization error can be found. But if the number of training
examples is small—which we can define in terms of providing an acceptable bound to
generalization for the first task—then the second task, since the bound on true risk is given
by an increasing function of complexity, cannot be acceptably solved with the same number
of data.

4. Predicting Novel Laser Patterns with Few Data by Integrating Partial Physical
Information

We now apply the framework described in the previous section to predicting new
laser patterns. This problem is strictly in the scope of inverse problem theory, which aims
at estimating physical model parameters based on observations, with the added difficulty
of having few observations at a single moment in time and only a partial model of the
physical process: the Swift-Hohenberg (SH) equation [28], a 4th-order partial differential
equation on the plane which can be seen as a maximally symmetric model of convection.

In spite of Hypotheses 1 and 2 the problem remains severely ill-posed and biased
since the SH prior is only an approximate model of the dynamics. Our general strategy
to tackle this problem relies on finding a feature transformation F to remove some of this
degeneracy.

We integrate the physical information in the SH equation in two ways: our first
approach is based on training a Deep Neural Network surrogate of an SH solver [49,50] on
the great number of solutions of the SH equation, in the image of F. To our best knowledge,
this is an original approach. Neural Network surrogates have been shown to provide
accurate solutions of Partial Differential Equations (PDE) solvers at a fixed computational
cost and were applied successfully to notoriously difficult problems such as the three-body
problem [51]. We then learn h, the mapping from laser parameters θ to SH parameters ϕ by
backpropagating through the differentiable surrogate to minimize the mean squared error
in feature space. Finally, we use the solver on the output of h in order to produce a novel
pattern, given a set of laser parameters.

Our second strategy to integrate SH physical information is to label experimental data
with the SH solver parameters of its nearest neighbor, in the image of F, amongst a great
number of pre-generated solutions of the SH equation. This dramatically simplifies the
problem of learning the relationship h between laser parameters θ and SH parameters ϕ,
since ϕ is low-dimensional. As in the first case, we use the solver on the output of h in
order to, given a set of laser parameters, produce a novel pattern.

Our experiments show that the second approach yields better results than the first,
with good agreement between experimental and generated images (see Section 5.2). As
we showed in Section 3, the second approach corresponds to maximizing a lower bound
of the likelihood of the first, and the error that we incur can be controlled by the expected
distance between pre-generated solutions of the SH equation in feature space.

4.1. The Physical Model

In this section, we present and motivate the Swift-Hohenberg equation as a partial
physical model of laser-matter interaction leading to pattern formation, as well as the
pseudospectral solver of the SH equation that we use to integrate this knowledge into
the machine learning model, either via its generated solutions or via a neural network
surrogate.
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4.1.1. The Swift-Hohenberg Equation as a Partial Model

The goal of this section is to introduce the Swift-Hohenberg equation, provide intuition
on the pattern formation mechanism, and motivate it as a partial physical model.

The Swift-Hohenberg equation as a symmetric model of convection

The Swift Hohenberg equation was first presented in [28,52] in the context of Rayleigh-
Bénard convection. It is a 4th-degree partial differential equation governing the time
evolution of a certain real field u(x, t) (also called instability), by defining the relationship
between its spatial and time derivatives. In one dimension, with N [u] representing some
nonlinear functional of u, we have, in a dimensional form:

∂u
∂t

= (ε− 1)u− 2
∂2u
∂x2 −

∂4u
∂x4 +N [u] (10)

the term N [u] is a nonlinear term that controls the growth of the instability, the simplest
choice being N [u] = u3. With this choice, if u is a solution of the equation, then so is −u;
and u = 0 is a solution.

It can be seen by linear stability analysis that small perturbations of the u = 0 solution
will be amplified selectively: specifically, when ε > 0, Fourier modes whose wave vector
norm lies on a certain interval centered at 1, the width of which depends on ε, will be
amplified, while all others will be attenuated. The left endpoint of the interval not being
zero, this is a called a type Is instability [1]. This type of selective attenuation leads
to the formation of patterns by selecting perturbations with certain periodicities. Since
the selection of wave vectors depends only on the norm, the patterns formed via this
mechanism are isotropic.

Although the SH equation was introduced as a model of a specific convection ex-
periment, it can actually be motivated on general grounds, by appealing to symmetries.
Specifically, given appropriate boundary conditions, the SH equation is the simplest equa-
tion with a type Is instability that is isotropic, translation invariant, and invariance with
respect to the u→ −u substitution (see [1] for details). Crucially, the SH equation can be
derived from these assumptions alone [1]. These symmetries are, in our case, verified, since
cross-polarization was introduced specifically to make the patterns isotropic [17], which
motivates our choice of SH as a partial model of pattern formation. The remarkable resem-
blance between real images on the one hand, and the images that we obtain by solving the
SH equation on the plane using a finite-difference solver, and plotting the obtained solution
as a heatmap, on the other, reinforces this choice (cf. Figure 5).

We break the symmetry with respect to u → −u by introducing a term γu2, the
quadratic term allowing small amplitude destabilization and the existence of the hexagonal
patterns which we observe experimentally, while the negative cubic term, which dominates
for large amplitudes, still controlling the magnitude of the instabilities, which would
otherwise grow without bound. The modified form of the Swift-Hohenberg equation used
in this paper is thus

∂u
∂t

= (ε− 1)u− 2
∂2u
∂x2 −

∂4u
∂x4 + u3 − γu2 (11)
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Figure 5. (right) SH solution with ε a centered 2D Gaussian ramp with a maximum of 0.8
and a standard deviation of 1/4 the domain size, to mimic the laser fluence distribution, and
γ = −1.0, shown at several solver times t, with 1024² colocation points, represented as a 1024²
heatmap (normalized to 1 since the SH eq. is adimensional); (left,top) SH Lyapunov functional
E[u] =

∫
Ω

u
2
(
∇4u + 2∇2u + u

)
+ 1

4 u4 − γ
3 u3 − ε

2 u2dx (a functional of the field which has the prop-
erty to decrease during the dynamics) with points corresponding to the solutions on the right
highlighted. Note that, as expected, E converges asymptotically to a stable value; as can be observed
from the field heatmaps on the right, as it does so, organized patterns form. (left,bottom) SH Lya-
punov functional shifted up in log-log scale; SH solver terminates when the Lyapunov functional
stops decreasing.

The Swift-Hohenberg Equation: Intuition on Pattern Formation

To provide intuition on how a simple equation motivated on symmetry grounds
originates the complex patterns observed experimentally, we examine the relationship
between the time derivative and each of the terms on the right-hand side separately. We
shall see that it is the balance between the several terms of the SH equation which provides
the complexity leading to the formation of patterns, as we illustrate in Figure 6.

Figure 6. Action of the linear part of the one-dimensional Swift Hohenberg equation ∂tu = εu−
(1 + ∂2

x)
2u +N [u] on three Fourier modes u = a(t) sin(kx). For small a(t), ignoring the nonlinear

part and to first order in time, ∂tu = (ε− 1 + 2k2 − k4)a(t) sin(kx). The zeros of the factor on the

right-hand-side are k =
√

1±
√

1 + (ε− 1). For ε = 0.5 and k1 =
√

1−
√

0.5 the leftmost zero, the
overall derivative of the mode sin(k1x) is zero, as can be seen on the center plot. Modes with lower
frequency will be attenuated, as can be seen on the leftmost plot, where we show the magnitude of
the various terms on sin(0.5k1x). Finally, the mode sin(2k1x), for which the frequency lies between
the zeros of the factor is amplified, as can be seen on the rightmost plot.

Consider first ∂u
∂t = (ε− 1)u. Since ε ∈ [0, 1[, u will increase in time where u < 0, and

decrease where u > 0, in proportion to |u|. If the field evolution were determined by this
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term alone, the amplitude of u for a perturbation of the zero solution would be everywhere
attenuated with time.

As for the ∂u
∂t = −2 ∂2u

∂x2 term, because of the negative sign, the value of u increases in
regions that are convex (peaks) and decreases in regions that are concave (troughs). Deter-
mined by this term alone, perturbations of the zero solution would increase in magnitude,
and more so where the frequency of u is high than where it is low.

The evolution under the fourth-order term is similar: the value of u decreases in
time in regions where the fourth spacial derivative is positive and increases where it is
negative. Fourth order derivatives are more difficult to visualize, so we examine its action
on sin (qnx), where qn are integer multiples of 2π

L , since it is a well-known fact from Fourier
analysis that any sufficiently well-behaved odd f function of period L can be written as
weighted sum (superposition) of these functions (the Fourier modes).

Since the derivative can be taken term by term, we examine each fn individually. With
an ∈ R we have

f (x) = ∑
n

an sin qnx := ∑
n

an fn

the second derivative contribution of fn to the Swift Hohenberg dynamics is 2q2
n fn: fn

will increase in time where fn > 0 and decrease where fn < 0 (as discussed above), large
wavelength features changing in amplitude faster than small wavelength ones. The fourth
derivative term’s contribution is −q4

n fn: fn will decrease where fn > 0 and increase where
fn < 0, proportionally to the inverse fourth power of its wavelength: large wavelength
modes will see their amplitude change faster than small wavelengths.

To determine the overall effect, we sum up the contributions for each mode ε− 1 +
2q2

n − q4
n. The sign of this coefficient will determine if fn gets amplified (negative) or

attenuated (positive). We conclude that modes will be amplified if 1 +
√

ε ≤ q2 ≤ 1 +
√

ε,
which determines the range of characteristic inverse wavelengths of the features in the
observed patterns. We conclude by noting that this amplification is without bound, and
that the nonlinear part N [u] plays an important role in controlling this growth.

The Swift-Hohenberg Equation Has Potential Dynamics

The Swift Hohenberg equation for field u(x, t) on a domain Ω with the periodic
boundary conditions that are used in this paper has potential dynamics, meaning that there
is a functional E of the field u, called the Lyapunov functional, such that

u̇ = − δE
δu

(12)

where δE
δu is the variational derivative of E with respect to variations δu. The functional E

has the property of decreasing during the dynamics [1]. Since E[u] is also bounded below,
it converges asymptotically to a stable value. The Lyapunov functional for the SH equation
used throughout this paper is

E[u] =
∫

Ω

u
2

(
∇4u + 2∇2u + u

)
+

1
4

u4 − γ

3
u3 − ε

2
u2dx (13)

:=
∫

Ω
E
(

u,∇2u,∇4u
)

dx (14)

as can be verified straightforwardly by calculating the functional derivative δE
δu using the

Euler-Lagrange equations

δE
δu

=
∂E
∂u

+ ∑
i=1,2

(−1)i∇i · ∂E
∂
(
∇iu

)
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the fact that E decreases during the dynamics will allow us to check for divergence by
calculating it at fixed iteration intervals, as we explain in the following section.

4.1.2. A Pseudo-Spectral Second Order Solver for the Sh Equation

In this section, we describe the finite-difference solver that we use in this paper. We
shall also use this solver indirectly in the form of a surrogate neural network, which
motivates some of the implementation choices that we describe below. We choose a second-
order pseudo-spectral method, providing a good compromise between accuracy and speed.
A pseudo-spectral method is a split-step method, a technique which we explain briefly
below following mainly [53,54]. We use one spacial dimension in our discussion for ease of
presentation, as it generalizes straightforwardly to the plane. We assume periodic boundary
conditions throughout.

Operator Splitting

The SH equation can be written in terms of the sum of the action of a linear L and a
non-linear N differential operator acting on u

u̇ = L[u] +N [u] (15)

with the action of L given by L[u] = (ε− (1 + ∂2
x)

2
)u and the action of the nonlinear part

defined as N [u] = γu2 − u3.
The idea is to discretize and integrate each of these parts in turn, which explains the

name of the technique. Doing so allows us to solve the non-linear part in Fourier space,
where its action reduces to multiplication, a considerable reduction in computational cost.
The nonlinear part can be solved using a straightforward explicit method that is easy to
implement. The solution u(tn+1) of the equation above at a later time tn+1 = tn + dt can be
obtained from that at u(tn) via the exponential of the operator L+N [53]

u(tn+1) = exp (dt(L+N ))u(tn).

integrating each part separately amounts to using the approximation

exp (dt(L+N )) ≈ exp (dtL) exp (dtN ). (16)

the error that we incur in doing so can be established using the Baker-Campbell-Hausdorff
formula (see [55] for a proof and [54] for applications to higher-order integrators), which
states that for any non-commutative operators X and Y, the product of the two exponentials
can be expressed in terms of the exponential of a single operator Z

exp(X) exp(Y) = exp(Z)

where Z is given in terms of the commutators of X and Y in all except the linear term

Z = X + Y +
1
2
[X, Y] +

1
12

([X, [X, Y]] + [Y, [Y, X]]) +
1
24

[X, [Y, [Y, X]]] · · · (17)

Applying this formula with X = dtL and Y = dtN we conclude, since the commu-
tator [dtL, dtN ] = dt2[L,N ] 6= 0, that the approximation Equation (16) is order one—
independently of the order of the methods that we choose for each of the individual parts.
Specifically, we have

u(tn+1) = exp (dtL+ dtN )u(tn)

= exp (dtL) exp (dtN )u(tn) +O(dt).

Second-Order Pseudo-Spectral Solver
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It is possible to increase the order of approximation at the expense of extra intermediate
steps [54]. In this paper, we use an order two splitting scheme, known as Strang splitting [56],
which consists in taking a half step with the linear operator, a full step with the nonlinear
operator, and a final half step with the linear operator (we examined a symmetric 3-fold
Strang composition method [54] of order four, but the improvement was not sufficient for
our purposes to justify the increase in execution time, which stems not only from the extra
time stepping, but from the higher-order methods for each of the individual steps):

u(tn+1) = exp
(

dt
2
L
)

exp (dtN ) exp
(

dt
2
L
)

u(tn) +O(dt2).

strang splitting increases the order of ordinary time-splitting to two provided we choose
second-order methods to discretize each of the individual steps. We thus integrate the
nonlinear part using Ralston’s method, an order two explicit Runge-Kutta method with the
Butcher tableau (see e.g., [53] for notation)

0 0 0
2/3 2/3 0

1/4 3/4

and integrate the linear part in Fourier space, where spatial derivatives amount to multipli-
cation, using the trapezoidal rule, with Butcher tableau

0 0 0
1 1/2 1/2

1/2 1/2
,

the result then being transformed back to the original space. Using the Fast Fourier
Transform [57] to calculate the discrete Fourier transform allows us to take this otherwise
costly step at quasi-linear time complexity.

With T(L, ut, k) and R(N , ut, k) representing the Trapezoidal and Ralston’s numerical
methods solving, respectively, u̇ = L[u] and u̇ = N [u] over a time step of k starting with
data ut, and denoting the discrete Fourier transform of a field u by v, our pseudospectral
scheme reads

u∗ = F−1
{

T(L, vt,
dt
2
)

}
u∗∗ = R(N , u∗, dt)

ut+1 = F−1
{

T(L, v∗∗,
dt
2
)

}
where u∗, u∗∗ are intermediate solutions.

Stability and Adaptive Time-Stepping

The Trapezoidal rule is an order two method with a region of absolute stability
including the entire left half of the complex plane (which makes it suitable for the solution
of stiff equations [53,58]); stability of the split step method is thus determined by that of
the explicit step.

We use an adaptive time step of the order of the inverse of the spectral norm of the
Jacobian of the nonlinear stepping operator to control the stability of the explicit scheme
and improve the time performance of our solver. We control for divergence by examining
the Lyapunov functional at fixed iteration intervals. As explained above, a growth of the
Lyapunov functional implies divergence. When this happens, we go back to the time
before Lyapunov functional growth, divide the time step by two, and proceed with the time
stepping. This method is simple but allows us to automate the solver with minimum input
on our part, which is important given the number of images that we need to generate.
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4.1.3. Training a Differentiable Surrogate of the Sh Solver

For our method, it is convenient to train a differentiable surrogate of the SH solver
described above in feature space. Although strictly unnecessary, as we could alternatively
use automatic differentiation, introducing a surrogate allows for a dramatic decrease in
training time [50] for learning the relationship between the SH parameters and the laser
parameters. Faster forward problem solutions provided by the surrogate will also prove
convenient in evaluating feature choices by cross-validation.

The surrogate consists of a neural network fω : ϕ → F which learns the mapping
between 4-dimensional ϕ (SH equation parameters, evolution time, and scale) to the
projection of the SH solver-generated solutions in feature space, by minimizing the MSE.
We use a 5 hidden-layer neural network with GeLU activations [59], which we initialize
using He initialization [60] and regularize using weight decay. The number of units of the
hidden layers are 24, 26, 28, 210 and 212. The architecture was chosen by cross-validation on
a fraction of the data. The neural network was trained for 1000 epochs with early stopping
(cf. Figure 7).

22 24 26 28 210 212 212

Surrogate

3 64 128 64 4 4

h

Figure 7. Neural network architectures: (left) differentiable SH surrogate, mapping from ϕ ∈ R4

(Swift Hohenberg equation parameters, evolution time, and scale) to feature space (R224×224). (right)
mapping h from laser parameters θ ∈ R3 (laser Fluence, delay between pulses, and number of pulses)
to ϕ ∈ R4.

4.2. Choosing a Feature Space to Learn Patterns

We would like our framework presented in Section 3, which crucially depends on
the existence of feature space in which the dependency of initial conditions is weak, to be
generally applicable in the early stages of the experimental process, where there is neither
enough physical knowledge to handcraft this invariance explicitly nor enough data to
learn it directly. These two constraints motivate the use of features extracted by a large
pre-trained model on a diverse dataset.

4.2.1. Off-The-Shelf Feature Space Projector

We choose, as a feature projector, the first before the last layer of a pre-trained
VGG16 [61], a deep convolutional network (CNN) model trained on ImageNet [62], a
dataset of over 15 million labeled high-resolution images belonging to roughly 22,000 cat-
egories. See Figure 8 for details. Any complex model trained on a complex dataset like
ImageNet is likely to acquire biases that depend on the dataset itself. Some of these may
actually be good [63], but since they were not specifically controlled for, they could be
undesirable for our task. In this sense, VGG16 appears to be a reasonable candidate in the
context of our application.
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conv1

conv2

conv3

conv4
conv5

fc6 fc7 fc8

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512
14 x 14 x 512

7 x 7 x 512

1 x 1 x 4096 1 x 1 x 1000

convolutional + ReLU

max pooling

fully connected + ReLU

softmax

Figure 8. VGG16 network architecture. Our baseline features are extracted using layers “conv1” to
“fc6” (inclusive).

Deep Convolutional Neural Networks achieves state-of-the-art performance on image
classification tasks [64,65]. VGG16 in particular achieves 92.7% top-5 test accuracy on
ImageNet, which is the main motivation for our choice, since the representation that a deep
convolutional model needs to build (edges, textures, colors, and combinations thereof), in
order to do well in such a classification task should be complex enough to represent the
Swift-Hohenberg equation patterns as well. We further justify our choice by noting that this
same feature extractor was used successfully to localize casting defects in (grayscale) X-ray
images [66], and classify weld defects, both of which bear some similarities to our task.

4.2.2. Learning Scale with the Features of a Scale-Invariant Network

There is still the problem of pattern scale, that needs to be learned. The success of
convolutional neural networks and the scale-invariant nature of common image classifica-
tion tasks led to extensive work in precisely the opposite direction: learning scale invariant
features, rather than learning scale.

Convolutional neural networks such as VGG16 are not truly scale-invariant, though.
Scale invariance is rather learned implicitly, even without a specific scale-invariant de-
sign [67], by training on datasets such as ImageNet, in which instances of the same class are
represented at different scales. To obtain truly multi-scale scale invariant representations,
we need to resort to local descriptors such as SIFT, which are popular in image process-
ing [68], or recent deep learning techniques that focus specifically on scale invariance and
equivariance [69–72], or impose it as a particular group symmetry [73].

Although learned implicitly, learned scale invariance for large convolutional models
trained on ImageNet such as ResNet50 [65] and InceptionV3 [64] is quite good, as it was
found recently that the probability of the correct class is approximately invariant to input
size [74]. The authors show, however, that scale invariance varies with depth, information
about the scale being chiefly present at intermediate layers, with invariance reached just
before the softmax layer, and early layers focusing on local textures and small object parts.
The authors then go on to show that by pruning the layers where the scale invariance is
learned there are gains on a medical imaging task which, like our regression task, depends
on scale.

Bearing this in mind, we prune the last two layers of a pre-trained VGG16, resulting in
features encoding scale information and with enough complexity to represent the patterns
of the Swift-Hohenberg equation. The resulting feature space has 4096 dimensions in the
base case.

4.2.3. Building the Datasets

We have two data types: one consisting of real SEM images, and the other of SH-
generated images.
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Because experimental manipulation is costly and time-consuming, the first dataset is
small. It consists of 78 SEM images labeled with the laser parameter values Fp peak laser
Fluence (in J/cm²), time delay ∆t (in 10−15s) and number of pulses N, of an area roughly 5 µm²
size with a resolution of 237 pixels per µm.

The second dataset consists of a set of real fields generated by the SH equation
with periodic boundary conditions on a square of side 224 according to the following
procedure: we first sample uniformly the order parameter ε ∈ (0, 1), the symmetry breaking
parameter γ ∈ [−2, 2], and the system size l ∈ (8, 25) (in units of 2π); we seed the square
with pointwise uniform initial conditions in

[
0,
√

ε
]

and evolve it according to the SH
solver Section 4.1.2 until convergence, as assessed by the time derivative of the Lyapunov
functional; we keep a maximum of ten snapshots of this evolution at regular solver time
intervals t. Each of the resulting fields is labeled with the tuple ε, γ, l, t.

Pre-Processing

Since we shall ultimately compare real and generated images, we need to make a
choice regarding image normalization. The experimental images are obtained via SEM
microscopy, their intensity being preset. As for the generated images, the initial perturbation
has a maximum amplitude of

√
ε, and after a typical evolution time of 1

ε [1], in the linear
approximation, the maximum amplitude will remain a function of ε. To see this, note
that the maximum growth rate σ(q2) = ε− 1 + 2q2 + q4 is at q2 = 1, which corresponds
to a maximum amplification at evolution time 1/ε of eε/ε = e, regardless of our chosen
ε. Multiplying an ε-dependent maximum initial amplitude by a constant factor remains
ε-dependent. The actual significance of such an amplitude depends also on the size
of the domain, which is one of the parameters of the Swift-Hohenberg generated fields.
Furthermore, since we take ten images at arbitrary time snapshots, the relationship between
the maximum amplitude across fields is complex. This renders any normalization to
our data other than image-wise difficult to establish (or essentially meaningless). This
arbitrariness of levels is actually compatible with VGG16, in the sense that we expect that
the ImageNet photographs that it was trained to classify were acquired with arbitrary
levels and exposure.

We, therefore, normalize each image individually and subsequently transform the
resulting array to pixel intensity space. Since VGG16 takes color images as its input, we use
copies of our grayscale images as the input for the remaining two channels, before the final
pre-processing of the input provided as a Keras [75] method (centering and normalizing
each color channel with respect to ImageNet, and flipping RGB to BGR).

Subsampling

VGG16 takes 224 × 224-pixel images as inputs. In order to keep as much information
as possible, we sub-sampled a maximum of ten such images at random orientations for
each SEM image instead of downsampling the data. We allow for some variation in the
number of samples due to the varying quality of SEM images, some of which have large
patches consisting mostly of noise, which were removed.

Splitting the Dataset

As described in Section 3.4.3 one of the key assumptions in our framework is that the
likelihood is peaky, possibly in different subsets of the data. We do observe that several
SEM images have patches of two superimposed patterns of different length scales, an
assertion that can be confirmed by analyzing their Fourier power spectrum, as shown in
Figure 9.
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Figure 9. Pattern superposition: SEM image Fourier spectrum has two modal frequencies corre-
sponding to two different patterns of different characteristic wavelengths. (2D PSD) is a heatmap
of the logarithm of the Fourier power spectral density of the (Real) image. (1D PSD) is the fourth
power (to exaggerate peaks) of the 1D PSD, obtained by azimuthally averaging 2D PSD along radii
from the origin [76]. Peaks marked in red and labelled (a) and (b) are automatically extracted using
a SimPy [77] method and correspond to the physical wavelengths displayed in the labels. The two
images on the right are obtained from the real image by filtering out all wavelengths except the ones
corresponding to the 1D PSD peaks, by multiplying it in Fourier space with a “Gaussian annulus”
centered at the center of the image in Fourier space with a diameter equal to the wavelength of the
peak. Image (Filtered around (a)) highlights the “top” pattern, whereas image (Filtered around (b))
highlights the “bottom” pattern.

Since the SH equation is a single scale model, we built two expert-constructed datasets,
“bottom” and “top”, with respectively 435 and 550 samples taken at random orientations,
with a pattern that was found, in superimposed patterns, either bottom or on top. We
concatenated the data into an “full” dataset consisting of 985 images. A visualization of the
parameter ranges of each dataset can be seen in Figure 10.
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Figure 10. Real data laser parameters 3D scatter plots, with jitter for ease of visualization, for
the “top”, “bottom”, and “full” datasets with, respectively 550, 435, and 985 data points. Data is
represented in black, with projections on the Fluence/Delay plane in blue, Fluence/N plane in red,
and Delay/N plane in green.

4.2.4. Selecting the Best Feature Space

In order to select the best feature space, we performed a KNN clustering task on the
experimental images using Euclidean distance on each instance of the extracted features,
and asked the domain experts to assess the quality of the extracted clusters, as described in
Section 3.4.1.

We evaluate feature transformations consisting of variations of the features extracted
by pruning the last two layers of a pre-trained VGG16: a version denoted “normalized”
in which zero-variance features were removed and the remaining features scaled to unit
variance; a version denoted “scale variant”, where we explicitly introduce scale information
by concatenating the VGG16 extracted features with scale information consisting of a
1D power summary of the 2D power spectrum of each image obtained by azimuthally
averaging the 2D power spectrum (PSD) along radii from the origin [76]; and finally, a
version denoted “aligned”, in which a simple feature space alignment method [78] was
used to align the distributions of the generated and real images.
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Since normalization and alignment, as well as experts and MSE evaluations, are
dataset-dependent, we compare each of these feature mappings in each dataset: “bottom”,
“top”, “full”. We present a selection of the most relevant variations below.

Expert Clustering Results
As can be observed in Table 1 feature evaluation tends to favor the VGG16-extracted

features without further transformation. We show cluster assignment for a random sample
of images in the full dataset for the case of the VGG16-extracted features in Figure 11.
Adding the PSD features generally reduces the expert-assessed clustering quality, which
is consistent with the findings in [74]. If we choose to add the PSD features, however, we
observe that the clustering quality improves by performing feature subspace alignment
between real and SH-generated images, which can be explained by the fact that the PSD of
real images contains small-scale information that is not present in SH-generated images,
and that VGG16-extracted features are invariant to small-scale “noise”.

2

3

4

5

6

7

1

Figure 11. 10 random samples for each of the 7 clusters (numbered 1 through 7 in the figure) obtained
by k-means clustering (k = 7) for the f000 features, which consist of the full dataset projected into the
VGG16 feature space without further modification.

Table 1. Expert-assessed cluster quality for different feature choices. The best result for each dataset
is in bold. Adding the PSD features does not improve the expert-assessed clustering quality. If we
choose to add the PSD features, however, the clustering quality improves by performing feature
subspace alignment between real and SH-generated images.

Dataset PSD Normalized Aligned Accuracy

full False False False 0.778
full False False True 0.776
full True True True 0.699
full True True False 0.671
full True False True 0.634

bottom False False False 0.953
bottom False False True 0.952
bottom True True True 0.812
bottom True True False 0.712
bottom True False True 0.793

top False False False 0.857
top False False True 0.864
top True True True 0.855
top True True False 0.770
top True False True 0.709

4.3. Learning h : θ → ϕ

Having access to an SH solver, the key task is learning the function h from laser
parameter space to SH parameter space.

We begin by noting that the equation that we used throughout the paper is adimen-
sional, derived on symmetry grounds only. For that reason, the scale is a hyperparameter
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of our solver, which also needs to be learned. The experimental setting described in [18],
implies that there is a pattern solidification time that is independent of that of the pro-
cess (which is chiefly controlled by the order parameter). This makes it unlikely that the
observed patterns will be the long-time solutions to the SH equation: we are most likely
observing transients. This is also apparent from inspection (e.g., top real image, third
column in Figure 1. We thus choose as SH parameters the SH equation parameters ε and γ,
the SH solver domain size l given in units of 2π, and the solver evolution time t. The laser
parameters are Fp the laser peak fluence in units of J/cm², the time delay between pulses
∆t in picoseconds, and the number of laser pulses N.

We use the two methods described in Section 3.3 to learn h: directly Section 3.3.1 and
by maximizing a lower bound Section 3.3.2.

4.3.1. Learning h Directly

In order to learn h directly, we use the pre-trained surrogate Solversurr : ϕ → F
described in Section 4.1.3 with frozen weights, with the following objective:

min
α

1
M

M

∑
i=1

∥∥∥Solversurr ◦ hα(θ
i)− F(Ii)

∥∥∥
2

2
(18)

where hα is a neural network parameterized by α, and M is the number of experimental
data. We use a 4-hidden-layer neural network with GeLU activations, which we regularize
using weight decay. The number of units of the hidden layers are 64, 128, 64, and 4 (cf.
Figure 7). The network was trained over 1000 epochs with early stopping. We illustrate
this procedure in Figure 12.

Learn surrogate  Learn h Predict new patterns

SH( )=h(θ    )new

F(         )
(i)

φ(i)
f

f(φ )
(i)

F(         )
(i)

f
f(h(θ ) )

(i)
h

θ
(i)

h(θ )
(i)

Figure 12. Learning h directly: (left) we begin training a surrogate f (orange) of the SH solver SH(·)
in the image space of F, on a great number of pre-generated ϕ(i), F(SH(ϕ(i))) pairs (green), where
ϕ(i) are SH parameters and F(SH(ϕ(i))) is the image in feature space of the solution generated by
our solver with parameters ϕ(i), by minimizing the mean squared error in feature space; (center) we

then learn h : θ → ϕ (blue) with real data
{

θ(i), I(i)
}

i=1...M
(red) by minimizing the mean squared

error in feature space; (right) finally, we generate patterns for unseen θnew using the learned h and
the solver: SH(h(θnew)).

4.3.2. Learning h Indirectly

In order to learn h indirectly, we first “train” a 1NN model with respect to the Eu-
clidean distance on the pre-generated SH solutions Ii with parameters in the set Φpregen
(as described in Section 4.2.3) projected to feature space and assign to each experimental
datum the SH parameters of its nearest neighbor. Explicitly:

ϕi = arg min
ϕ∈Φpregen

∥∥∥Solver(ϕ)− F(Ii)
∥∥∥

2
(19)

we then learn h by minimizing the mean squared error in feature space

min
α

1
M

M

∑
i=1

∥∥∥ϕi − hα(θ
i)
∥∥∥2

2
(20)
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where hα is a support vector regressor with RBF kernel, C = 1.0 and ε = 0.1, and M the
number of experimental data. We illustrate this procedure in Figure 13.

Label real data  Learn h Predict new patterns
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φ
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(         ,       )F(     ) nn(2)
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Figure 13. Learning h indirectly: (left) we begin by labelling each experimental datum i (red) with
the SH parameter ϕnn(i) of its nearest neighbor, in the image space of F, among a great number of
pre-generated solutions of the SH equation (green); (center) we then learn h : θ → ϕ (blue) with data{

θ(i), ϕnn(i)

}
i=1...M

by minimizing the mean squared error in parameter space; (right) finally, we

generate patterns for unseen θnew using the learned h and the solver: SH(h(θnew)).

5. Experimental Results

In this section, we present the experimental results. We begin by showing a comparison
of cross-validation scores of the two methods in Section 4.3 as well as the feature mappings
and datasets defined in Section 4.2.4. Cross-validation results in feature space show high
variance, which is possibly a consequence of few training data, but could also be due to
problems in training the surrogate, which is used to evaluate the scores (see the direct model
discussion in Section 5.2 for details). In addition, the variety of feature transformations
renders direct comparison between scores in different spaces difficult to interpret. As
explained in Section 4.2.4, in our setting, the choice of feature space is best done by expert-
evaluated cluster accuracy.

We then show a selection of predictions of the learned models and a map of parameter
space for each dataset. We shall see that the choice of method is faced with much the same
difficulties as the choice of feature mapping. We observe that better cross-validation scores
do not necessarily lead to better predictions and that this is a consequence of the severe
constraints of our problem.

We also observe that our best model is able to recover the main features (shape and
scale) of test data and that the learned model is simpler for data where there is no pattern
superposition. We show evidence that splitting the dataset improves the quality of the
model, which suggests concurrent multiscale SH processes taking place, as explained in
Section 3.4.3.

5.1. Cross Validation

Ideally, in order to compare the different feature mappings and methods, we would
like to perform a 10-fold cross-validation of the mean squared error in feature space, which
is closest to the task. The problem with this approach is that the image space of different
feature mappings has different dimensions, which makes mean squared error comparison
for different feature mappings meaningless. An alternative would be to normalize mean
squared error by the variance, but this runs into the same problems that we discussed
in Section 3.4.1 and yields inconsistent results. If we use this method to normalize the
data the best feature space for the “full” dataset would underperform the expert-chosen
features by 7%. In order to circumvent these difficulties, we can compare MSE in the
4-dimensional image of h, which we call SH parameter space. Although cross-validation
scores become comparable across different feature spaces, this strategy is not without
problems. Indeed, MSE in feature space is not necessarily a good measure of feature quality
and the comparison across methods is unfair, since the indirect method relies on optimizing
MSE in parameter space to with respect to the nearest neighbors, which is advantageous.
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Baseline Method, Parameter Space
We define a baseline method as the “regressor” which predicts, for each datum, the

SH parameters of its nearest neighbor in feature space. Instead of presenting the 10-fold
cross-validation MSE results for this method, we actually present the leave-one-out cross-
validation results, the latter being a lower bound of the former. The reason is expedience
since the latter is simply the average squared distance between data in each dataset.

Cross Validation in Parameter Space
As we can observe in Table 2, cross-validation results for the direct method are com-

patible with the expert-based clustering results in Section 3.4.1, although the strength of
this conclusion is limited by the high variance in the scores.

Table 2. 10-fold cross-validation mean and standard deviation of MSE in SH parameter space for
different methods (baseline, direct, 1NN), datasets, and feature spaces. Each row is labeled as: dataset,
Includes PSD, Normalized, Aligned; 1 denotes True and 0 False. The b101 row, for example, lists the
MSE and standard deviation in SH parameter space for the bottom dataset (b) where features include
the PSD (1), are not normalized (0), and are aligned to with respect to the bottom dataset (1). The best
scores for each method for each dataset are highlighted in bold. Note that the SH parameter space is
the same for every row and column.

Baseline Direct 1NN

b000 8.019 2.065 ± 0.629 0.975 ± 0.202
b001 8.019 2.979 ± 1.146 0.870 ± 0.205
b101 8.019 3.701 ± 1.565 0.745 ± 0.283
b111 8.019 3.180 ± 2.739 0.765 ± 0.335

t000 8.015 2.169 ± 0.976 0.989 ± 0.150
t001 8.015 5.207 ± 5.226 0.914 ± 0.203
t101 8.015 5.323 ± 2.589 0.609 ± 0.142
t111 8.015 4.513 ± 6.354 0.615 ± 0.122

f000 8.008 2.351 ± 0.852 0.993 ± 0.950
f001 8.008 2.814 ± 1.814 0.912 ± 0.901
f101 8.008 3.693 ± 3.240 0.659 ± 0.201
f111 8.008 2.006 ± 0.330 0.694 ± 0.167

We also observe that cross-validation scores for the indirect method are best for fea-
tures for which the PSD was appended and real and generated data features are aligned.
Although the mean is strictly lower than in the case where the features are further normal-
ized, the score ranges intersect.

A possible explanation for the better performance of the aligned feature choices is that
the method crucially relies on the quality of the nearest neighbors. Fitting nearest neighbors
in high dimensions is difficult since all points tend to be equidistant. Since aligned feature
spaces are lower dimensional, their performance for this method should be better.

Baseline Method, Feature Space
We define a baseline method as follows: the “regressor” which predicts the features

of the nearest neighbor in feature space. As in the case of the parameter space baseline
above, we report the leave-one-out cross-validation MSE score, which is a lower bound of
the 10-fold cross-validation score, consisting of the mean squared distance between data in
each dataset.

Cross Validation in Feature Space
We present the 10-fold cross-validation scores in feature space for several choices of

modified VGG16 features, datasets, and methods in Table 3. We note the high variance of
the scores as well as the difference in scores across feature spaces spanning twelve orders
of magnitude. We also note that the “direct” method is always better, as we evaluated it
using the SH solver surrogate (doing a 10-fold cross-validation using the solver directly
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is impractical and would increase the variance even more), which makes for an unfair
comparison with the 1NN “indirect” method.

Table 3. 10-fold cross-validation mean and standard deviation of MSE in feature space for different
methods (baseline, direct, 1NN), and feature spaces, for the full dataset. Each row is labelled as:
dataset, Includes PSD, Normalized, Aligned; 1 denotes True and 0 False. The f000 row, for example,
lists the MSE and standard deviation in SH parameter space for the full dataset (f) where features
do not include the PSD (0), are not normalized (0) and are not aligned to with respect to the bottom
dataset (0). Best scores across rows are highlighted in bold. Note that comparing across columns is
meaningless, as MSE is calculated in different feature spaces.

Baseline Direct 1NN

b000 4.55 × 104 9.92 × 100 ± 7.23 × 10−1 1.46× 101 ± 5.27 × 10−1

b001 3.70 × 104 8.93 × 101 ± 9.73 × 100 1.37 × 102 ± 7.7 × 100

b101 2.75 × 109 3.95 × 106 ± 1.44 × 106 7.99 × 109 ± 1.45 × 109

b111 2.17 × 10−3 1.08 × 10−4 ± 2.00 × 10−4 7.98 × 10-3 ± 1.21 × 10−3

t000 4.54 × 104 1.08 × 101 ± 9.52 × 10−1 1.43 × 101 ± 8.04 × 10−1

t001 3.71 × 104 7.22 × 101 ± 6.05 × 100 9.36 × 101 ± 5.08 × 100

t101 6.25 × 109 3.92 × 107 ± 1.02 × 108 9.13 × 109 ± 1.88 × 109

t111 5.51 × 10−3 1.07 × 10−5 ± 1.46 × 10−6 1.25 × 10−2 ± 1.39 × 10−3

f000 4.73 × 104 1.08 × 101 ± 1.13 × 100 1.43 × 101 ± 2.73 × 10−1

f001 3.70 × 104 9.57 × 101 ± 1.04 × 101 1.44 × 102 ± 4.79 × 100

f101 6.93 × 109 9.09 × 106 ± 1.17 × 107 9.10 × 109 ± 1.10 × 109

f111 6.00 × 10−3 1.38 × 10−5 ± 4.48 × 10−6 1.02 × 10−2 ± 1.05 × 10−3

5.2. Model Predictions

In this section we present the model-predicted SH parameters for the expert-selected
features for unseen data from the “top”, “bottom” and “full” datasets, using the indirect
method. We also present the direct method model-predicted SH parameters (for the full
dataset only) which are inconsistent, and provide a possible explanation for this behavior.

5.2.1. Indirect Method

Comparing the model predictions for the “top”, “bottom”, and “full” datasets (cf.
Figures 14, 15 and 16, respectively), we note that the first two are much simpler than the
predictions learned on the combined dataset, which is consistent with the discussion about
pattern superposition in Section 4.2.3 and the hypothesis that there is more than one SH
process at play.

For all datasets, we note that the models struggle to extrapolate to regions for which
there is no experimental data, in particular for laser fluence: predictions were generated
for Fp ∈ (0, 0.5) for models trained on fluence data in (0.18, 0.24); but as can be seen in
the Figures above, we only show the fluence interval (0.1, 0.32) because outside this range
predictions are essentially constant. As for the time delay, experimental data ∆t ∈ [8, 25]
but we manage to observe interesting prediction in the [0, 50] range. For the laser parameter
N (number of pulses), in spite of most experimental data being sampled at N = 25,
models manage to extrapolate to unseen N based on two sets of experimental series at{
(Fp = 0.18 J/cm², ∆t = 10 ps, N)

}
N=6...36 and

{
(Fp = 0.18 J/cm², ∆t = 8 ps, N)

}
N=15...33

(the vertical lines in Figure 10). This opens up the possibility of improving predictions with
sparse additional experimental data, with a focus on the Fp laser parameter.

The SH parameter that shows the largest variation in predictions across values of N is
the evolution time t parameter—which is what we would expect, since a larger number of
pulses implies a process that is more extended in time. On the other hand, for all datasets,
the complexity of the learned relationship increases with the number of observations, with
sharp boundaries of rapidly varying parameters appearing where there is enough data.
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Figure 14. Each plot shows the predictions of the indirect model, trained on the “top” dataset, of a
single SH parameter, as a heatmap (top to bottom: system size in multiples of 2π; order parameter ε;
symmetry breaking parameter γ; solver evolution time) as a function of laser fluence, time delay, and
number of pulses (respectively, x-axis and y-axis, and column). Experimental points are overlaid on
each plot.
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Figure 15. Each plot shows the predictions of the indirect model, trained on the “bottom” dataset, of
a single SH parameter, as a heatmap (top to bottom: system size in multiples of 2π; order parameter
ε; symmetry breaking parameter γ; solver evolution time) as a function of laser fluence, time delay,
and number of pulses (respectively, x-axis and y-axis, and column). Experimental points are overlaid
on each plot.
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Figure 16. Each plot shows the predictions of the indirect model, trained on the full dataset, of a
single SH parameter, as a heatmap (top to bottom: system size in multiples of 2π; order parameter ε;
symmetry breaking parameter γ; solver evolution time) as a function of laser fluence, time delay, and
number of pulses (respectively, x-axis and y-axis, and column). Experimental points are overlaid on
each plot.

Also noteworthy is the correlation between the various SH parameters l, γ, ε, t, as
can be seen in Figure 17, which implies that one cannot design laser patterns freely. This
correlation changes as the number of pulses N of the laser varies, which again testifies to
the complexity of the underlying process.



Entropy 2022, 24, 1096 33 of 40

−0.093

−0.49

−0.49−0.47

−0.47

−0.16

−0.16

−0.29

−0.29

−0.071

−0.071

−0.32

−0.32

−0.15

−0.15

−0.37

−0.37

−0.093−0.18

−0.18

−0.59

−0.59 −0.55

−0.55 −0.7

−0.7

−0.81

−0.81

−0.51

−0.51

Figure 17. Mean squared error (top row) and Pearson’s coefficient (bottom row) between SH param-
eters l, ε, γ, t for indirect method predictions for the f000 features, for several values of N (columns).

System Size l
The parameter l is inversely correlated with the pattern characteristic size. Consistently

with observations, l increases with N. Interestingly, this increase is not uniform: it is greater
for large l regions in laser parameter space for low N, than for small l regions. The rapid
transitions between l regions that can be observed for all values N are of possible interest
to applications, in particular where other parameters are constant, as it would allow one to
control the characteristic size of the particular pattern defined by the other SH parameters.

Symmetry Breaking Parameter γ

The SH parameter γ determines whether we observe holes or bumps. Of particular
interest is the fact that for the “top” dataset, the transition from holes to bumps is in the ∆t
direction, whereas for the “bottom” dataset, the change is in the Fp direction. This suggests
that either two fundamentally different SH processes or a non-SH process are at play.

Order Parameter ε

To a larger parameter ε, farther from the onset, there correspond less ordered patterns,
since there is a greater number of non-attenuated Fourier modes. The large ε low order
patches at high fluence/low delay for the “bottom” dataset are consistent with this fact and
match observations. For the “top” dataset, however, we observe an ordered pattern region
of low ε and small l at low values of delay, which is more challenging to interpret. For
the “full” dataset, the complexity of the ε isosurfaces in the central region of and around
the isosurface of γ = 0 is consistent with observations where a lower symmetry pattern is
superimposed on a highly symmetric grid pattern (cf. Figure 1).

Evolution Time t
For constant l, ε, γ, symmetry increases with evolution time t as highly symmetric

patterns require a large t to produce from a uniformly random state.
On the other hand, for all datasets, evolution time t tends to increase with N, which is

consistent with the physical situation, as a large number of pulses increases the time the
physical system is in a driven state. This increase, however, is not uniform across fluence,
delay pairs: indeed we observe that the area of the region in laser parameter space of
relatively long evolution time decreases with N.

Generating Novel Patterns

Instead of relying on the SH parameter interpretations above, one can use the SH
solver to generate new patterns, as illustrated in Figure 13. We present the generated
solutions from unseen laser parameters together with the corresponding real SEM image
and nearest neighbors in feature space in Figure 18. Comparing solutions generated by the
model from unseen test data to real SEM images allows further interpretation. The model
does quite well for the ‘Stripes’ and ‘Hexagons’ group, as there is a single pattern to learn.
For the two other groups, there is more than one pattern/feature superimposed on the
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SEM image. Note that the model does predict one of the observed patterns with the correct
scale and shape but, by design, it cannot possibly predict the other. For the ‘Stripes and
Bumps’ group, for instance, we observe nanopeaks and lower-frequency stripes among the
nearest neighbors, whereas the model predicts the lower frequency pattern only. For the
“HSFL and Humps” group, where the difference in pattern frequency is more pronounced,
again the model focuses on the lower frequency pattern; the high-frequency pattern is no
longer among the nearest neighbors.

HexagonsStripes

HSFL & Humps

real pred

Nearest neighbors

0.24 J/cm², 25 ps, 25 11.3 | 0.11 | −0.61 | 167.3

13.0 | 0.04 | −1.61 | 158.5 12.3 | 0.15 | −1.19 | 311.8 12.7 | 0.13 | −0.88 | 205.1

real pred

Nearest neighbors

0.20 J/cm², 22 ps, 25 15.2 | 0.14 | 0.33 | 292.9

13.1 | 0.07 | −0.45 | 26.9 12.3 | 0.02 | −0.28 | 857.3 14.8 | 0.01 | −1.36 | 15.5

Stripes & Bumps
predreal

Nearest neighbors

0.18 J/cm², 8 ps, 27 8.7| 0.26 | 0.68 | 107.5

6.5 | 0.06 | −0.18 | 2508.1 7.1 | 0.06 | −0.06 | 1396.1 12.2 | 0.01 | 0.51 | 135.8

real pred

Nearest neighbors

0.18 J/cm², 10 ps, 31 6.7 | 0.23 | 0.60 | 56.1

6.0 | 0.09 | −0.09 | 919.9 6.2 | 0.12 | 0.08 | 712.4 7.0 | 0.74 | −1.52 | 2.4

Figure 18. Each group shows experimental SEM images (red, never seen by the model), model
predicted images (green, trained on the “full” dataset using the indirect method), given the same
laser parameters and three nearest neighbors of the former among solver generated images (blue).
Image labels, left to right: Fp, ∆t, N (real images); l, ε, γ, t̃ (other images). All images are 224 by
224 pixels; for real images, 1 µm≈ 237 pixels. Model’s predictions are better than the nearest neighbor
since they integrate global information. On the “Stripes and Bumps” group, we observe nearest
neighbors with different length scales, suggesting concurrent multi-scale SH processes taking place.
Only one of these can be recovered by the ML model (the stripes, rather than the nanobumps), which
integrates single-scale SH knowledge. On the “HSFL and Humps” group, the real image has a top,
low-frequency pattern, and a finer grid pattern underneath. The model predicts the former, which is
also the only among the nearest neighbors.
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5.2.2. Direct Method

While the surrogate trains well on SH-generated data, as can be seen in Figure 19, the
h model, which trains on few real data, is unstable.

Although this small dataset artifact could partially explain why the direct method
fails to yield accurate predictions, the problem remains even for “aligned” datasets and
for typical training runs, closer to the center of the confidence interval, as can be seen in
Figure 20.

h h

Figure 19. Direct method training and test (90/10) loss curves (mean and 95% confidence interval):
(left) surrogate training on the large dataset of SH-generated data is stable, with narrow confidence
interval bands; in all runs, early stopping was activated considerably earlier than the 1000 epoch
limit (center) the h : θ → ϕ model, trained on few real data (the “full” dataset), on the other hand,
is unstable; this behavior could be attributed to the dataset size, but the problem remains even
for typical runs (right) detail of h : θ → ϕ training, with outliers for which training MSE exceeds
50 removed. A number of runs for which no early stopping was “activated” is evident, which
provides further evidence of training instability.

It is known that surrogates using fully connected architectures often fail to achieve
stable training by gradient descent and produce accurate predictions [79–81], and it is
believed that this phenomenon is due to the difficulty of deep fully-connected networks
in learning high-frequency functions [82]. We note that since we learn the surrogate on
feature space, we cannot assess generated solutions’ accuracy directly. That being said, this
unstable behavior is consistent with the very large variance observed in the cross-validation
experiments in feature space Section 5.1.

While methods have been proposed to improve this behavior, either by introducing
an adaptive learning rate [83] or by adjusting the weight of each term in the loss according
to the singular values of the Neural Tangent Kernel [82], we do not use them in this paper,
as the indirect method provides satisfactory results, is robust, and straightforward to
implement.
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Figure 20. Each plot shows the predictions of the direct model, trained on the “full” dataset, of a
single SH parameter, as a heatmap (top to bottom: system size in multiples of 2π; order parameter ε;
symmetry breaking parameter γ; solver evolution time) as a function of laser fluence, time delay, and
the number of pulses (respectively, x-axis and y-axis, and column). Experimental points are overlaid
on each plot.

6. Conclusions

In this paper, we integrated partial physical knowledge in the form of a PDE, the
SH equation, to solve the problem of predicting novel nanoscale patterns in femtosecond
irradiated surfaces. We showed that in the case of a self-organization process, the dual in-
verse problem of estimating state and equation parameters simplifies by choosing a feature
transformation in the image space in which the initial conditions play a less important role.
In the case where data is few and not time-series and the physical knowledge is only partial,
this transformation can neither be learned nor derived: we use as transformation the higher-
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order features of a CNN pre-trained on a large dataset for a broad task. We proposed a
principled approach to choosing such a feature transformation, and an expert-based quality
measure of the features as well.

We integrated the PDE knowledge by implementing a fast and accurate second-
order pseudospectral solver of the SH equation and then by using a great number of
pre-generated solutions to learn a surrogate in feature space, on the one hand, and to label
the few experimental data with SH parameters of the nearest neighbors in feature space, in
the other. This technique allowed us to learn the relationship between laser parameters
and SH parameters (with which novel laser patterns can be generated via the solver), a
relationship that can be used as an experimental tool to guide new pattern discovery.

This led us to make a number of observations. First, in spite of the good agreement
between the partial SH model predictions and experimental data, we also found evidence
that there is more than one SH process at play. This leaves the door open to either using
a generalized SH model that integrates several length scales, or exploring possibilities to
combine multimodal single-scale data into a superimposed solution. Second, we observed
that pattern features are not independent; finding novel patterns requires searching laser
parameter space “creatively” by looking at regions where some SH parameter varies and
some other does not. Third, we noted that although the model does not extrapolate well, it
is still able to learn interesting features from little data. This opens the door to a dialectic
approach to novel pattern discovery: one could simply acquire new experimental data
iteratively in order to fill in the gaps in the laser parameter space until the predictions
stabilize; since the SH model is already trained and data is pre-generated, integrating new
experimental data only requires retraining a simple model on few data.

The main challenge in our approach is the scarcity of data. Although it is always
possible, in principle, to acquire more experimental data, in practice the amount of data is
unlikely to change because the cost is too high. In the laser pattern case, one possibility to
circumvent this limitation is to combine data from experiments on several materials using
domain adaptation [84], which would increase data by an order of magnitude and open the
door to exploring patterns in unseen materials, which has great interest for applications.
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