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Simple Summary: The second law of thermodynamics has a mystical appeal in disciplines with
tenuous connections to its origins. We hypothesize that many of these appeals instead should be
to another principle heretofore unrecognized: the law of mixed-up-ness (LOM). Instead of using a
number such as entropy to characterize randomness, non-thermodynamic systems can be arranged in
simple diagrams according to their degree of mixed-up-ness. Curiously, the evolution of such systems
from degrees of low to high mixed-up-ness is both consistent with and richer than the principle of
increasing entropy.

Abstract: Mixed-up-ness can be traced to unpublished notes by Josiah Gibbs. Subsequently, the
concept was developed independently, and under somewhat different names, by other investigators.
The central idea of mixed-up-ness is that systems states can be organized in a hierarchy by their degree
of mixed-up-ness. In its purest form, the organizing principle is independent of thermodynamic
and statistical mechanics principles, nor does it imply irreversibility. Yet, Gibbs and subsequent
investigators kept entropy as the essential concept in determining system evolution, thus retaining the
notion that systems evolve from states of perfect “order” to states of total “disorder”. Nevertheless,
increasing mixed-up-ness is consistent with increasing entropy; however, there is no unique one-to-
one connection between the two. We illustrate the notion of mixed-up-ness with an application to
the permutation function of integer partitions and then formalize the notion of mixed-up-ness as a
fundamental hierarchal principle, the law of mixed-up-ness (LOM), for non-thermodynamic systems.

Keywords: entropy; majorization; incomparability; Young Diagram Lattice; mixed-up-ness

PACS: 01.55.+b; 01.70.+b; 05.50.+q; 05.70.–a

1. Introduction

The conservation of mass/energy, charge, and momentum are universally regarded as
fundamental laws of physics and thus cannot be deduced from a more basic set of principles.
They are equalities that apply to discrete corporeal objects. The equation statements of
these laws are indifferent to the direction of time, and they specify state variables such as
mass, charge, and velocity, which can be measured with high degrees of precision.

A common statement of the second law of thermodynamics (SL), is that for every
system in equilibrium the entropy change of the system and its surroundings, considered
together, is positive and approaches zero for any process that approaches reversibility.
Beginning with tedious experiments on heat-engine efficiencies at the start of the industrial
revolution, this law rose to become the superior of all scientific laws. Sir Arthur Eddington
succinctly stated this point of view in his famous quote:

The law that entropy always increases holds, I think, the supreme position among the
laws of nature. If someone points out to you that your pet theory of the universe is
in disagreement with Maxwell’s equations—then so much the worse for Maxwell’s
equations. If it is found to be contradicted by observations—well, these experimentalists
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do bungle things sometimes. But if your theory is found to be against the second law
of thermodynamics, I can give you no hope; there is nothing for it but to collapse in
deepest humiliation.

The second law differs in two quintessential ways from the other fundamental laws.
First and foremost, it is an inequality. References [1,2], and the incisive review of [3] provide
excellent synopses of the scientific and philosophical issues regarding the SL inequality
and the arrow of time. Second, in contrast to the state variables of other fundamental laws,
classical thermodynamic theory is ambiguous about how to measure entropy. Grad [4]
perceptively noted that there are many entropies. In both classical thermodynamics and
statistical mechanics, entropy change only determines precedence of states, but is silent
about when they will occur. See also Klika et al. [5,6] for more recent discussions on
multiscale interpretations of entropy.

There are two other subtle but significant differences between the SL and all other
fundamental laws. First, there is the relationship between the SL and statistical mechanics,
which differs from the relationship between classical and quantum mechanics. In the latter
case, the correspondence principle relates the expected values of momentum and position
obtained from Schrödinger’s equation with Newton’s laws. This establishes a consistency
relation between quantum mechanics and Newton’s laws, not a proof that Newton’s laws
are based on quantum mechanical principles. This stands in contrast to a common belief
that the SL is based on statistical mechanical principles.

The other distinction, our prime motivator here, is the breadth of disciplines that
claim some ontological connection to the SL yet provide no link to energy or the first law
of thermodynamics. Ben-Naim [7] has provided an incisive review and commentary of
many examples.

In reviewing some of these examples, several overarching themes emerge that have
no obvious connection to thermodynamics. First, they often refer to ethereal or conceptual
entities. In contrast, thermodynamics and statistical physics deal with corporeal entities that
are readily measured. They attempt to characterize the tendency of many systems to evolve
towards randomness; hence, the appeal to the statistical mechanical concept of entropy.
Applicants have a need to characterize an order or sequence in inordinate data sets that are
independent of thermodynamics, statistical mechanics, or irreversibility. Establishing order
requires an inequality, but irreversibility generally is irrelevant in these applications. Finally,
contrary to the origins and use of the SL where there are close connections with energy
flow, energy considerations in the appeals are usually indirect, after the fact, or even absent.

The disconnect between references to the SL independent of classical thermodynamics
or statistical mechanics was recognized by Denbigh [8], who laconically noted, “There are
many entropies and not all of them are related to the second law of thermodynamics”. One
also is reminded of the wry suggestion by John von Neumann to Claude Shannon (see [9])
on what to name the latter’s information measure:

You should call it entropy, for two reasons. In the first place your uncertainty function
has been used in statistical mechanics under that name, so it already has a name. In the
second place, and more importantly, no one really knows what entropy really is, so in a
debate you will always have the advantage.

Von Neumann recognized that Shannon’s information function was proportional to
that used in statistical physics since the time of Boltzmann. While it is reasonable to broaden
the meaning and use of scientific terms—consider the vernacular uses of “energy” and
“momentum”—we question whether entropy is the appropriate descriptor of the evolution
of non-thermodynamic systems. In traditional thermodynamic applications of the SL there
are other parameters, such as temperature, pressure, etc., that impact the evolution of these
systems. This is not the case for non-thermodynamic SL appeals since they rarely, if ever,
specify additional factors that could govern system evolution.

Our proposal is to use mixed-up-ness instead of entropy as the critical diagnostic to
gauge the evolution of non-thermodynamic systems. Mixed-up-ness differs fundamentally
from entropy. Entropy is a number whose value depends on user-specific algorithms;
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mixed-up-ness is depicted as a diagram, specifically a Young Diagram as discussed in
detail by Ruch and Mead [10]. There is no ambiguity in Young Diagrams. The increase in
mixed-up-ness is given by a Young Diagram Lattice (YDL), a sequence of Young Diagrams
determined by majorization.

Does this connect with classical thermodynamics and statistical mechanics, which
emphasizes entropy as the diagnostic variable? Jaynes [11] established a rigorous con-
nection between Shannon’s formulation and Gibbsian statistical mechanics. In reviewing
Jaynes’ work, Dias and Shimony [12] stated that the maximum entropy principle advocated
by Jaynes

... is uniquely determined as the one which is maximally noncommittal with regard
to missing information and it provides the most honest description of what we know.
Between this quite plausible justification and the residual suspicion that somehow too
much knowledge has been extracted from ignorance there may appear to be a deadlock.

It is our view that extracting too much knowledge from ignorance is a serious yet
unrecognized issue in non-thermodynamic references to the SL. In a vast majority of these
references, a Gibbsian statistical mechanics version of entropy characterizes randomness or
disorder. We have two concerns. First, as preceptively suggested by [12], entropy may not
be a natural gauge of ignorance. Second, the Boltzmann entropy, the most commonly used
version of entropy in non-thermodynamic applications of the SL, has numerous degenerate
or isentropic states [13]. In traditional thermodynamics, there are state variables such as
temperature and pressure, etc,. that govern system evolution. In these cases, degenerate
entropies may not be a serious impediment in diagnosing system evolution. This is not
the case for non-thermodynamic SL applications since they generally do not specify other
factors that could govern system organization/evolution.

So how can ignorance be quantified, and what is a suitable state variable for our
approach? We suggest majorization is the key, as it establishes all states that are accessible
via the YDL from any prescribed state. However, often there are many states that cannot be
accessed from the YDL by a given state. Simply put, a given state is ignorant of such states.
Hence, the number of inaccessible states of a given state is an appropriate state variable.

Our hypothesis is that appeals to the SL with tenuous connections to thermodynamics
or statistical mechanics are misdirected. Instead, they should be to a different principle
with no connection to energy, thermodynamics, or statistical mechanics. The primary goal
in this communication is to put forward a precise statement of such a principle, yet is still
consistent with the notion of ordering by entropy. To this end, the balance of our report is
organized as follows. Section 2 reviews three disparate lines of research that point to such
a principle. Section 3 introduces the notion of mixed-up-ness with a simple example and
reviews the essential mathematical details of integer partitions (IP), hereafter referred to
as IPs. IPs are a logical choice to illustrate the LOM because they are readily connected
to the Boltzmann entropy, which has wide applications in science and engineering. See,
for example, Refs. [14–17] and references cited therein. Section 4 explores the connection
between mixed-up-ness and IPs. Section 5 provides an example of how mixed-up-ness
can organize a large relational database. Section 6 summarizes our analysis and discusses
metaphysical implications of the LOM.

2. Background

Perhaps the first to recognize the need for an entropy principle without recourse
to classical thermodynamics was Josiah Gibbs [18]. Although Gibbs’ notes on this were
unpublished, his notion of mixed-up-ness seems to us to be the appropriate descriptor and
is adopted here.

Later, Ernst Ruch and associates [10,19–22] developed and applied a mixing schema
based on the majorization partial order and the Young Diagram Lattice (hereafter YDL).
This approach was demonstrated to be consistent with a monotonic increase in entropy
as prescribed by the second law of thermodynamics; however, it does not involve energy.
In Section 3, we return to Ruch’s analysis of mixing, here termed mixed-up-ness.
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Finally, in 1999, Lieb and Yngvason [23] argued that since the SL is recognized as a
fundamental principle it does not require any statistical or quantum foundation. Subse-
quent publications [24–26] developed a conceptual basis for the SL without reference to
either statistical mechanics or heat engines. Hereafter, we often refer to this body of work
as LY.

A critical aspect of LY is the comparison of different equilibrium states via “adiabatic
accessibility” to determine the order, or precedence, in which they occur. In Ref. [24],
they assert that an equilibrium state X precedes an equilibrium state Y if and only if
an entropy function S(X) ≤ S(Y) exists. For our purposes, it is sufficient to simply
require that X precedes, or can evolve to, Y. We stress that the precedence schema of
LY does not specify time, much less a direction of time. Their cynosure is the order of
occurrence, or precedence. Note that LY, [19], Gibbs [18], and our development here are
mute concerning reversibility/irreversibility. As shown by Pavelka et al. [27] in the General
Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) formulation
of thermodynamics entropy alone is not sufficient to gauge reversibily/irreversibility.

3. Mixed-Up-Ness and the Mathematics of Integer Partitions

The notion of mixed-up-ness and IPs has a curious history. It began with the study
of partitions of integers, where a partition of a positive integer N is a multiset of positive
integers that sum to N. The first important theorem regarding partitions is due to Euler [28],
the father of partition theory. One hundred and fifty years later, R. F. Muirhead [29]
developed a partial order among partitions known as majorization. At approximately the
same time, Alfred Young demonstrated that a diagrammatic representation of majorization
is a mathematical lattice, now often referred to as the Young Diagram Lattice (YDL).

While studying chirality, Ruch [19] introduced a general concept, which he called
mixing, that applies to any set of objects that can be divided into subsets without objects in
common. The partitions of integers are all possible subsets of integers that sum to N. Using
a theorem from Hardy et al. [30], Ruch proved that mixing and the majorization partial
order are mathematically equivalent.

The concept of the mixed-up-ness partial order is illustrated by a simple example.
Consider 4 baskets of fruits, each containing different combinations of apples, pears,
and oranges. Suppose further that 2 baskets contain 4 apples and 2 pears each, and the
other 2 baskets have 4 apples and 2 oranges each. Now, mix the four baskets together in
one large basket. This gives a basket containing 16 apples, 4 pears, and 4 oranges. This
is equivalent to four baskets each containing 4 apples, 1 pear, and 1 orange. As this was
obtained by mixing the original 4 baskets, we conclude that 4 apples, 1 pear, and 1 orange
is more mixed up than the original baskets. Or, a 4, 1,1 combination is more mixed than
a 4, 2 combination. However, if we repeat this procedure with a 3, 3 combination of
fruits for the 4 baskets, it is straightforward to see that it is impossible to obtain a 4, 1, 1
basket of anything from any 3, 3 combination, and vice versa. The significance that some
combinations are neither more nor less mixed up is shown later.

To make the idea of mixed-up-ness more precise, we write the jth partition of N
as pj = [n1j, n2j, · · · , nNj] with ∑N

i=1 nij = N for every j, nij ≥ ni+1j, and j = 1, · · · , N∗,
where N∗ is the total number of partitions of N. For N = 10, N∗ = 42 (see Figure 1, for the
associated YDL). Hereafter, we simplify the notation so that partition elements that are 0
are not demonstrated and repeated elements are indicated by an exponent that indicates
the number of repetitions. For example, for N = 10 the partition [3, 2, 2, 1, 1, 1, 0, 0, 0, 0] is
written as [3, 22, 13]. We characterize any partition pj by 3 integers. The first is obvious:
The sum of all partition elements is N. The second is the partition permutation number
given by

Ωj =
N!

∏N
i nij!

∀ j = 1, · · · , N∗. (1)
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This is recognized as the number of ways the N elements of pj can be arranged in the parti-
tion. Ωj also has a foundational role in statistical physics since its logarithm is proportional
to the Boltzmann entropy. The third is incomparability, discussed below.

Figure 1. This figure shows the lattice for 41 of the 42 Young Diagrams. The last Young Diagram is
not shown. See text for further explanation.

A curious and important feature of IPs is that for N ≥ 7 there are some Ωj that are
the same, i.e., they are degenerate. N = 7 provides a simple example. Here, the partitions
[4, 13] and [3, 22] have the same permutation number, 210. Moreover, for large N most
Ωj are degenerate [13]. This turns out to be a crucial aspect of our analysis that was
not recognized by Gibbs [18]), Ruch [19], or Lieb and Yngvason [23]. The degeneracies
imply partial ordering for those entropy values, which leads naturally to majorization and
incomparability.

Any vector can be partially ordered by majorization. Moreover, the partitions in the
permutation function, (1) are IPs, hence we need only to consider the special case where the vec-
tors are IPs. To define the majorization of IPs, consider two partitions pj = [n1j, n2j, · · · , nNj]
and qj = [m1j, m2j, · · · , mNj]. Partition pj is said to majorize partition qj, symbolized as
pj � qj, if

k

∑
i=1

nij ≥
k

∑
i=1

mij ∀ k = 1, · · ·N; j = 1, · · ·N∗. (2)

If pj does not majorize qj and qj does not majorize pj, these two partitions are termed
incomparable. As an example, it is readily observed that the two partitions [4, 12] and [32] in
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the fruit basket example discussed above are incomparable. The physical implication is
that if pj and qj are incomparable, then pj cannot evolve to qj and vice versa.

From (1) and (2) it follows that if

pj � qj then Ω(pj) < Ω(qj). (3)

In the [24] schema, this result is not a trivial matter. We return to this issue in Section 5.
Partial ordering leads to the third property considered here, the incomparability

number Cj. This is the number of partitions that are incomparable to a partition pj. Cj
can be determined arithmetically by merely counting the number of partitions that do not
satisfy (2) for partition pj. Alternatively, there is a geometric approach, which proves to be
more appropriate for directed lattices. In the graph theory of partially ordered sets, the YDL
(see Figure 1) is a directed graph or digraph, which is a lattice. Edges in a directed graph
connect neighboring vertices or nodes. A walk on a graph is a finite or infinite sequence
of nodes. A trail is a walk in which edges are distinct, and a path is a trail in which all
vertices (consequently all edges) are distinct [31]. For the YDL, two nodes, i.e., partitions
in the present case, are comparable if there is a path between them and incomparable if
not. Consequently, paths along the YDL only visit comparable partitions. In Figure 1, paths
follow solid black lines.

These ideas are illustrated in Figure 1, which shows the YDL for N = 10. The green
colored Young Diagram in this figure ([6, 14]) has the highest incomparability number Cj
of 12. The incomparable partitions are shown in red. The permitted transitions under ma-
jorization in this figure are shown by black lines, while the blue lines are not permitted [32].
By inspection, one finds that the shortest paths for N = 10 on the YDL visit 16 partitions
while the longest visit 20 partitions.

What is the connection between the Cj and the comparison of equilibrium states by
adiabatic accessibility discussed by [24]? In a physicist’s view, every partition is an equi-
librium or observable state, and the counterpart of adiabatic accessibility is comparability
by majorization. That is, if pj � qj, we claim that pj precedes, or can evolve to qj through
majorization. Clearly, incomparable partitions do not meet this criterion. So even though
[4, 13] and [3, 22] have the same permutation number, they are not accessible to each other.
Put another way, if pj and qj are incomparable then they are ignorant of the existence of
each other. As previously observed, many pj may have the same Ωj, and we have found
that a few of these partitions may also have the same Cj.

The information on partitions quickly accumulates simply because of the rapid increase
in the number of partitions with N. To categorize this large amount of information, we
appeal to the notion of relational databases as developed by [33]. Relational databases
arrange information into tables. Each row of a table contains a record or a tuple and a
unique key. Rows in a table can be linked to rows in other tables by adding a column for the
unique key of the linked row. Data relationships of arbitrary complexity are now routinely
treated by these concepts.

For IPs of any N, there is a relational database D0 composed of 3 tables. These are
P, a list of every partition pj; Ω, the permutation numbers Ωj for all N∗ partitions; and C,
the incomparability numbers Cj for those partitions. Each table has N∗ records, all entries
in the tables are integers, and the order of the records retains the 1:1 relationship between
P, Ω, and C. That is,

P m Ω m C. (4)

We return to the IP database in Section 5.

4. The Law of Mixed-Up-Ness for Integer Partitions

As stated in the introduction, IPs are especially appropriate for an application of the
LOM. In this section, we explore the philosophical connections between IPs and the notion
of mixed-up-ness. It is convenient to take two complimentary points of view. One is a
static approach that focuses on characterizations of mixing states, effectively formalizing
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the discussion on mixing in Section 3. The other is a dynamic approach, which relies on the
YDL to establish sequences of the partitions. Semantically, these two approaches are based
on the use of mix as a noun or verb.

As a noun, mix specifies the number of each type of objects in a mix. This is represented
as a single partition. The relational database D0 contains the information for all possible
mixes of N objects. In this database, P is the table of partitions; Ω is the table of permutation
numbers for each partition obtained from (1); and C is the table of incomparability numbers
for each partition obtained from exhaustive calculations using (2). For N = 61 there are
1, 121, 505 entries in each of these tables. This information is visualized as a plot of (Ωj, Cj)
in Figure 2, which we call the mixing space for N = 61. Because of the huge range in values,
the abscissa is scaled as Ω̂ = (ln N!)−1 ln Ω and the ordinate as Ĉ = N−1

∗ C. This is the
static view of a mix.

Figure 2. Mixing space for N = 61, the scatter plot of Ĉ (Scaled Incomparability Number) vs. Ω̂

(Scaled Permutation Number).

Two features of Figure 2 are particularly noteworthy. The first is the huge range of
incomparable partitions. All partitions, other than the first and last three along the abscissa,
have nonzero incomparability numbers. Moreover, the range of the incomparability num-
bers can be quite large, especially for those near the midpoint of the abscissa. The other
noteworthy feature is the bell shape of the upper and lower boundaries and the density of
partitions between these boundaries in the midrange of Ω̂. The density of partitions shows
there are many values of Ĉ for any given value of Ω̂ and vice versa. The large range of Ĉ
for a given Ω̂ is of particular interest.

Figure 3 shows an extremely thin slice of Figure 2 between 0.6172 < Ω̂ < 0.6178.
The noteworthy feature of this figure is the vertical stripes indicating the presence of
degenerate Ω̂ or doppelgängers [13]. This suggests that the thickness of Figure 2 is due to a
large number of degenerate permutation numbers.

Data for N = 61 illustrate the significant role of degenerate entropies. The total
number of partitions is given by

N∗ =
dmax

∑
d=1

nd. (5)

where d is the degeneracy, nd is the number of partitions of degeneracy d, and dmax is the
maximum degeneracy. For N = 61 N∗ = 1,121,505, dmax = 206, n1 = 31, 054, n2 = 31,242,
n3 = 36,045, · · · , ndmax = 206. The number of distinct permutation numbers is given by

Nu =
dmax

∑
d=1

nd/d. (6)
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For N = 61 Nu = 119,103.

Figure 3. Slice of Figure 2 for the region 0.6172 < Ω̂ < 0.6178. The vertical stripes are degenerate Ω̂.

As a verb, mix describes a dynamic process that changes the makeup of a system,
in our case, a process that converts one partition to another. To study this, we refer to the
YDL (see Figure 1) for the case of N = 10. In the YDL, each node is a partition, and the
YDL shows the allowed transitions from one partition to the next in the partial order.
For much of what follows, we consider paths that travel from partition [N] to partition
[1N ]; recall the definition of a path given in Section 3. It is clear from (3) that the Ωj increase
monotonically along every path. However, the Cj do not. Below we argue that while
entropic considerations lead to the SL, the inclusion of both incomparability number Cj
and permutation number Ωj lead to another principle, the LOM.

In order to connect our IP application to LY, we regard each partition as an equilibrium
state. Thus the question: How might the partitions be organized to provide some sense of
coherence?

To do this we appeal to the “single-shot statistical mechanics” approach [34,35]. One
aspect of this approach questions von Neumann entropy in non-equilibrium systems.
Egloff et al. [35] state, “We argue it (majorization) should therefore be the central quantity
of statistical mechanics, rather than the von Neumann entropy”. This was recognized much
earlier by [19] in his statement of the principle of increasing mixing character:

The time development of statistical (Gibbs) ensemble of isolated systems (microcanonical
ensemble) proceeds in such a way that the mixing character increases monotonically.
Increase of mixing character is equivalent to increase of mixing disorder and decrease of
statistical order.

Ruch’s principle of increasing mixing character neither requires energetics nor statisti-
cal mechanics. Both Ruch and Egloff conclude that majorization determines precedence.

Seitz and Kirwan [36] studied paths on the YDL from partition [N] to partition [1N ]
and found from standard lattice dynamic Monte Carlo simulations [37] that the distribution
of path lengths L scaled as L ∼ N4/3. Thus, an individual YDL experiment samples a small
fraction of the relational database D0.

Figure 4 shows four example paths, corresponding to four single shot experiments,
superimposed on Figure 2. The path lengths vary from 197 to 294. Here, we show paths in
the mixing space (Ω̂j, Ĉj) since paths on the YDL itself cannot be demonstrated because the
number of nodes is greater than 106.

Shorter paths occupy states along the outer portions of Figure 2, whereas the longer
paths visit the inner regions. Two aspects of this figure seem noteworthy. The first is the
wide variation in incomparability both along each path and between the paths. Apparently,
there is little correlation between the maximum incomparability of individual paths and
the maximum incomparability of the mixing space. The second is the intersection of the
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paths at both low and high values of Ω̂. However, at intermediate values there appears to
be a general separation of the paths.

Figure 4. Four example paths in the mixing space of N = 61 superposed on Figure 2. Blue path is
length 197, black path is length 206, red path is length 254, green path is length 294.

Figure 4 illustrates a diversity of paths of different lengths. What about paths that have
the same length? Figure 5 shows six representative paths all of length 294. The size of the
area of the scatter plot covered by this small number of sample paths and the consequent
variability in comparability is surprisingly large, although neither are so great as in Figure 4.
Perhaps the most remarkable characteristic of Figure 5 is that the paths intersect at many
values of Ω̂. The paths cross each other numerous times in this small interval as well as are
parallel or completely overlap for brief segments of Ω̂. We call this a tangle of paths.

Figure 5. Six example paths in the mixing space of N = 61 of length 294 superposed on Figure 2.
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The tangles, along with a variation in incomparability, are illustrated in more detail in
Figure 6, which is a slice near the region of maximum incomparability in Figure 5. Note,
in particular, the large number of intersections of the different paths in a narrow region
of Ω̂.

Figure 6. Slice of 6 paths shown in Figure 5 in region 0.58 ≤ Ω̂ ≤ 0.68.

Figures 4 and 5 are a compilation of just 10 Monte Carlo-simulated paths. Although the
paths vary in length and cover a swath of the mixing space shown in Figure 2, it is clear
that many more simulations would be needed to sample all partitions.

5. Analysis of the Integer Partition Relational Database

We return now to the database discussed in Section 3. The table of partitions P, of D0,
is ordered from 1 to N∗ according to whatever algorithm was used to generate the partitions.
Tables Ω and C are obtained by the permutation number and incomparability number for
each partition in P, but they are not in any particular order. However, as stated by (4), they
retain a 1:1 relationship with their respective partitions.

What is the connection within the database D0 (composed of 3 tables of apparently
randomly sorted records) that is relevant to the LY development of a second law of thermo-
dynamics independent of heat engines and statistical mechanics? To answer this question,
we appeal to three demons charged with establishing some sense of structure to D0.

An “entropy” demon links P to Ω by an unique key and sorts Ω in non-decreasing
order while retaining the links to P. In the sorted Ω clearly

Ωj+1 −Ωj ≡ 4Ωj ≥ 0, j = 1, · · · , N∗ − 1. (7)

This provides some semblance of order to the original database D0. It calls this new
database D1. However, as noted earlier, many Ωj are degenerate and hence there are many
partitions linked to a single value of Ωj. This prompts the demon to postulate the existence
of “isentropic” processes to account for degenerate Ωj.

A second “lazy” demon does not accept the idea of isentropic processes. In the spirit
of LY, It opts to rely on “real world experience” and elects to perform an ensemble of
“single-shot” experiments. As Ω increases, when each degenerate Ωj occurs, the experiment
selects only one. It then concludes
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4Ω̃k > 0, k = 1, · · · , Nu − 1 (8)

for every ensemble member k. Here, Nu is the number of distinct values of Ωj given by (6).
The lazy demon produces an ensemble of databases D2, each of which has two tables:
one Ω̃ containing the unique values of Ωk, the other P̃ where the P̃k are determined by
single-shot experiments for each degenerate Ωj.

As noted previously for N = 61, Nu = 119,103 or about 10% of the total number of
partitions, but the strict inequality of (8) precludes isentropic processes implied by the first
demon and thus is in fundamental disagreement with (7).

Although the entropy demon’s conclusion is consistent with the LY stipulation that
4Ω ≥ 0, it apparently is not necessarily consistent with their notion of precedence de-
termined by adiabatic accessibility. There are many partitions with the same Ωj, which
neither LY nor [19] considered. The lazy demon’s analysis attempted to address this issue,
but because of the necessity to examine all ensemble members of D2 It incurred enormous
additional computational effort.

An enlightened third demon notes that neither of the previous two demons utilized
any information from table C. This demon observes that while entries in Ω increase mono-
tonically in D1, the entries in C peak near the midpoint of Ω̂; see Figure 2. Furthermore, It
recalls that table C was constructed from the majorization partial order, which provided
incomparability numbers for each partition. It has an epiphany and realizes that in all
cases precedence is determined by majorization rather than by entropy. It then develops
new databases D3(k), where k ranges from 1 to the number of paths in the YDL. For each
path, the records of Ω are sorted by majorization. Upon reading the files, It recognizes that
in each of these databases

4−→Ω l > 0, l = 1, · · · , L. (9)

Here, L is the path length. The paths in Figures 4 and 5 are examples of what may be
recorded while It reads the records.

With some astonishment, the enlightened It notes that (9) agrees with (8). Moreover,
any single shot experiment incurs less computational cost than (8) since L ∼ N4/3. Most
importantly, by using the information in table C to select paths based on the majorization
partial order instead of selecting partitions based on increasing entropy, It resolves the
discrepancy between (7) and (8) by noting the existence of numerous degenerate Ωj. Fur-
thermore, (9) demonstrates that the majorization criterion is consistent with the notion of
adiabatic accessibility and the contention in [19] that it is also consistent with the second
law of thermodynamics.

Three lessons are drawn from this parable:

1. The precedence of states is the critical aspect of both the SL and the LOM.
2. Majorization is consistent with the notion of adiabatic accessibility and establishes

precedence of partitions.
3. Energy need not be involved in establishing precedence.

6. Discussion

Note that (9) resembles the second law of thermodynamics for isolated systems.
However, it arises from a fundamentally different and simpler approach than that used in
statistical mechanics. Recall in the latter, microstates are prescribed in a six dimensional
phase space with particles located in cells characterized by discrete energy levels. Contrast
this with the LOM, where microstates are prescribed by Ωj, the anti-log of the Boltzmann
entropy, which is characterized by the IPs of the number of objects in a system. There is no
need to specify energy. Moreover; the schema is exact, can be applied to any N, involves
only integers, and precedence is established by majorization.

The classic thermodynamic gauge for assessing the evolution of systems is increas-
ing entropy. This was the approach used by the entropy and lazy demons. However,
the approach used to obtain (9) is fundamentally different. Here, increasing mixed-up-ness,
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rather than entropy increase, is the criterion for assessing evolution priority. As demon-
strated by the lazy demon, the entropy gauge alone identifies ambiguous paths. In contrast,
the mixed-up-ness gauge produces numerous specific paths. Yet every one of these paths
is consistent with the SL. Thus there are two essential distinctions between the SL and
the LOM. First, there are no energetic requirements for system evolution, and second,
precedence is determined by increasing mixed-up-ness.

Our development parallels the approach taken by LY, in the sense that we also make
no reference to energy or heat reservoirs, nor do we make use of statistical mechanics.
The approach in [23] is based on a concept of precedence. They argued that the equilibrium
state X precedes the equilibrium state Y if and only if there is an entropy function whose
value at X is less than or equal to its value at Y. They [24] also observed that the converse
assertion is “not guaranteed a priori..., but is empirically testable and appears to be true in
the real world”. Note that their analysis assumes that either X precedes Y or Y precedes
X. If equilibrium states X and Y are partially ordered, however, there is a third possibility,
namely than neither is greater than the other, thus they are incomparable. Mixed-up-
ness of partitions is such a partial order and majorization is the criterion for determining
precedence among them.

The LOM differs in two key respects from the approach taken by LY. First, from (3),
it is clear that the converse statement about precedence and entropy is trivially true and
does not require any real world experience. Second, as demonstrated in Figure 3, there
are many degenerate Ωj, a possibility not considered by either LY or [19]. This possibility
was anticipated by [38], who postulated that for any equilibrium state there are nearby
equilibrium states that are adiabatically inaccessible. Clearly, entropy is not a unique
characterization of precedence.

As noted previously, [35] concluded that majorization rather than von Neumann en-
tropy is the central quantity in statistical mechanics. While their conclusion is consistent
with our use of majorization to establish precedence, their focus was on one-shot experi-
ments, which relied on statistical mechanics and energetics. A single path through the IPs
performed by the third demon is analogous to a single-shot experiment. A large number of
paths would recover a figure quite similar to Figure 2.

In contrast to LY, [19] proposed a principle for the evolution of systems based on
the concept of increasing mixing character. He argued convincingly that mixing is a
“quality” rather than a “quantity”. His principle guarantees precedence without resorting
to real world experience. Ruch left open the question of the existence of a “set of mixing
homomorphic functions sufficient to specify increasing mixing character” but without
resorting to a partial order. No such functions have yet been found. He [19] also proved
that the criterion to determine whether or not a partition is more or less mixed than another
is majorization. This demonstrates that majorization is a fundamental physical principle.
As shown by the third demon, accessibility via majorization differs fundamentally from
accessibility based on entropic order, yet it always selects precedence consistent with an
increase in entropy.

Are there metaphysical implications of the LOM vis-à-vis the SL? The latter deals
with systems composed of corporeal objects and connects the evolution of macroscopic
states of these systems to energy. There is a presumption among thermodynamicists that
precedence is ultimately based on entropy (however it may be defined). It seems to us
that the LOM is a more basic principle for two reasons. It can be applied to statistical
physics as demonstrated by [35] without contradicting the SL. In addition, it is applicable
to disciplines that have no direct connection to statistical mechanics and energetics.

What has the analysis of the LOM to IPs taught us? First, precedence is determined
by mixed-up-ness, rather than by entropy. Nevertheless, mixed-up-ness precedence is
consistent with the second law requirement of increasing entropy. Second, in our example,
increasing mixed-up-ness was determined by majorization. Majorization establishes a new
“ignorance” function: the number of incomparable states/partitions that are inaccessible
along a prescribed path.
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We conclude with a concise statement of the law of mixed-up-ness:

Systems are partially ordered from states of less mixed-up-ness to states of greater mixed-
up-ness by majorization. There are many paths from less mixed-up-ness to maximum
mixed-up-ness. States in each allowed path are strictly ordered by mixed-up-ness rather
than by entropy.
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