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Abstract: Runoff complexity is an important indicator reflecting the sustainability of a watershed
ecosystem. In order to explore the multiscale characteristics of runoff complexity and analyze its
variation and influencing factors in the Yanhe watershed in China during the period 1991–2020, we
established a new analysis method for watershed runoff complexity based on the complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) method for the decomposition of
multiscale characteristics and the refined composite multiscale entropy (RCMSE) method for the
quantification of the system complexity. The results show that runoff and its components all present
multiscale complexity characteristics that are different from random signals, and the intermediate
frequency modes contribute the most to runoff complexity. The runoff complexity of the Yanhe
watershed has decreased gradually since 1991, and 2010 was a turning point of runoff complexity,
when it changed from a decline to an increase, indicating that the ecological sustainability of this
basin has improved since 2010, which was mainly related to the ecological restoration measures of
the Grain for Green Project. This study expands the research perspective for analyzing the variation
characteristics of runoff at the multiscale, and provides a reference for the study of watershed
ecological sustainability and ecological management.
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1. Introduction

A watershed is a topographically delineated area formed under the internal forces
of the earth and modified by external forces and human activities [1]. Watersheds are
hydrological response units, biophysical units, and holistic ecosystems, possessing all the
complexities of land surface systems, thereby making them excellent candidates for the
practice of earth system science [2–4]. The natural flow regime is considered the primary
driving force behind the formation of habitats and distribution, diversity, and abundance
of biota, and it is extremely important for maintaining and sustaining riverine ecosystem
integrity and its biodiversity [5]. Climate change and human activities are the two main
driving factors that affect water cycles and the evolution of water resources. Frequent and
intense human activities, such as afforestation and deforestation, grassland conversion, ur-
banization, and dam construction, determine rainfall redistribution and alter surface runoff,
infiltration, groundwater recharge, instream flow, and evapotranspiration processes [6,7].
Runoff, the key component of the hydrological cycle, is directly or indirectly influenced
by numerous types of positive and negative feedbacks at various scales, such as rainfall,
climate change, human activities, and other surface factors [8,9], so that the runoff of a
watershed is a complex system that is nonlinear, nonstationary, and uncertain [10,11]. Com-
plexity is an essential and core feature of a hydrological system [12]. In-depth exploration
of the inherent complexity of runoff is of theoretical and practical significance for revealing
the instability of hydrological cycle dynamic processes and the self-organization ability of
watershed systems.
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Complex system science provides a valuable reference for complexity research into
runoff systems. Entropy methods derived from information theory are simple algorithms
with high sensitivity, strong robustness against noise, and no assumption of the statistical
characteristics of the data [13,14]. By regarding the watershed system as a living organism,
the concept that ‘life feeds on negative entropy’ has a profound impact on the study of nat-
ural systems [15]. Entropy methods have been widely used in evaluating the complexity of
nonlinear and overall hydrological dynamics [11,16,17]. Sample entropy (SE) [18] quantifies
the degree of regularity of a time series by evaluating the appearance of repetitive patterns,
and has excellent stability and reliability in detecting the randomness and complexity of
runoff [19,20]. Complexity is associated with ‘meaningful structural richness’ [21], but SE
essentially comprises the statistical analysis of regularity, without detecting the nonlinear
characteristics or quantifying the fractal behaviors of signals [22]. Therefore, an increase
in SE is related to an increase in irregularity, but does not necessarily mean an increase in
system complexity.

Costa et al. [23] introduced multiscale entropy (MSE) analysis to quantify the complex-
ity of biological systems in cardiology. MSE takes into account the multiple temporal scales
by the estimation of SE depending on the coarse-graining time series. MSE is based on the
observation that the state of a complex system is far from perfect regularity and complete
randomness [21] and reveals the structure of long-range correlation on multiple scales by
quantifying the multiscale variability of signals [24]. The complexity is usually related to the
ability of life systems to adapt to changing environments, which requires integrated multi-
scale functions. The results of MSE have been proven to be consistent with the ‘complex
loss’ of ill-conditioned systems [21,24–26]. Similarly, the runoff structure in hydrology also
has its own complexity. The more complex the structure, the stronger the self-regulation
and restoration ability, which usually means that the watershed is healthier [17]. In general,
the original complexity of a hydrological system is close to the maximum that can occur
with a long-term evolution of natural conditions, but it may lose its complexity and be-
come an unhealthy watershed system because of human activities, such as soil and water
conservation and construction of water conservancy projects [27,28]. Therefore, MSE is also
applicable to the complexity study of a runoff system for the measurement of multiscale
characteristics of runoff and the system’s adaptability to the environment.

However, since coarse-graining procedures greatly shorten the length of time series,
MSE may produce inaccurate entropy estimates or induce undefined entropy [29]. Com-
posite multiscale entropy (CMSE) [30] was proposed to improve the accuracy of MSE, but it
does not resolve undefined entropy. Wu et al. [29] proposed a refined composite multiscale
entropy (RCMSE) to improve CMSE, which improves the accuracy of entropy estimation
and reduces the probability of generating undefined entropy, making it more suitable for
the analysis of runoff data with a limited sequence length.

Due to the interaction between various dynamic mechanisms, runoff time series
contain various scales of fluctuations and possess complexity of different time scales.
Empirical mode decomposition (EMD) is an adaptive signal decomposition method that
was proposed by Huang et al. [31]. It assumes that the data may have many different
coexisting modes of oscillations in various scales at the same time, and decompose the
original series into these intrinsic modes based on the local characteristic scales of data
themselves; these components are called intrinsic mode functions (IMFs). The complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [32] is an
important improvement on EMD. Compared with most EMD improvement methods,
CEEMDAN effectively solves the mode mixing problem and generates complete and
noise-free reconstruction. Currently, the CEEMDAN method has been widely used in the
signal processing field [33–35], but it has insufficient applications in hydrology. Combining
RCMSE with CEEMDAN, the characteristics of runoff time series can be understood
sufficiently at the micro and macro levels.

The Yanhe watershed is located in the middle of the Loess Plateau in China, which
is a landscape that has been significantly affected by climate change and anthropogenic
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activities [36,37]. There is an urgent need to evaluate the ecosystem sustainability of this
region. The overall aim of this paper was to propose a new research method for watershed
runoff complexity based on RCMSE and CEEMDAN. The mechanism of multiscale runoff
complexity and the variation and influencing factors of complexity in the Yanhe water-
shed over the last 30 years were studied to provide references for the implementation of
ecological conservation and watershed management.

2. Materials and Methods
2.1. Study Area

As a primary tributary of the Yellow River, the Yanhe River has a total length of 286.9 km.
The Yanhe watershed (36◦27′–37◦58′ N, 108◦41′–110◦29′ E) is located in the hinterland of
the Loess Plateau, with a total area of 7687 km2 and an altitude of 491–1787 m, as illustrated
in Figure 1. The Yanhe watershed has a typical loess landform with crisscross ravines,
loose soil, and poor antierosion ability. This region is a semiarid continental climate zone,
with a mean annual precipitation of about 520 mm and a multiyear mean temperature
ranging from 8.8 to 10.2 ◦C. The seasonal distribution of precipitation is quite uneven;
more than 75% occurs between June and September as rainstorms. In the past, due to the
influence of unreasonable anthropogenic activities and natural factors, the ecosystem in
this region was significantly degraded, with a sharp decrease in natural vegetation and
severe soil erosion, resulting in serious impacts on regional sustainable development [36].
Consequently, the Grain for Green Project, which includes a series of ecological construction
policies, has been carried out in this region since 1999 [37].

Figure 1. Basic information map of the Yanhe watershed.

2.2. Data Sources

The data used in this study included the following: (1) daily runoff data for the period
of 1991–2020 were collected from the Ganguyi hydrological station, which is the control
hydrographic station and the hydrological calibration outlet in the research basin with
a control area of 5891 km2, accounting for about 76.6% of the basin area [38,39]. All the
runoff data came from the hydrological yearbook of the Yellow River Basin provided
by the Yellow River Conservancy Commission of the Ministry of Water Resources [40];
(2) digital elevation model (DEM) data with 30 m resolution, obtained from the Geospatial
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Data Cloud [41]; and (3) Yan’an Statistical Yearbook data for 2020, obtained from the Yan’an
Bureau of Statistics [42].

2.3. Methods
2.3.1. Refined Composite Multiscale Entropy

Multiscale entropy is an effective method used to measure the complexity of a time
series and has been applied in many fields successfully [21,23–26], but as the time scale
factor increases, MSE may yield an inaccurate estimation of entropy or induce undefined
entropy. Composite multiscale entropy (CMSE) [30] was proposed to improve the accuracy
of entropy estimation, but CMSE increases the probability of inducing undefined entropy.
In 2014, Wu et al. [29] proposed refined composite multiscale entropy (RCMSE) to improve
MSE and CMSE for the undefined entropy problem of short time series. The RCMSE
algorithm consists of the following three procedures:

(1) For a discrete time series x = {x1, x2, . . . , xN}, after the initial normalization
of the original series, consecutive coarse-graining procedures are performed at differ-
ent scales, and the coarse-grained sequence represents the system dynamics at differ-
ent time scales. For a scale factor τ, the k-th coarse-grained time series is defined as
y(τ)

k =
{

y(τ)k,1 , y(τ)k,2 , . . . , y(τ)k,p

}
, where:

y(τ)k,j =
1
τ ∑jτ+k−1

i=(j−1)τ+k xi, 1 ≤ j ≤ N
τ

, 1 ≤ k ≤ τ. (1)

(2) For all coarse-grained time series of each scale factor τ, the numbers of similar
vector pairs nm+1

k,τ and nm
k,τ are computed, where nm

k,τ represents the total number of m-
dimensional vector pairs from the k-th coarse-grained time series for a scale factor τ for
which the distance between the two vectors is smaller than a predefined tolerance r [18].
Referring to the relevant literature [21], for larger m, both the SE and the coefficient of
variation increase dramatically due to the finite number of data points, and for larger r,
fewer vectors are distinguishable, so we used m = 2 and r = 0.15σ, where σ denotes the
standard deviation (SD) of the original time series, and m and r both remain constant for
all scales.

(3) Let nm+1
k, τ and nm

k, τ represent the mean of nm+1
k,τ and nm

k,τ , respectively, for 1 ≤ k ≤ τ.
At a scale factor τ, the RCMSE value is defined as the logarithm of the ratio of nm+1

k, τ to nm
k, τ ,

which is provided as Equation (2):

RCMSE(x, τ, m, r) = − ln

(
nm+1

k, τ

nm
k, τ

)
(2)

where nm+1
k, τ = 1

τ ∑τ
k=1 nm+1

k,τ and nm
k, τ = 1

τ ∑τ
k=1 nm

k,τ . Equation (2) can be simplified as:

RCMSE(x, τ, m, r) = − ln

(
∑τ

k=1 nm+1
k,τ

∑τ
k=1 nm

k,τ

)
(3)

The RCMSE is used to compare the relative complexity based on the following guide-
lines [21]: (1) If for most scales the entropy measures are higher for one time series than for
another, the former is considered more complex than the latter; (2) a monotonic decrease in
entropy measures indicates that the original signal only contains information at the smaller
scales. Therefore, in the analysis of the complexity of the runoff system, not only the specific
entropy values but also their dependence on scales needs to be considered, such as the
areas under the RCMSE curves and the morphological characteristics of RCMSE curves.

2.3.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Huang et al. [31] proposed the empirical mode decomposition (EMD) to decompose
the complex time series into intrinsic mode functions (IMFs). The EMD has great advan-
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tages in dealing with nonstationary and nonlinear signals, but it still has a ‘mode mixing’
problem, which refers to the presence of similar oscillations in different modes or disparate
amplitudes in a mode [43]. Therefore, the ensemble EMD (EEMD) [44] adds the Gaussian
white noise to eliminate the mode mixing in the EMD. However, along with introducing the
Gaussian white noise, the EEMD algorithm cannot completely eliminate Gaussian white
noise after signal reconstruction, and it probably generates a different number of IMFs after
adding different noise. Consequently, the complete ensemble empirical mode decomposi-
tion with adaptive noise (CEEMDAN) [32] was proposed as an improved version of EEMD.
The CEEMDAN adds Gaussian white noise to each stage of the decomposition process, and
each IMF is calculated by averaging the results, obtaining decomposed components with
less noise and more physical meaning [33,34]. The CEEMDAN process proceeds as follows:

(1) Add Gaussian white noise to the original data x(t) to create new time series and
use the EMD method [31] to obtain the first IMF, IMF1, and the first residue, r1.

(2) The following k-th IMF (k ≥ 2) IMFk and residue rk can be obtained by:

IMFk (t) =
1
N ∑N

i=1 E1

(
rk−1(t) + εk−1Ek−1

(
Gi(t)

))
(4)

rk(t) = rk−1(t)− IMFk(t) (5)

where N is the number of ensemble members, that is, the number of different realizations
of white Gaussian noise; Gi is the i-th Gaussian white noise to be added; and εk−1 is the
signal-to-noise ratio between the additional noise and original signal. Define the operator
Ej(·) that produces the jth mode obtained by EMD.

(3) Iterate Step 2 until the obtained residue can no longer be decomposed. The original
sequence can be computed as:

x(t) = ∑K
k=1 IMFk(t) + R(t) (6)

where K is the total number of IMFs, which comprise the characteristics of the original
signal at different time scales, and R is the final residue, which clearly shows the trend in
the original sequence.

The noise standard deviation was set to 0.2, the number of ensemble members N
was 100, and the maximum number of sifting iterations was 500 in this paper, which were
typically used in practice.

3. Results
3.1. Multiscale Complexity Characteristics of Runoff

The RCMSE under scale factors from 1 to 365 d for the daily runoff data during the
period of 1991–2020 for the Ganguyi hydrological station were calculated, as shown in
Figure 2. When τ < 90 d, the entropy measure gradually increased, with an increase in τ
until it reached the maximum among all 365 scales at about τ = 90 d, and it remained stable
when τ ∈ [90, 110] d. Then, it decreased rapidly until τ = 170 d, and there was a sudden
drop near τ = 120 d. When τ ∈ [170, 210] d, it showed a slight increase; in that period, a
minimum point of sudden drop appeared again near τ = 180 d. Entropy then decreased
gradually after τ = 210 d.
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Figure 2. The refined composite multiscale entropy (RCMSE) curve for the daily runoff data during
the period 1991–2020 for the Ganguyi hydrological station in the Yanhe watershed.

To further analyze the runoff at different temporal scales, the CEEMDAN method was
applied to the daily runoff data during the period 1991–2020 for the Ganguyi hydrological
station, and 14 IMFs and 1 residual term (RES) were obtained, as shown in Figure 3. To
find the statistical characteristics of each IMF, the mean periods were calculated, which
were derived by dividing the total number of points by the number of peaks (see Table 1).
The fluctuation characteristics of all IMFs were different, and as the IMF number increased,
both frequency and amplitude reduced. The mean periods of IMF1–IMF4 were lower
than 10 d as high-frequency modes, and most of short-term strong runoff was decomposed
into these IMFs. The mean periods of IMF5–IMF10 were between 10 d and 1 year as the
intermediate-frequency modes. The periods of IMF11–IMF14 were longer than 1 year
as the low-frequency modes, representing the influence of long-term factors. The RES
presented a pattern of slow change around the long-term average, which shows that the
runoff gradually decreased from 1991 to 2009, and the decline was faster after 1994; then it
slowly increased after 2009.

Table 1. Mean periods of intrinsic mode functions (IMFs) for the daily runoff data from 1991 to 2020
for the Ganguyi hydrological station through CEEMDAN.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 IMF14

Mean
Period/d 2.91 3.62 3.59 6.45 12.2 22.69 41.67 89.09 171.22 342.44 576.74 1095.80 2191.60 3652.67

The RCMSE was calculated for all IMFs, as shown in Figure 4. The scales were
from 1 d to 90 d because the entropy measures of the original runoff series reached the
maximum around τ = 90 d (see Figure 2). Figure 4 shows that the high-frequency modes
(IMF1–IMF4) have low entropy values and fluctuations at almost all scales, with low com-
plexity. The entropy values of IMF5–IMF9 gradually increased within a certain range, and
then decreased after reaching the maximum. The RCMSE curves of IMF10–IMF14 gradually
increased under scales 1–90 d due to their large periods and long-range correlations. IMF9
and IMF10 had larger summations of the entropy values over research scales than the
others (see Table 2), and maintained a growth trend over a wide range so that they made
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the greatest contribution to runoff complexity. At small scales, intermediate-frequency
and high-frequency modes are the dominant modes of runoff complexity. The contribu-
tion of low-frequency modes to runoff complexity increased gradually with increasing
temporal scales.

Figure 3. The intrinsic mode functions (IMFs) and residue (RES) for the daily runoff data during the
period 1991–2020 for the Ganguyi hydrological station, through complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN).

Table 2. The summations of the entropy values over the scales 1–90 d of RCMSE (RCMSE∑) of IMFs
of the daily runoff data during the period 1991–2020 for the Ganguyi hydrological station through
CEEMDAN.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 IMF14

RCMSE∑ 6.09 4.23 6.96 8.76 15.18 25.61 38.82 55.38 73.10 72.91 40.67 35.66 40.96 18.40
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Figure 4. RCMSE for IMFs of the daily runoff data during the period 1991–2020 for the Ganguyi
hydrological station through CEEMDAN.

We next tested the hypothesis that due to the complexity of runoff series, they cannot
be generated by uncorrelated random processes. The complexity of the original runoff
series and its IMFs was compared with that of the randomized time series obtained by
shuffling the order of original data points. Because, by construction, both the hydrological
and the shuffled time series had the same mean, variance, and distribution, any differences
in the complexity indexes were caused by differences in the temporal order of the data
points and their correlation properties.

The comparison results for the RCMSE curves of the original series with the average
curves obtained by randomly shuffling 30 times are shown in Figure 5. The RCMSE
curves of the original and shuffled series all have large differences in numerical size and
trend. The RCMSE curves of disordered time series should be expressed as entropy values
monotonically decreasing with scale factors [21], just like those of the shuffled series of
IMF8–IMF14. However, the RCMSE curves of the shuffled series of IMF1–IMF7 showed a
rapid increase in the initial stage, and then decreased gradually, like those of uncorrelated
noise, resulting in a short ‘fake complexity’ phenomenon. This was mainly due to the
seasonal heavy rainfall in the Yanhe watershed, which often leads to an explosion of
runoff, and these extreme values were mainly decomposed into the high-frequency modes
by the CEEMDAN method, leading to a large fluctuation in these IMFs. The shuffling
treatment distributes these extreme values relatively evenly throughout the sequence,
resulting in an increase in entropy at small scales, but in the long run, entropy still conforms
to the characteristics of uncorrelated noise. Moreover, the shuffled series present smoother
RCMSE curves without small fluctuations, while those of the original sequences often
fluctuate with the scale change, such as IMF10 under scales 60–110 d and IMF5 under
scales 1–20 d. The above results show that the original runoff series and IMFs all have
unique and high complexity.
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Figure 5. Comparison of the RCMSE of the original runoff and IMF series with the corresponding
shuffled series.

3.2. Trend Analysis of Runoff Complexity

In order to analyze the temporal evolution of runoff complexity in the Yanhe watershed
over the past 30 years, considering that the mean period of the slowest fluctuation, IMF14,
is about a decade (see Table 1), the RCMSE of the runoff series in sliding windows of 10
years, shifting the window by 1 year, was calculated, and the summations of the entropy
values over the scales 1–90 d were taken as complexity, and the fifth year of each time
period was set to represent the sequence in Figure 6. This shows that the runoff complexity
in the Yanhe watershed presented a downward trend from 1995 to 2010. After 2010, the
runoff complexity changed from a decline to an increase.

Figure 6. The complexity of runoff in the Yanhe watershed, as shown by sliding windows of 10 years,
shifting the window by 1 year.

In order to explore the variation in runoff complexity under different temporal scales,
the complexity of each IMF was calculated through RCMSE curves in sliding windows
of 10 years, shifting the window by 1 year. It should be noted that although the complexity
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performance at different temporal scales has different characteristics in terms of RCMSE
curves, when analyzing the variation in each IMF, the summations of the entropy values
over the same scale range of 1–90 d can be used as a measure of complexity. To make the
results more comparable, we divided the complexity of each sequence by the complexity of
the first 10 years, as shown in Figure 7. It can be seen that the complexity of high-frequency
modes (IMF1–IMF4) and intermediate-frequency modes (IMF5–IMF10) showed a flat or
slightly upward trend before 1997, and gradually decreased from 1997 to 2010. After 2010,
the variations in the complexity of high-frequency modes were relatively flat, while those of
medium-frequency modes gradually increased, similar to the change trend for the original
runoff complexity (see Figure 6). The changes in complexity of the low-frequency modes
(IMF11–IMF14) did not show a uniform and obvious varying regularity, and presented
little correlation with the variation in runoff complexity. Therefore, it can be concluded
that the change in runoff complexity was mainly due to the intermediate-frequency and
high-frequency components, and the influence of low-frequency components was slight.

Figure 7. The complexity of IMFs with sliding windows of 10 years and shifting the window
by 1 year. (a) High-frequency modes (IMF1–IMF4), (b) intermediate-frequency modes (IMF5–IMF10),
(c) low-frequency modes (IMF11–IMF14).

4. Discussion
4.1. Characteristics of Runoff Complexity

In this paper, the watershed system was considered a complex system, assuming the
following: (1) the watershed system has complexity characteristics across multiple temporal
scales, (2) the complexity reflects its ability of adaptation and regulation in changing
environments, and (3) a ‘sick’ watershed will have reduced adaptability and information
carried by output variables. The multiscale entropy method was used to characterize the
complexity of the watershed system, and the complexity characteristics of different scale
components were studied by empirical mode decomposition. The uncertainty characteristic
of runoff had two peak areas within 1 year around the scales of 100 and 210 d, and it reached
the maximum at the 90-day scale, which was probably related to the correlation time and
the period of possible nonlinear oscillations of runoff series. The runoff was decomposed
into 14 IMFs with temporal scales from 3 d to 10 years by CEEMDAN. Each component had
separate physical meanings and complexity characteristics that were completely different
from random signals. The high-frequency IMFs with short periods and large amplitudes
represent short-term fluctuation of runoff, which have the minimum multiscale complexity.
The low-frequency IMFs with long periods and small amplitudes signify the components
of slow variation, which may be mainly affected by atmospheric circulation or celestial
activities. The intermediate-frequency IMFs, especially IMF9 of the half-year scale and
IMF10 of the annual scale, made the greatest contribution to runoff complexity. This also
indicates that the complexity research based on the RCMSE method should refer to not only
the specific numerical size of RCMSE curves, but also the trend changes and the difference
with those of the corresponding random shuffled series.
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4.2. Factors Impacting Runoff Complexity

Runoff variation in the hydrological system is affected by multiple factors. Climate
change and human activities are two main driving factors that affect water cycles and the
evolution of runoff in a watershed [17]. Studies have shown that meteorological factors have
affected the runoff complexity of the Yellow River Basin, and precipitation has the greatest
impact, followed by evaporation and temperature [17,45]. However, the literature and
actual meteorological data do not indicate that meteorological factors underwent abrupt
changes around 2010, which was the turning point of runoff complexity (see Figure 6).
Therefore, meteorological factors may affect runoff complexity to a certain extent, but are
not the main factors.

Human activities in the Yanhe watershed mainly include the Grain for Green Project
and urbanization. The impacts of the Grain for Green Project on watershed runoff can
be explained based on two aspects. On the one hand, since 1999, a series of ecological
construction projects have been carried out in this area. Research shows that the Yanhe
watershed has had increases in areas of woodland and grassland and significant decreases in
the amount of soil and water loss, and the quality and service function of the ecosystem have
improved [36]. Following the ecosystem undergoing a growth period, the improvement
effect on runoff complexity may have lagged behind, so the runoff complexity changed
from a decline to an increase after 2010. On the other hand, the Grain for Green Project had
two phases: 2000–2010 and 2010–2020. In the early stage of the project, rapid progress of
returning farmland to forest and grassland was carried out with a lack of scientific planning
and demonstration, resulting in low vegetation survival rate and damaged plots [46,47],
which may lead to further reduction of runoff complexity. Based on in-depth field research
and scientific planning, a series of improvement policies of the Grain for Green Project
were issued, such as the ‘Notice on Improving the Policy of Grain for Green Project from
the State Council’ [48], so that these ecological managements in the latter period may
have significantly improved the ecological sustainability of the watershed. The annual
afforestation area of Yan’an City is shown in Figure 8, which shows that large-range
disorderly afforestation in this area has improved significantly since 2004. Moreover,
with the increase in the range of afforestation, runoff ecological status is not necessarily
improved. Studies have reported that the growth and development of a large number of
artificial vegetations have led to an increase in evapotranspiration and a decrease in surface
water resources in the Loess Plateau [49]. The complexity of runoff is a comprehensive
variable reflecting the ecological status of the basin, which is expected to be an important
reference index for ecological sustainability. In addition, Yan’an City has undergone
accelerated urbanization in recent years, which may also have affected the runoff complexity
to some extent.

Figure 8. The annual afforestation area of Yan’an City in the period 1991–2020.
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5. Conclusions

Complexity has always been the focus and difficulty of watershed system science
research, which is closely related to the sustainability of a watershed. Regarding the
watershed system as a complex system with multiscale characteristics, in this paper, we
established a complexity analysis framework for watershed runoff based on CEEMDAN
for the decomposition of multiscale characteristics and RCMSE for the quantification of
system complexity. The results show that the runoff and each temporal-scale component
present completely different complexity characteristics exhibited in the numerical size and
trend changes of RCMSE curves, which verifies that the runoff sequence has multiscale
complexity. The high-frequency components with short periods and large amplitudes
represent short-term fluctuation of runoff, which may contribute to understanding the
response of runoff to short-term interference, such as rainstorms. The low-frequency
components with long periods and small amplitudes signify the components of slow
variations, which may be mainly affected by atmospheric circulation or celestial activities.
The intermediate-frequency components, especially the components with mean periods of
half-year and annual scales, make the greatest contribution to runoff complexity, which are
the key components in the study of runoff complexity variation. The runoff complexity
of the Yanhe watershed has shown a downward trend since 1991, but with a gradual
increase after 2010, indicating that the ecological sustainability of this basin improved
after 2010, which was probably related to the ecological restoration measures of the Grain
for Green Project, showing that the measures in the past decade have effectively improved
the degradation phenomenon of runoff complexity. This study has expanded the research
perspective in relation to multiscale runoff complexity and the variation characteristics
of runoff systems. It also provides a reference for the evaluation of watershed ecological
sustainability and ecological management.

The following issues require attention in the future. In this paper, only runoff data for
the Ganguyi hydrological station in the Yanhe watershed were considered; future research
should introduce data from more hydrological stations to analyze the spatial multiscale
characteristics of runoff complexity. In addition, we only analyzed the causes of runoff
complexity change qualitatively; the quantitative contributions of climate change and
human activities to runoff changes need to be combined in the future.
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