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Abstract: In recent years, deep learning has been applied to intelligent fault diagnosis and has
achieved great success. However, the fault diagnosis method of deep learning assumes that the
training dataset and the test dataset are obtained under the same operating conditions. This condition
can hardly be met in real application scenarios. Additionally, signal preprocessing technology also has
an important influence on intelligent fault diagnosis. How to effectively relate signal preprocessing
to a transfer diagnostic model is a challenge. To solve the above problems, we propose a novel deep
transfer learning method for intelligent fault diagnosis based on Variational Mode Decomposition
(VMD) and Efficient Channel Attention (ECA). In the proposed method, the VMD adaptively matches
the optimal center frequency and finite bandwidth of each mode to achieve effective separation
of signals. To fuse the mode features more effectively after VMD decomposition, ECA is used to
learn channel attention. The experimental results show that the proposed signal preprocessing and
feature fusion module can increase the accuracy and generality of the transfer diagnostic model.
Moreover, we comprehensively analyze and compare our method with state-of-the-art methods at
different noise levels, and the results show that our proposed method has better robustness and
generalization performance.

Keywords: deep transfer learning; intelligent fault diagnosis; variational mode decomposition;
efficient channel attention

1. Introduction

Mechanical equipment is one of the most critical components for the normal operation
and production of intelligent factories. Due to the long-term use of the equipment and
some human factors, the equipment may malfunction, causing major economic losses and
personnel injuries. Therefore, fault location and maintenance of mechanical equipment are
particularly significant. In practical industrial applications, most equipment fault location
and maintenance rely on previous experience or expert knowledge, which requires a lot
of manpower and time costs. To solve this problem, intelligent fault diagnosis combines
artificial intelligence technology with fault diagnosis technology, which has become an
important branch of intelligent health management. Traditional machine learning methods
have been widely used in the field of equipment fault diagnosis, such as support vector
machine (SVM) [1], random forest (RF) [2], k-nearest neighbor (KNN) [3], and artificial
neural network (ANN) [4]. However, these machine learning methods for fault diagnosis
rely heavily on industry experts to extract artificial features from raw signals [5]. Moreover,
due to the explosive growth of available manufacturing data and the increasing complexity
of equipment, traditional machine learning can no longer meet the current requirements
for intelligent fault diagnosis.

The application of deep learning has developed rapidly in recent years [6,7]. To solve
the above problems, deep learning has been widely used in the field of intelligent fault
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diagnosis and has achieved fruitful results [8]. Janssens et al. [9] used a convolutional
neural network (CNN) to automatically extract the fault features of the original signals,
avoiding the trouble of manual feature extraction. Zhao et al. [10] embedded a soft threshold
denoising module into a deep residual network. The deep learning diagnostic model has
improved feature learning capability for strong noise vibration signals. Nevertheless, the
improvement of the soft thresholding function embedded in the network needs further
discussion. Lei et al. [11] constructed the long-term dependence of time series captured by
long- and short-term memory networks. It is applied to wind turbine condition monitoring
and fault diagnosis and has achieved great results. Although the deep learning diagnosis
method has a strong feature extraction ability, the model diagnosis performance will be
greatly reduced when the training data and test data do not meet the independent and
identical distribution conditions. This problem is known as the domain shift problem.

Transfer learning [12,13] improves the diagnostic performance of the diagnostic model
in the target domain by learning relevant knowledge from similar scenarios. It provides
a new way to solve the domain shift problem. When the data distribution of the source
domain and the target domain is different, but the learning task is the same, the transfer
learning in this scenario is called domain adaptation. Deep domain adaptation [14,15]
combines the powerful feature extraction capability of deep learning. It can effectively
learn the domain-invariant representation features of data and enhance the performance
of diagnostic models in the target domain. Lei et al. [16] proposed a deep convolutional
transfer learning network to explore intelligent fault diagnoses for machines with unla-
beled data. The maximum mean difference (MMD) [17] domain discriminator was used
to optimize the model and improve accuracy. Jiao et al. [18] proposed a residual joint
domain adaptive adversarial network model. Joint maximum mean difference (JMMD) and
adversarial domain adaptive discriminator are introduced to align the source and target
domain feature spaces. However, the performance of these methods in noisy scenarios
needs to be verified. Based on this problem, signal preprocessing in the feedforward net-
work is one of the options for denoising. Qian et al. [19] proposed an unsupervised transfer
learning model for a convolutional autoencoder. The Autoencoder is used to denoise the
signal. However, the output of the autoencoder is lossy. The removal of noise will also
remove some useful weak signals. Li et al. [20] thought from the perspective of a frequency
domain. A frequency-domain fusion convolutional neural network for domain adaptive
fault diagnosis is proposed. It provides an example adaptation network design for the
unified domain but extracting frequency characteristics directly from the CNN still cannot
be fully interpreted. Ben Ali et al. [21] proposed an automatic bearing fault diagnosis
method based on empirical mode decomposition (EMD) to successfully detect the severity
of defects online. However, determining the intrinsic mode functions (IMFs) best suited for
bearing fault diagnosis requires expert experience. DASENet achieves high accuracy with
few input data points [22]. The inputs to this model are the frequency domain signal and
the time-frequency graph signal. In addition, it fuses features through the squeeze-and-
excitation attention (SEA) module, which improves the generality of the diagnostic model.
Nevertheless, this method incorporates the features of duplication and is not a transfer
diagnostic model. Wu et al. [23] introduced ensemble empirical mode decomposition
(EEMD) signal preprocessing and attention mechanisms into the transfer diagnosis model
to extract domain-invariant features. In their study, the signal preprocessing part is just a
function of denoising. In addition, the diagnosis results are effective, indicating that signal
preprocessing is necessary. Although the above methods integrate signal preprocessing
technology into deep learning or transfer learning methods to improve the performance
of diagnostic models, there are still several open questions, and the following situations
should be considered.

1. Due to differences in the distribution of acquired vibration data, the effectiveness of
the deep learning model diagnosis method is limited. Therefore, it is necessary to
introduce signal preprocessing into the transfer learning diagnostic model.
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2. The original vibration signal is a typical non-stationary signal [24]. However, the
commonly used Fourier transform method has insufficient processing ability for non-
stationary signals (signals whose frequencies change with time). Although the EMD
method eliminates the limitation of Fourier transform, it also has a serious mode
aliasing problem.

3. The signal preprocessing method and the intelligent diagnosis model based on transfer
learning are not effectively related. An effective connection module is required
between them instead of being directly preprocessed into new data for input.

To bridge these gaps, this paper proposes a novel deep transfer learning method for
intelligent fault diagnosis based on Variational Mode Decomposition and Efficient Channel
Attention. The corresponding framework of this method is divided into three parts: signal
preprocessing using VMD, mode feature fusion using ECA, and a deep transfer network
for intelligent fault diagnosis. Since different modes represent signals with different center
frequencies, it makes sense to re-weight the channel features. Moreover, joint domain adap-
tation is used to align the joint distribution of input features and output labels in the source
domain and the target domain to achieve an efficient intelligent fault diagnosis. We compre-
hensively analyze and compare our method with state-of-the-art methods, and the results
show that our proposed method has better robustness and generalization performance.
The novelty and main contributions of this paper can be summarized as follows:

1. The signal preprocessing of the VMD is applied for the transfer fault diagnosis. The
VMD algorithm is used to decompose original fault vibration signals into a series of
intrinsic mode functions (IMFs) with specific bandwidth so that the transfer learning
model can learn fault features better.

2. To fuse the mode features after VMD decomposition more effectively, ECA is used to
learn channel attention. This module avoids dimensionality reduction and effectively
captures cross-channel interactions. Since different modes represent signals with
different center frequencies, it makes sense to re-weight the channel features.

3. A novel deep transfer learning method is proposed for intelligent fault diagnosis
based on Variational Mode Decomposition and Efficient Channel Attention (VMD-
ECA-DTN). Considering that it can accurately fit the domain-invariant representation
of fault features, our proposed method has better performance (robustness and gener-
alization) in transfer diagnosis tasks compared with the state-of-the-art methods.

The remainder of this paper begins with the related preliminaries in Section 2. Section 3
introduces the construction of the VMD-ECA-DTN and its optimization objective. In
Section 4, the experiments and analyses of the study are given in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Preliminaries
2.1. Domain Adaptation Problem

Domain adaptation refers to transfer learning in a scenario where the source domain
and the target domain have different data distribution and the same learning task. The
source domain is defined as Ds = {(xs

1,ys
1), . . . , (xs

ns,ys
ns)}, and the target domain is defined

as Dt = {(xt
1,yt

1), . . . , (xt
nt,y

t
nt)}, Where ns is the sample number in the source domain, nt is

the sample number in the target domain. The target domain under unsupervised domain
adaptation has no label, and the target domain is de fined as Dt = {(xt

1), . . . , (xt
nt)}. In this

paper, the problem of unsupervised domain adaptation fault diagnosis is mainly studied.
As shown in Figure 1, the main goal of domain adaptation is to align the feature space of the
source. Domain and the target domain to realize cross-domain intelligent fault diagnosis.
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Figure 1. Domain adaptation. The target classifier on the source domain can also be applied to the 
target domain after the alignment of the domain adaptation feature space. 
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where K indicates the number of modes. {uk} := {u1, …, uK} represents the set of all modes. 
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where α is the quadratic penalty parameter, and λ is Lagrangian multipliers. 
  

Figure 1. Domain adaptation. The target classifier on the source domain can also be applied to the
target domain after the alignment of the domain adaptation feature space.

2.2. Variational Mode Decomposition

The fault vibration signal of equipment is a typical non-stationary signal. To better
learn the fault features of the original signal, we use the VMD method to decompose fault
vibration signals during signal preprocessing. The VMD algorithm is a completely non-
recursive signal decomposition method that decomposes time series to obtain relatively
stable sub-signals containing multiple different frequency scales [25–27]. This algorithm
assumes that all components are narrowband signals concentrated near their respective cen-
tral frequencies. Therefore, VMD establishes constrained optimization problems according
to component narrowband conditions. Then, the center frequency of the signal compo-
nent is estimated, and the corresponding component is reconstructed. The constrained
variational problem is expressed as follows:

min(uk ,wk)

{
K
∑

k=1
‖∂t[(δ(t) + j

πt ) ∗ uk(t)]e−jwkt‖
2

2

}
s.t.x(t) =

K
∑

k=1
uk

(1)

where K indicates the number of modes. {uk}: = {u1, . . . , uK} represents the set of all
modes. {wk}: = {w1, . . . , wK} represents the set of their center frequencies. δ(t) is the Dirac
distribution, and (*) defines the convolution operation. x(t) represents the time series of
the fault vibration signal. To solve the above mathematical problem, the equation can be
equivalent to an unconstrained optimization problem by means of augmented Lagrange
functions, as shown in:

L(uk, wk, λ) = α
K
∑

k=1
‖∂t[(δ(t) + j

πt ) ∗ uk(t)]e−jwkt‖
2

2

+‖x(t)−
K
∑

k=1
uk(t)‖

2

2
+

〈
λ(t), x(t)−

K
∑

k=1
uk(t)

〉 (2)

where α is the quadratic penalty parameter, and λ is Lagrangian multipliers.
The minimization scheme of the original problem is solved by the alternate direction

method of multipliers (ADMM), which keeps the other two variables constant and updates
one of them. Therefore, the update formulas for uk and wk are expressed as follows:

ûn+1
k =

x̂(w)− ∑
i>k

ûi(w)− ∑
i<k

ûi(w) + λ̂(w)
2

1 + 2α(w− wk)
2 (3)
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wn+1
k =

∫ ∞
0 w

∣∣∣∣ ûn+1
k (w)

∣∣∣2dw∫ ∞
0

∣∣∣∣ ûn+1
k (w)

∣∣∣2dw
(4)

where n is the number of iterations. (ˆ) denotes the Fourier transform. w ≥ 0. The result of
solving uk is a Wiener filter, and the result of solving wk is a barycentric method of solving
signal bandwidth. Given precision ε, iteration stops when the following convergence
criterion is reached:

K

∑
k=1
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε (5)

Finally, all modes of signal decomposition are obtained through the above iterative
updating formula. The VMD algorithm is used to decompose original fault vibration
signals into a series of intrinsic mode functions (IMFs) with specific bandwidth so that the
transfer learning model can learn fault features better.

2.3. Efficient Channel Attention

The channel attention mechanism has proven to have great potential for improving the
performance of deep convolutional neural networks (CNN). Efficient Channel Attention
(ECA) [28] is improved based on Squeeze-and-Excitation Attention (SEA) [29]. First,
the ECA module aggregates convolution features using global average pooling (GAP)
without dimensionality reduction. Second, kernel size k is determined adaptively. Then, a
one-dimensional convolution operation is performed, and finally Sigmoid function was
performed to learn channel attention. The diagram of the ECA is shown in Figure 2:
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Let the input be X, and the output X′ of the ECA is expressed as:

X′ = σ(C1Dk(g(X)))X (6)

where C1D indicates one-dimensional convolution, and k is the kernel size. g(X) represents
the global average pooling function.

The ECA module uses the 1D convolution layer directly after the global average
pooling layer, removing the full connection layer. This module avoids dimensionality
reduction and effectively captures cross-channel interactions. In addition, ECA involves
only a few parameters to achieve good results. Different from general networks, ECA’s
main role in the study is to fuse the features of different modes after VMD decomposition.

3. The Proposed VMD-ECA-DTN Method

In this section, an advanced and novel deep transfer learning method for intelligent
fault diagnosis based on Variational Mode Decomposition and Efficient Channel Attention
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is proposed. As shown in Figure 3, the corresponding framework of this method is divided
into three parts: signal preprocessing using VMD, mode feature fusion using ECA, and a
deep transfer network for intelligent fault diagnosis. Signal preprocessing is a significant
step in fault analysis. The VMD method adaptively matches the optimal center frequency
and finite bandwidth of each mode. The effective separation of IMFs and the frequency
domain division of signals are realized. Finally, the effective decomposition components
of a given signal are obtained. To fuse the mode features more effectively after VMD
decomposition, ECA is used to learn channel attention. Since different modes represent
signals with different center frequencies, it makes sense to re-weight the channel features.
The last deep transfer network includes a convolution feature extractor, a fault classifier for
prediction, and distribution discrepancy metrics with joint domain adaptation to reduce
the difference in the joint distribution of input features and output tags between the source
domain and the target domain. The goal of the proposed approach is to achieve a better
cross-domain device intelligent fault diagnosis by enhancing mode features, which are
more favorable for the diagnosis task. It should be noted that the source of training data
has two parts: one is the source domain data with labels, and the other is the target
domain data without labels. The processing operations of these two parts of data in
the signal preprocessing and mode feature fusion stages are similar. As detailed in the
following subsections.
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3.1. Architecture of the Proposed VMD-ECA-DTN

In this subsection, the specific architecture of the proposed method will be explained in
detail. Inspired by a deep transfer network with joint distribution adaptation, the proposed
deep transfer network architecture is designed based on VMD and ECA. The detailed
architecture of the proposed method is shown in Figure 4. In a general way, the nonlinear
correction unit function Parametric Rectified Linear Unit (PRELU) [30] is adopted for the
nonlinear activation layer. Given a signal length of 1024 for a single sample, the input shape
of the original vibration signal is (64, 1, 1024). 64 indicates the batch size, and 1 indicates the
channel size. Set the number of modes of the VMD algorithm as 5, because the length of the
mode component obtained after VMD decomposition is consistent with the original signal,
the shape of the IMF signal is (64, 5, 1024). To fuse mode features more effectively, the ECA
is used to learn channel attention. The ECA block consists of an adaptive global average
pooling layer (Ada-Avg-Pool), a convolution layer (Conv), and a sigmoid layer. In addition,
there is a weight multiplier at the end. Notably, it does not reduce dimension and effectively
captures information about cross-channel interactions. The shape of the signal does not
change as it passes through the ECA module, which simply re-weights the mode’s features.
Next is the CNN feature extractor, which consists of four convolution layers containing
batch normalization (BN). The convolution kernel size of these convolution layers is 15, 3,
3, and 3, respectively. In particular, the reason for using large convolution kernels in the
first layer is to increase the receptive field. Inspired by Alexnet, max pooling (Max-Pool) is
adopted for the second convolution layer, and adaptive global max pooling (Ada-Max-Pool)
is adopted for the fourth convolution layer. To prevent overfitting, we use the dropout
trick in the later fully connected layers (FC) as an alternative form of regularization. Set the
dropout ratio to p, where each output node is set to zero with probability p. In addition,
the architecture of the fault classifier and the distribution discrepancy metrics is similar.
The specific parameters of the proposed network architecture are shown in Table 1.
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Table 1. Specific parameters of the proposed network architecture.

Type Layer Kernel Size Stride Channel Size Input Size Output Size

Input Reshape / / / / (64, 1, 1024)

VMD VMD output / / / / (64, 5, 1024)

ECA

Ada-Avg-Pool / / / (64, 5, 1024) (64, 5, 1)
Reshape / / / (64, 5, 1) (64, 1, 5)

Conv 1 1 1 (64, 1, 5) (64, 1, 5)
Sigmoid / / / (64, 1, 5) (64, 1, 5)
Reshape / / / (64, 1, 5) (64, 5, 1)

Multiplier / / / (64, 5, 1)
(64, 1, 1024) (64, 1, 1024)

CNN feature
extractor

Conv 15 1 16 (64, 1, 1024) (64, 16, 1010)
BN / / / (64, 16, 1010) (64, 16, 1010)

Conv 3 1 32 (64, 16, 1010) (64, 32, 1008)
BN / / / (64, 32, 1008) (64, 32, 1008)

Max-Pool 2 2 32 (64, 32, 1008) (64, 32, 504)
Conv 3 1 64 (64, 32, 504) (64, 64, 502)
BN / / / (64, 64, 502) (64, 64, 502)

Conv 3 1 128 (64, 64, 502) (64, 128, 500)
BN / / / (64, 128, 500) (64, 128, 500)

Ada-Max-Pool / / / (64, 128, 500) (64, 128, 4)
Reshape / / / (64, 128, 4) (64, 512)

FC / / / (64, 512) (64, 256)
Dropout / / / (64, 256) (64, 256)

Fault classifier
(Output)

FC / / / (64, 256) (64, 128)
Dropout / / / (64, 128) (64, 128)

FC / / / (64, 128) (64, 10)

Distribution
discrepancy metrics

FC / / / (64, 256) (64, 128)
Dropout / / / (64, 128) (64, 128)

FC / / / (64, 128) (64, 10)

3.2. Optimization Objective of VMD-ECA-DTN

Given the mode’s signal set X = {u1, . . . , uK} after VMD decomposition, the output
X′ = σ(C1Dk(g(X)))X of ECA is obtained by modal feature fusion based on the attentional
mechanism module. The size of the feature map does not change after the ECA module,
but the importance of each channel feature has changed. Let xl be the input of the lth
convolution layer, and then the feature map after the convolution operation and pooling
operation can be expressed as Formula (7):

xl
conv = pool(∑ Kl ∗ xl + bl) (7)

where l is the lth convolution layer; xl is the input; Kl denotes the convolution kernel; bl

denotes the bias. The feature extractor has four convolution layers, and the convolution
calculation method is consistent with Formula (7).

According to the structure of the universal classifier, the cross-entropy loss function
is used for the fault classifier. We are given the source sample labels. yi ∈ {1, 2, 3, . . . , m},
m denotes the total number of sample categories (including normal categories and fault
categories). Therefore, the classification loss can be expressed as follows:

Lcls = −
1
n
(

n

∑
i=1

m

∑
j=1

I(yi = j) log(pj)) (8)

where N is the sample batch size of the source domain during training; pj denotes the
probability that the sample is predicted to be jth class. I is a judgment function that outputs
1 if the input is true and 0 otherwise.
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To align the joint distribution of input features and output labels in the source and
target domains, the joint maximum mean distance (JMMD) [31] is used for distribution
discrepancy metrics. The calculation of this loss function is expressed by:

Ld = ‖Exs∼P(x)[⊗m
l=1φl(xl

s)]−Ext∼Q(x)[⊗m
l=1φl(xl

t)]‖
2
⊗m

l=1 Hl (9)

where P(x) denotes the feature space distribution of the source domain samples. Q(x)
represents the feature spatial distribution of the target domain samples. ⊗m

l=1φl(xl
s) =

φ1(x1
s )⊗φ2(x2

s )⊗···⊗φl(xl
s) is the feature mapping of the source domain in the tensor product

Hilbert space. l is the set of higher network layers; ⊗m
l=1φl(xl

t) is the feature mapping of the
source domain in the tensor product Hilbert space; ⊗m

l=1Hl denotes an mth order tensor
product feature space.

Therefore, the total loss function can be composed of fault classification loss and
domain alignment loss, as shown below:

L(θE, θF, θC, θD) = Lcls + λLd (10)

where θE, θF, θC, and θD represent the parameters of the ECA module, CNN feature extrac-
tor, fault classifier, and distribution discrepancy metrics, respectively. λ is the weighting
parameter. The training process of VMD-ECA-DTN consists of two processes: pre-training
and cross-domain adaptation. During the source domain pre-training, fault classification
loss is used to optimize the goal. In domain adaptation training, fault classification loss
and domain confusion loss are used to optimize the target. Based on Formula (10), the
parameters θE, θF, θC, and θD are updated in the following order:

θE ← θE − µ(
∂Lcls
∂θE

+ λ
∂Ld
∂θE

) (11)

θF ← θF − µ(
∂Lcls
∂θF

+ λ
∂Ld
∂θF

) (12)

θC ← θC − µ
∂Lcls
∂θC

(13)

θD ← θD − µ
∂Ld
∂θD

(14)

where µ is the learning rate.

4. Experimental Results and Analysis
4.1. Dataset Introduction and Experiment Setup

To demonstrate the effectiveness of the proposed method, in this section, we select
the CWRU bearing fault dataset for experiments, which is a widely used dataset [32]. It
was provided by the Case Western Reserve University laboratory and is currently the most
used open-source dataset. We selected the driver end fault data with a sampling frequency
of 12 kHz and normal sample data. The faults are divided into inner ring faults (IF), outer
ring faults (OF), and rolling body faults (RF). The diameter of the fault damage is 7 mils,
14 mils, and 21 mils (1 mil = 0.001 inches). There are 10 categories of fault samples plus
normal samples, and 260 samples are selected for each category. According to load and
speed, it is divided into four diagnostic tasks, as shown in Table 2. Cross-domain diagnosis
tasks 0-1 indicate that the slave source domain is the condition where task code 0 resides,
and the target domain is the condition where task code 1 resides. There are 6 cross-domain
diagnosis tasks in pairs.

The data is augmented by partial resampling techniques. Each sample of the training
set and testing set is a continuous time series with a length of 1024. The dataset for the whole
experiment includes data collected under three different working conditions. According
to different working conditions, the data are divided into source domain data and target
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domain data. The source domain data contain 1000 samples, and the target domain data
contan 1600 samples. Source domain data have labels, but target domain data have no
labels. The details of the number of samples in the training dataset, validation dataset, and
testing dataset are given in Table 3. x − y indicates that the source domain is x, and the
target domain is y.

Table 2. The diagnostic tasks of CWRU.

Task Code Speed (rpm) Load (HP)

0 1730 0
1 1750 1
2 1772 2

Table 3. Sample division of six transfer diagnosis tasks.

Transfer Diagnosis Task
Training Dataset Validation Dataset

(Target Domain Data: B)
Testing

Dataset (Target Domain
Data: C)Source Domain Data Target Domain Data: A

x − y (x, y ∈ [0, 2];
x, y ∈ N; x 6= y)

Labeled
samples: 1000 Unlabeled samples: 1000 Samples: 300 Samples: 300

During the following comparative experiment, all calculation was carried out on a
computer with Intel(R) Core(TM) i7-6700K (4.00 GHz), NVIDIA GTX 1080Ti graphics cards,
64 GB RAM and Pytorch framework. To reduce the impact of accidental behavior in the
experiment, all classification processes were repeated 10 times, and the trimmed mean
value was taken as the final result (average after removing the highest and lowest scores).
The max training epoch is set to 200, with a batch size of 64. In practical applications, the
original vibration data collected by sensors are often mixed with noise, so the intelligent
fault diagnosis models is required to have a certain anti-noise ability. To demonstrate the
anti-noise capability of the proposed method, various Gaussian noises were added to the
original vibration signal, and SNR [33] was used to evaluate the noise level, which was
defined as:

SNR(dB) = 10·lg(Psignal/Pnoise) (15)

where Psignal and Pnoise represent the effective power of the raw vibration signal and noise
signal, respectively.

4.2. Comparison of Signal Preprocessing Methods

Signal preprocessing techniques play an important role in intelligent fault diagnosis.
The effective signal preprocessing method is beneficial to the intelligent diagnosis model
for better learning the fault features in the original signal. To illustrate the effectiveness
and advantages of the proposed VMD preprocessing method in the whole intelligent
fault diagnosis framework, popular preprocessing methods are compared. Notably, all
comparison methods are consistent with the rest of the framework, except for signal
preprocessing. All details of the contrastive methods are illustrated as follows:

1. FFT [34]: The basic idea of FFT (Fast Fourier Transform) is to decompose the original
sequence of N points into a series of short sequences.

2. EMD [35]: EMD (Empirical Mode Decomposition) is a signal processing method in
the time-frequency domain, which is based on the time-scale characteristics of the data
itself, without setting any basis function in advance. EMD has obvious advantages in
processing non-stationary and nonlinear data and is suitable for analyzing nonlinear
non-stationary signal sequences with a high signal-to-noise ratio.

3. VMD: The signal decomposition method we use in the signal preprocessing stage.
It shifts the acquisition of signal components into a variational framework. A non-
recursive processing strategy is used to decompose the original signal by constructing
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and solving a constrained variational problem, which can effectively avoid problems
such as modal aliasing, over-envelope, under-envelope, and boundary effects.

In addition, Gaussian noises of 4 dB and 0 dB were added to the original vibration
signal, respectively. The purpose of adding noise is to verify the anti-noise and robustness
of the signal preprocessing method. The comparison results of the signal preprocessing
methods under different noise levels are illustrated in Figure 5 and Table 4.
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Table 4. Comparison results of signal preprocessing methods under different transfer diagnosis tasks.

0-1 0-2 1-0 1-2 2-0 2-1 Average

FFT 99.68 ± 0.49 100.00 ± 0.00 98.98 ± 5.45 100.00 ± 0.00 87.74 ± 6.90 96.39 ± 2.07 97.13
EMD 97.88 ± 3.82 98.20 ± 2.18 94.86 ± 6.66 100.00 ± 0.00 95.17 ± 6.72 98.84 ± 0.73 97.49
VMD 99.71 ± 0.88 99.28 ± 0.51 98.89 ± 0.70 100.00 ± 0.00 96.60 ± 1.68 99.71 ± 0.25 99.03

FFT(4 dB) 97.08 ± 1.95 97.62 ± 1.29 94.38 ± 2.44 99.46 ± 0.37 71.90 ± 5.25 98.05 ± 0.36 93.08
EMD(4 dB) 96.46 ± 0.75 97.11 ± 2.25 94.90 ± 4.04 99.28 ± 0.42 95.32 ± 1.91 97.40 ± 0.36 96.75
VMD(4 dB) 97.32 ± 0.88 97.22 ± 0.90 95.77 ± 1.45 99.28 ± 0.39 96.39 ± 2.16 98.41 ± 0.28 97.40

FFT(0 dB) 92.42 ± 1.79 83.98 ± 2.39 89.14 ± 1.31 96.00 ± 1.59 75.10 ± 5.25 95.56 ± 2.46 88.70
EMD(0 dB) 93.07 ± 1.98 92.35 ± 1.33 94.47 ± 0.32 96.17 ± 1.28 91.92 ± 2.06 94.23 ± 1.36 93.70
VMD(0 dB) 94.30 ± 1.24 97.04 ± 1.48 90.73 ± 3.77 97.91 ± 0.25 94.81 ± 2.67 96.61 ± 1.03 95.24

From the comparison results, we can draw the following conclusions:

1. When the original vibration signal is not added with Gaussian noise, the average
accuracy of all signal preprocessing methods for the six transfer diagnosis tasks is
more than 97.00%. After Gaussian noise is added to the original vibration signal, the
diagnostic accuracy of all signal preprocessing methods is almost reduced. This shows
that the addition of noise seriously affects the performance of the model. In addition,
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the higher the noise level, the more serious the performance of the intelligent fault
diagnosis model decreases.

2. At the same noise level, the FFT preprocessing method has the worst performance,
while the VMD preprocessing method has the best performance. Although the VMD
preprocessing method is not optimal in individual transfer diagnosis tasks (such as
0-2 transfer diagnosis task without adding noise), the VMD preprocessing method
has the highest cross-domain diagnosis accuracy in most transfer diagnosis tasks as a
whole. The results show that VMD preprocessing can provide better anti-noise and
robustness for intelligent fault diagnosis models.

Based on the above two points, it can be concluded that the VMD preprocessing
method has a beneficial effect on neural network learning fault features. The original
signal, decomposition signal, and signal center frequency are shown in Figure 6. This
shows that the different modes of decomposition represent the different central frequency
characteristics of the fault signals. Decomposition of the signal will be more conducive to
intelligent model learning and will play a role in noise reduction. Notably, the number of
modes K is a hyperparameter. The effect of VMD decomposition is mainly affected by the
selected value of the modal number. When the selected value of the mode is small, since
the VMD algorithm is equivalent to an adaptive filter bank, some important information in
the original signal will be filtered, affecting the subsequent feature extraction. When the
selected value of the mode is large, the center frequencies of the adjacent mode components
will be close to each other, resulting in mode repetition or additional noise. The main
difference between the different modes is the difference in center frequency. Therefore, the
appropriate mode value is selected by observing the distribution of the center frequency
under different mode numbers. We set K equal to 5 by this method. In addition, we
conducted some experiments on different hyperparameters K, as shown in Figure 7. This
indicates that the VMD algorithm needs an appropriate K setting.
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4.3. Comparison of Feature Fusion Methods

How to fuse the decomposed mode signal features is a difficult problem. After the
original signal decomposition, each mode represents the fault features of different central
frequencies. The aim of adding channel attention mechanisms to the intelligent fault diag-
nosis model is to reweight and fuse different mode features. This means that the transfer
learning fault diagnosis network automatically learns which modes are more important
to the final objective optimization. To illustrate the effectiveness and advantages of the
proposed ECA feature fusion method in the whole intelligent fault diagnosis framework,
popular feature fusion methods are compared. Notably, all comparison methods are con-
sistent with the rest of the framework, except for feature fusion. We used Concatenate,
Add, SEA, and ECA (the attentional mechanism we use in the proposed transfer learning
framework) to conduct experiments for comparison. The experimental results are shown
in Figure 8 and Table 5.
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Table 5. Comparison results of different feature fusion methods.

0-1 0-2 1-0 1-2 2-0 2-1 Average

Concatenate 99.85 ± 0.18 98.84 ± 0.85 97.96 ± 4.98 99.35 ± 0.10 96.94 ± 0.89 99.57 ± 0.50 98.75
Add 99.93 ± 0.28 98.98 ± 5.28 89.20 ± 4.89 99.93 ± 0.19 94.47 ± 7.60 98.92 ± 1.46 96.90
SEA 99.64 ± 3.86 98.41 ± 0.64 97.96 ± 7.42 99.28 ± 0.47 95.58 ± 4.85 99.64 ± 0.59 98.42
ECA 99.71 ± 0.88 99.28 ± 0.51 98.89 ± 0.70 100.00 ± 0.00 96.60 ± 1.68 99.71 ± 0.25 99.03

The experimental results show that different feature fusion methods have different
effects on transfer fault diagnosis. However, the effect of feature fusion is not as important
as signal preprocessing. In addition, the feature fusion method needs to be combined
with the pretreatment method. In this way, the decomposed modes of VMD can be better
utilized. As can be seen from Table 5, the ECA feature fusion method achieves the highest
average diagnostic accuracy. In addition, the accuracy standard deviation of the ECA
method is relatively lower.

4.4. Comparison between the Proposed Method and State-Of-The-Art Methods

To verify the universality and effectiveness of the proposed VMD-ECA-DTN, we
compared it with state-of-the-art methods. The methods to be compared are WDCNN (Wide
Deep Convolutional Neural Networks) [36], DDC (Deep Domain Confusion Network) [37],
DANN (Deep Adversarial Neural Network) [38], and DTN (Deep Transfer Network with
joint distribution adaptation) [39]. In particular, the WDCNN model is trained only by the
labeled samples in the source domain, while the other models are trained by a combination
of labeled samples in the source domain and unlabeled samples in the target domain. To
facilitate comparison, the structural design of these models adopts a CNN feature extractor.
The number of network layers inside CNN is consistent with the proposed VMD-ECA-
DTN, and the hyperparameters of these models are also consistent with the VMD-ECA-
DTN. Moreover, to comprehensively analyze and compare all methods objectively, all
classification processes were repeated 10 times, and the trimmed mean value was taken
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as the result. The comparison results of the proposed method with other state-of-the-art
methods are shown in Table 6.

Table 6. Comparison results of the proposed method with other state-of-the-art methods.

0-1 0-2 1-0 1-2 2-0 2-1 Average

WDCNN 96.62 ± 2.34 94.61 ± 3.35 98.36 ± 0.81 99.98 ± 0.06 97.50 ± 2.25 96.36 ± 1.59 97.24
DDC 98.15 ± 2.06 98.77 ± 1.93 97.79 ± 1.50 100.00 ± 0.00 98.89 ± 3.74 98.48 ± 0.57 98.68

DANN 99.42 ± 1.03 99.20 ± 1.44 99.23 ± 0.18 99.71 ± 0.77 97.79 ± 3.12 95.24 ± 1.64 98.43
DTN 97.45 ± 0.80 95.24 ± 2.36 97.70 ± 1.38 100.00 ± 0.00 98.72 ± 0.56 99.49 ± 0.68 98.10

Proposed 99.71 ± 0.88 99.28 ± 0.51 98.89 ± 0.70 100.00 ± 0.00 96.60 ± 1.68 99.71 ± 0.25 99.03

WDCNN(4 dB) 92.33 ± 3.67 95.41 ± 2.53 96.25 ± 1.43 97.16 ± 0.97 95.02 ± 2.39 95.41 ± 0.96 95.26
DDC(4 dB) 95.17 ± 2.10 98.13 ± 3.75 96.43 ± 0.71 98.56 ± 0.74 95.66 ± 1.59 96.68 ± 2.43 96.77

DANN(4 dB) 93.72 ± 4.11 97.47 ± 4.42 96.60 ± 3.77 99.28 ± 0.59 95.92 ± 1.23 96.68 ± 1.21 96.61
DTN(4 dB) 97.50 ± 0.32 97.46 ± 1.02 97.11 ± 0.93 98.63 ± 2.07 95.49 ± 2.35 96.83 ± 1.16 97.17

Proposed(4 dB) 97.32 ± 0.88 97.22 ± 0.90 95.77 ± 1.45 99.28 ± 0.39 96.39 ± 2.16 98.41 ± 0.28 97.40

WDCNN(0 dB) 93.33 ± 1.64 93.09 ± 2.03 91.90 ± 2.91 95.28 ± 0.65 91.08 ± 3.93 95.19 ± 1.24 93.31
DDC(0 dB) 93.65 ± 2.67 94.08 ± 1.54 94.05 ± 2.52 96.32 ± 1.33 93.03 ± 1.47 93.80 ± 2.70 94.15

DANN(0 dB) 94.44 ± 1.78 95.17 ± 1.80 92.93 ± 2.58 97.55 ± 1.13 92.35 ± 2.22 95.45 ± 1.34 94.65
DTN(0 dB) 92.71 ± 0.85 93.80 ± 2.13 93.11 ± 1.38 96.32 ± 1.01 92.94 ± 1.85 95.02 ± 1.67 93.98

Proposed(0 dB) 94.30 ± 1.24 97.04 ± 1.48 90.73 ± 3.77 97.91 ± 0.25 94.81 ± 2.67 96.61 ± 1.03 95.24

From the comparison results above, we can draw the following conclusions:

1. Among the five methods, only WDCNN is not a method of domain adaptation, and its
average classification accuracy is lower than that of the other four methods, indicating
the effectiveness of the domain adaptive method for cross-domain diagnosis. After
adding 0 dB noise to the original data, the average diagnostic accuracy of WDCNN is
only 93.31%.

2. Adding Gaussian noise to the original signal affects the ability of the intelligent fault
diagnosis model to learn fault features. The proposed method achieves the best
average performance in different noise environments. Even under 0 dB noise, the
average diagnostic accuracy of the proposed method is 95.24%. This shows that the
proposed method has better robustness and universality.

3. In a specific transfer diagnostic task, the performance of the proposed method is
not the best. For example, in the 0-1 diagnostic task with 0 dB noise, the diagnostic
accuracy of the proposed method is only 90.73%. This may indicate that different levels
of noise will affect VMD signal preprocessing, and thus affect neural network learning
fault features. However, in most transfer diagnosis tasks, our proposed method is
superior to other state-of-the-art methods. This again shows the effectiveness and
robustness of our proposed method.

5. Conclusions

In this study, we propose a novel deep transfer learning method for intelligent fault
diagnosis based on Variational Mode Decomposition and Efficient Channel Attention.
VMD signal preprocessing is used to decompose the original vibration signals into mode
signals of different center frequencies. The effective separation of IMFs and the frequency
domain division of signals are realized. Finally, the effective decomposition components
of a given signal are obtained. To fuse the mode features more effectively after VMD
decomposition, ECA is used to learn channel attention. It is used to adaptively learn the
importance of different mode features for transfer diagnostic tasks, thereby improving
model performance. We study the effects of signal preprocessing, feature fusion, and
synthesis on the diagnosis results in the task of transfer diagnosis. The conclusions are
as follows:
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1. An appropriate signal preprocessing method is beneficial to the transfer diagnosis
model. The purpose of preprocessing is to denoise the signal and extract the frequency
signal, which is useful for diagnostic tasks.

2. Feature fusion is an important step in learning the main mode features. Compared
with other fusion methods, the ECA module integrates the features of different modes,
which facilitates the further learning of vibration signals by the diagnostic model.

3. The combination of signal preprocessing and attention mechanisms can be used to
extract meaningful features. Our proposed method has better performance (robustness
and generalization) in transfer diagnosis tasks compared with state-of-the-art methods.

It has certain application potential in cross-domain intelligent fault diagnosis. How-
ever, there are also some shortcomings. First, it is difficult to obtain balanced datasets in
practical applications. How to improve the method for imbalanced datasets remains to
be discussed. Second, the hyperparameters of VMD preprocessing in this method are still
determined by expert experience. Getting rid of additional interventions remains difficult.

In the future, it is still a challenge to popularize intelligent fault diagnosis models
in battery manufacturing, aerospace, and other industrial fields. For single application
scenarios, such as battery manufacturing equipment, an intelligent fault diagnosis model
based on unsupervised transfer learning is feasible. However, it is very difficult to solve
the problem of fault diagnosis from laboratory data to actual equipment data. The actual
data collected in the industry may be unlabeled and almost glitch-free. The data without
any labels are useless for an intelligent model. It takes a long way to get there.
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