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Abstract: Detecting many-body localization (MBL) typically requires the calculation of high-energy
eigenstates using numerical approaches. This study investigates methods that assume the use of a
quantum device to detect disorder-induced localization. Numerical simulations for small systems
demonstrate how the magnetization and twist overlap, which can be easily obtained from the
measurement of qubits in a quantum device, changing from the thermal phase to the localized
phase. The twist overlap evaluated using the wave function at the end of the time evolution behaves
similarly to the one evaluated with eigenstates in the middle of the energy spectrum under a specific
condition. The twist overlap evaluated using the wave function after time evolution for many
disorder realizations is a promising probe for detecting MBL in quantum computing approaches.
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1. Introduction

Many-body localization (MBL) has recently attracted significant interest [1–5]. MBL
is a generalization of Anderson localization for disordered quantum many-body systems
with interactions. When the disorder is strong enough, MBL prevents the system from
thermalizing. The transition from the thermal to localized phase, i.e., MBL transition, is rec-
ognized as an eigenstate phase transition from the ergodic phase to non-ergodic phase [6–8].
The MBL transition is typically detected by quantities evaluated using eigenstates, such as
entanglement, inverse participation ratio, one-particle density matrix [9–22], and spectral
properties, such as level statistics [6,15–19,23] as well as local observables [6,14–16]. The
random matrix theory and quantum chaos conjecture support the relationship between
spectral properties and quantum chaos [24,25] as well as provide a framework for charac-
terizing the MBL transition [26,27]. Experimental studies have also captured the signature
of the MBL transition in disordered quantum systems with different architectures [28–41].
In experiments, MBL is often explored by the investigation of quantum dynamics. For
example, the imbalance between the populations of even and odd sites in an atomic system
is a measurable quantity for localization detection. The initial state has populations only on
even sites, while odd sites are empty. Then, the imbalance is close to 1 initially and relaxes
to zero as the system thermalizes. However, the imbalance maintains a finite value in the
localized phase due to the initial state memory.

Recently, new approaches using quantum annealers were studied to simulate the
properties of disordered quantum systems [42–49]. Probing MBL is also within the scope of
quantum annealers and quantum computers. Although current quantum devices are still
noisy and cannot compute exact eigenstates, some dynamical characteristics of MBL are
robust against noise. In the localized phase, local quantities are conserved to some extent.
For example, if the initial state is the all-spin-up state, then the magnetization maintains a
large value because of the initial state memory. The magnetization, in this case, is similar
to the imbalance in an atomic system in the sense that the memory effect characterizes
localization. A recent experiment using a quantum annealer detected by the localization
transition through magnetization measurements at the end of the time evolution [49].
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This study investigated the localization detection based on quantum dynamics in
a disordered quantum spin chain. Magnetization is a simple quantity that can be easily
measured in quantum devices. We also employed another measurable quantity, the twist
overlap. The twist overlap is a quantity proposed to detect the MBL transition and measure
the extent to which an eigenstate overlaps with its twisted state [50]. A twisted state
is obtained by applying a twist operator that rotates spins over the chain at gradually
increasing angles. The twist overlap almost vanishes for thermal eigenstates, whereas it
has a finite value for localized ones [50]. The twist overlap can also be evaluated using the
state after time evolution. Using the twist overlap is convenient for localization detection
in quantum devices because it can be easily obtained from the measurement of each spin.

The numerical simulations of small system sizes in this study demonstrate how the
magnetization and twist overlap change from the thermal phase to the localized phase.
These quantities were obtained at the end of the time evolution and averaged over different
disorder realizations. They often oscillate at different frequencies for each disorder realiza-
tion. Thus, we also examined the time dependence of these quantities to understand their
dynamics. The time dependence, whose observation in experiments may require enormous
time and effort, is also helpful in understanding the characteristics of these quantities.
Although the difference between the thermal and localized phases in those quantities is
evident, we cannot decide the existence of a phase transition from the limited numerical
simulations. This work aims to demonstrate the effectiveness of experimentally measurable
quantities, specifically twist overlap, as a localization probe.

2. Model and Methods
2.1. Model

The model used in this study is a one-dimensional transverse Ising model with local
random fields, which is applied to a quantum annealer. The Hamiltonian is given by

H =
L−1

∑
j=1

Jjσ
z
j σz

j+1 +
L

∑
j=1

hjσ
z
j −

L

∑
j=1

Γjσ
x
j , (1)

where L is the system size and σx
j and σz

j are the Pauli operators of components x and z,
respectively, at site j. The local field hj consists of random numbers with a uniform distri-
bution in the interval [−w, w], wherein w denotes the disorder strength. The interactions
Jj and transverse fields Γj are given by 1 + rj, where rj is a uniform random number in
the interval [−σ, σ]. Here, we refer to weak disorders in Jj and Γj as static noises. They
are introduced to mimic the static noises of couplings between qubits and local fields in a
quantum device.

2.2. Entanglement Entropy and Twist Overlap

The MBL transition is typically detected using quantities calculated using eigenstates.
Moreover, the quantum dynamics reflects the properties of eigenstates. Before examin-
ing the quantum dynamics, we examine several quantities calculated using eigenstates.
Here, we employ the half-chain entanglement entropy and twist overlap evaluated with
eigenstates in the middle of the energy spectrum.

The half-chain entanglement entropy is defined by

SE = −TrρA log ρA, (2)

where ρA is the reduced density matrix for subsystem A. Subsystem A corresponds to the
first half of the spin chain. Eigenstates obey the volume and area laws of entanglement
in the thermal and localized phases, respectively. In other words, SE decreases when the
thermal-to-MBL transition occurs. The transition point is characterized by the variance
peak of the half-chain entanglement entropy [14,18].
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The twist operator is defined by

Utwist = exp

[
i
2

L

∑
j=1

θjσ
z
j

]
. (3)

It generates a spin-wave-like excitation by rotating the spins around the z axis at angles
θj = 2π j/L [50,51]. The factor 1/2 originates from spin 1

2 . The overlap between a state |ψ〉
and its twisted state Utwist|ψ〉 is the twist overlap, which is represented as

z = 〈ψ|Utwist|ψ〉, (4)

where |ψ〉 denotes the eigenstate of the Hamiltonian in the original definition [50]. In the
thermal phase, the twist overlap is expected to vanish because the twisted state with a spin-
wave-like excitation is orthogonal to the original state. In contrast, the long-wavelength
perturbation given by the twist operator has little effect on the eigenstates in the localized
phase, which implies a finite twist overlap.

In quantum devices, the twist overlap is easily obtained by measuring each qubit.
Writing |ψ〉 as a linear combination |ψ〉 = ∑s αs|s〉 of the computational basis {|s〉} yields

z = ∑
s,s′

αsα∗s′ exp

[
i
2

L

∑
j=1

θjsz
j

]
〈s′|s〉 = ∑

s
|αs|2 exp

[
i
2

L

∑
j=1

θjsz
j

]
, (5)

where σz
j |s〉 = sz

j |s〉. Since each measurement provides the configuration of sz
j (j = 1, . . . , L)

with probability |αs|2, many measurements provide the expected value of the twist overlap.

2.3. Time Evolution

The solution of the Schrödinger equation,

i
d
dt
|ψ(t)〉 = H|ψ〉, (6)

is represented as
|ψ(t)〉 = exp(−iHt)|ψ0〉, (7)

where |ψ0〉 denotes the initial state. In the numerical simulations below, the initial state
is the all-spin-up state. The exact diagonalization of the Hamiltonian provides the time
dependence of |ψ(t)〉. We observe the magnetization and twist overlap at the end of the
time evolution, which is at the final time t = Tfin.

When the initial state is expressed as |ψ0〉 = ∑k ck|φk〉 with eigenstates |φk〉 of the
Hamiltonian, Equation (7) becomes

|ψ(t)〉 =
2L

∑
k=1

ck exp(−iEkt)|φk〉, (8)

where Ek denotes the eigenenergy corresponding to |φk〉. The z component of the magneti-
zation defined by Mz ≡ 〈ψ|∑j σz

j |ψ〉 evolves as

Mz(t) =
2L

∑
k,l=1

ckc∗l 〈φl |
L

∑
j=1

σz
j |φk〉e−i(Ek−El)t. (9)

Similarly, the twist overlap evolves as

z(t) =
2L

∑
k,l=1

ckc∗l 〈φl |Utwist|φk〉e−i(Ek−El)t. (10)
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Equations (9) and (10) suggest the oscillatory behavior of Mz(t) and z(t). Therefore, the
observed quantities depend on both the eigenstates and the final time. Since the frequency
and amplitude of the oscillation differ from sample to sample, the average over disorder
realizations characterizes the observed quantities if the final time is sufficiently large.

3. Results
3.1. Quantities Calculated from Eigenstates

Before investigating quantum dynamics, we confirm the localization properties char-
acterized by eigenstates of the Hamiltonian. They help understand the quantities obtained
from quantum dynamics. The exact diagonalization of the Hamiltonian without noise
(σ = 0) was performed for each pair of the system size L and disorder strength w. The
number of disorder realizations was 104 for L = 8 and 103 for L = 10 and 12. For each
realization, the half-chain entanglement entropy and twist overlap were calculated and
averaged over 20 eigenstates around the center of the energy spectrum.

Figure 1 shows the dependence on the disorder strength w of the half-chain entangle-
ment entropy SE and the absolute square of the twist overlap |z|2 averaged over the disorder
realizations. The averages of SE and |z|2 are plotted with error bars in Figure 1a and 1c,
respectively, where the error bar represents the standard deviation. Figure 1b and 1d show
the standard deviations of SE and |z|2, respectively.
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Figure 1. Disorder strength dependence of the entanglement entropy (a,b) and the twist overlap (c,d),
calculated using eigenstates for different system sizes in the noiseless case (σ = 0). (a,b) plot the
half-chain entanglement entropy SE and its standard deviation δSE as functions of disorder strength
w, respectively. Similarly, (c,d) plot the absolute square of the twist overlap |z|2 and its standard
deviation δ|z|2, respectively. The error bars in (a,c) represent standard deviation.

The disorder strength dependence of the half-chain entanglement entropy shown in
Figure 1a,b shows a behavior similar to that of Ref. [49], although the values were different
because of the differences in the models. For each L, the variance (standard deviation)
peaks around w ' 1–5, where the transition or crossover between the thermal and localized
phases occurs.

As expected, the twist overlap, whose absolute square is shown in Figure 1c, increases
with the disorder strength. The variance is almost zero in the weak-disorder region and
becomes finite in the strong-disorder region. These results indicate that both the average
and variance of the twist overlap are almost zero in the thermal phase, but large in the
localized phase. The disorder-strength dependence of the variance was not observed in
Ref. [50], which used the random-field Heisenberg chain. The difference in the variance
behavior is likely due to differences in the models.

Whereas the peaks of δSE appear in the middle of changes in SE, those of δ|z|2 occur
as |z|2 is large enough. The peaks of δ|z|2 appear probably due to the saturation of |z|2.



Entropy 2022, 24, 1085 5 of 9

Thus, the peak position of δ|z|2 is not related to the transition or crossover between the
thermal and localized phases.

3.2. Properties Based on Quantum Dynamics

In this subsection, we investigate the magnetization and twist overlap evaluated
using the wave function at the end of time evolution. The wave function |ψ(t)〉 at the
final time t = Tfin was calculated from the exact diagonalization of the Hamiltonian. The
final time was Tfin = 10, which is sufficient to capture the difference between the thermal
and localized phases, as shown in the following subsection. The initial state is taken as
the all-spin-up state. Mz = 〈ψ(Tfin)|∑j σz

j |ψ(Tfin)〉 and z = 〈ψ(Tfin)|Utwist|ψ(Tfin)〉 were
calculated for each disorder realization. The number of disorder realizations was the same
as that in the previous subsection: 104 for L = 8 and 103 for L = 10 and 12.

Figure 2 shows the dependence on the disorder strength w of the z component of
the magnetization Mz and the absolute square of the twist overlap |z|2 averaged over
the disorder realizations. Here, the noise strength is σ = 0. The averages of Mz and
|z|2 are plotted with error bars in Figure 2a and 2c, respectively, where the error bar
represents standard deviation. Figure 2b and 2d show the standard deviations of Mz and
|z|2, respectively.
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M
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Figure 2. Disorder strength dependence based on quantum dynamics for different system sizes in
the noiseless case (σ = 0). (a,b) plot the z component of the magnetization Mz and its standard
deviation δMz as functions of disorder strength w, respectively. (c,d) plot the absolute square of
the twist overlap |z|2 and its standard deviation δ|z|2, respectively. The error bars in (a,c) represent
standard deviation.

The average magnetization is Mz ' 0 in the weak-disorder region, indicating thermal-
ization. When the disorder is strong enough, Mz ' L, which is a signature of the memory
effect because Mz = L in the initial state. The memory effect is characteristic of the localized
phase, which was also observed in Ref. [49]. The variance (standard deviation) of the
magnetization peaks at a disorder strength slightly weaker than that of the entanglement
entropy. Since magnetization fluctuates with time and can have negative values, δMz is
relatively large in the weak-disorder region. Thus, the variance peak of the magnetization
in this situation cannot apply to determining the transition or overlap point.

The twist overlap also increases with the disorder strength. However, the memory
effect is not the leading cause for the large value of |z|2 in the strong disorder region. If
the memory effect dominates the twist overlap behavior, |z|2 should be close to 1, and its
variance should be small. Considering the fact that the twist overlap shown in Figure 2c
is similar to that in Figure 1c, we expect that the behavior of the twist overlap reflects the
properties of eigenstates. The variance (standard deviation) in Figure 2d is relatively large



Entropy 2022, 24, 1085 6 of 9

compared with that in Figure 1d. The large variance in Figure 2d is due to the difference in
the eigenstates of different disorder realizations and the oscillatory behavior of z(t).

Similar results to the noiseless case (σ = 0) also appear in the presence of static
noise. While several types of noises exist in quantum devices, we here consider static
noises in the interaction between spins and the transverse field. As shown in Figure 3, the
disorder strength of Mz and |z|2 has little dependence on noise strength σ. However, the
time evolution is affected by the static noises, as shown in the following subsection. The
details of the time evolution are averaged out in the results in Figure 3, making the noise
dependence negligible.
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Figure 3. Disorder strength dependence of (a) the z component of the magnetization and (b) the
absolute square of the twist overlap |z|2 for different noise strengths. The error bars represent the
standard deviation. The system size is L = 12.

3.3. Time Dependence

The time dependence of the magnetization and twist overlap helps us understand the
characteristics of quantum dynamics in the system. Figure 4 illustrates Mz(t) (in the upper
row) and |z(t)|2 (in the lower row) for several combinations of disorder strength w and
noise strength σ. Each graph plots ten samples of the time series calculated at different
disorder realizations. The graphs in the same column, for example, (a) and (e), share the
same wave-function samples. That is, the curves of Mz(t) and |z(t)|2 with the same color
in the same column are evaluated using the same wave functions.
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Figure 4. Time dependence of (a–d) the magnetization and (e–h) the absolute square of the twist
overlap. Each graph plots ten different samples of the time series. (a,e) share the same wave-function
samples, and the same applies to (b,f), (c,g), and (d,h). The system size is L = 12.

Figure 4a–c and 4e–g demonstrate how the behaviors of Mz(t) and |z(t)|2 change with
disorder strength w, respectively, in the noiseless case (σ = 0). Initially, Mz = L = 12,
which then decreases to Mz ' 0 when the disorder is weak. As the disorder strengthens,
Mz(t) fluctuates around positive values. Finally, Mz(t) fluctuates around the initial value
in the localized phase. However, |z|2 = 1 at the initial time decreases rapidly to |z|2 ' 0
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when the disorder is weak. As the disorder strengthens, the fluctuations in |z|2 become
noticeable. In contrast to Mz(t), some samples of |z(t)|2 oscillate with large amplitudes
around relatively low values.

Figure 4d,h show the time dependence of Mz(t) and |z(t)|2, respectively, for the noisy
(σ = 0.3) and weak-disorder (w = 0.1) cases. A comparison with Figure 4a,d suggests that
the time average of Mz(t) is larger in the noisy case than that in the noiseless case in general.
The difference in time dependence indicates that the static noise in the interaction strength
and transverse field affects the quantum dynamics, which is not reflected in Figure 3.

4. Discussion

The absolute square of the twist overlap |z|2 exhibits a slight variance in the weak-
disorder region, as shown in Figures 2 and 3. However, the z component of the magnetiza-
tion Mz has a relatively large variance in the same region. The time dependences of Mz(t)
and |z(t)|2 also support this behavior, which seems curious. Figure 1c,d illustrates that
|z|2 ' 0 in the small-disorder region, implying that 〈φl |Utwist|φ〉 in Equation (10) nearly
vanishes in the middle of the energy spectrum. Since the eigenstates in the high and low
regions of the energy spectrum also contribute to the time-dependent |z(t)|2, the variance
of |z|2 has a small finite value in Figures 2 and 3. However, Mz(t) fluctuates around zero
because of thermalization, which causes a relatively large variance.

As shown in Figure 4, |z(t)|2 oscillates with a large amplitude in some strong-disorder
cases, even though Mz(t) remains around the initial value. Large-amplitude oscillations
arise from the combination of 〈φl |Utwist|φk〉 with different eigenstates |φl〉 and |φk〉. As
shown in Figure 1c,d, the average and variance of |z|2 are significant in the strong-disorder
region, which supports the variation in the combination of 〈φl |Utwist|φk〉.

5. Conclusions

We investigated a method that assumes the use of a quantum device to detect disorder-
induced localization. Localization in a disordered spin chain is detected by evaluating
the magnetization and twist overlap at the end of the time evolution for many disorder
realizations. Numerical simulations demonstrated how the magnetization and twist over-
lap characteristics change between the thermal and localized phases. We found evident
differences between them, although the existence of a phase transition was not decided.
The disorder-strength dependence of the magnetization and twist overlap is robust against
static noises in the interaction between spins and the local field.

Under the condition in this work, the twist overlap evaluated using the wave function
at the end of the time evolution behaved similarly to that calculated using eigenstates in the
middle of the energy spectrum. In other words, the twist overlap after time evolution can
provide information on the properties of eigenstates beyond the memory effect. The twist
overlap is easily obtained from the measurement of qubits in a quantum device. Although
this work assumes an ideal quantum device, the results suggest that the twist overlap is a
promising probe for detecting MBL in quantum computing approaches.

Funding: This research received no external funding.
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Conflicts of Interest: The author declares no conflict of interest.

Abbreviation
The following abbreviation is used in this manuscript:

MBL Many-body localization
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