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Abstract: By utilizing the non-maximally entangled four-qubit cluster states as the quantum channel,
we first propose a hierarchical quantum information splitting scheme of arbitrary three-qubit states
among three agents with a certain probability. Then we generalize the scheme to arbitrary multi-
qubit states. Hierarchy is reflected on the different abilities of agents to restore the target state.
The high-grade agent only needs the help of one low-grade agent, while the low-grade agent
requires all the other agents’ assistance. The designated receiver performs positive operator-valued
measurement (POVM) which is elaborately constructed with the aid of Hadamard matrix. It is worth
mentioning that a general expression of recovery operation is derived to disclose the relationship
with measurement outcomes. Moreover, the scheme is extended to multiple agents by means of the
symmetry of cluster states.

Keywords: hierarchical quantum information splitting; non-maximally entangled cluster state; multi-
qubit state; POVM; recovery operation

1. Introduction

With the rapid development of computer networks, the demand for information se-
curity is sharply increasing. Quantum cryptography has unconditional security, which
depends on the internal physical characteristics of quantum mechanics, such as the Heisen-
berg uncertainty principle and non-cloning theorem [1]. As the counterpart of classical
secret sharing [2], quantum secret sharing (QSS) was first introduced by Hillery et al. [3]
and has been one of the most significant branches of quantum cryptography. In QSS, the
secret is divided into multiple pieces (called shares) and it can be constructed only through
the cooperation of the shares. When the shared secret is a quantum state, QSS is termed
quantum state sharing (QSTS) or quantum information splitting (QIS). The other agents can
be regarded as the controlling party if one agent is identified as the receiver. From this point
of view, QIS can be used to complete the task of controlled quantum teleportation (CQT) [4]
in which an unknown state is teleported from a sender to a spatially separated receiver
under the supervision of one or more controllers. Owing to its potential applications, e.g.,
creating joint accounts containing quantum money [5] and secure distributed quantum
computation [6], QIS has been intensively studied [7–15] in the past two decades. For
example, Luo et al. [11] investigated the application of χ state for QIS of an arbitrary three-
qubit state. Li et al. [12] proposed a novel class of universal and flexible QIS schemes of
arbitrary qubit and qudit states using quantum walks with multiple coins. In the meantime,
experimental implementation of QIS has been reported [16–18].

The QIS schemes mentioned above mainly focus on the situation in which the au-
thorities of the agents are identical. Considering the actual communication circumstance,
Wang et al. [19] first proposed a hierarchical quantum information splitting (HQIS) scheme
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in the case where the agents are graded according to their abilities to restore the secret state.
The high-grade agent requires some of the other agents’ help to complete the task, while
the low-grade agent can do it only if all the other agents supply the assistance. Since then,
much attention [20–25] has been paid to HQIS due to its useful applications in practice.
Like many other quantum communication schemes [26–28], HQIS prefers using maximal
entanglement to achieve perfect transmission. Nevertheless, the maximally entangled
states are hard to maintain owing to the decoherence induced by the surrounding envi-
ronment [29]. Thus, it is of great importance to investigate quantum communication via
non-maximally entangled (NME) states [30–36]. Recently, based on NME four-particle
cluster states, Xu et al. [35] and Guo et al. [36] respectively sketched new HQIS protocols
to probabilistically realize the QSS of arbitrary unknown single-qubit state and two-qubit
state via POVM. To our knowledge, there are no universal HQIS schemes of arbitrary
multi-qubit states via POVM.

In this paper, we intend to devise a universal scheme to achieve the HQIS of arbitrary
multi-qubit states with three agents via the NME resource. The agents lie in two disparate
grades of which one agent lies in the high grade and two agents lie in the low grade.
With the aid of the Hadamard matrix, we construct the general POVM operators. The
recovery operation is derived from a general expression which distinctly discloses the
relationship with measurement results. Based on the assistance of one inferior agent, the
high-grade agent as the designated receiver can recover the target state with a certain
probability by performing POVM rather than the usual projective measurement. While
the low-grade agent requires all agents’ help. Then, we generalize the scheme from three
agents to multiple agents by means of the symmetry of cluster states.

The outline of this paper is organized as follows. In Section 2, we first put forward a
probabilistic HQIS scheme of arbitrary three-qubit states with three agents by utilizing the
NME four-qubit cluster states as the entangled resource. The above scheme is extended to
arbitrary n-qubit states in Section 3. In Section 4, we generalize the universal scheme of
multi-qubit states from three agents to multiple agents. Section 5 is the security analysis.
Some discussions and conclusions are given in the last section.

2. Probabilistic HQIS of Arbitrary Three-Qubit States with Three Agents

There are four participants, Alice, Bob, Charlie1 and Charlie2. Alice is the sender who
wishes to teleport an unknown state to three agents in an asymmetric way such that any
one of them can restore the secret state under the cooperation of other agents. The three
agents are divided into two grades according to their abilities to recover the target state.
High-grade agent Bob can restore the secret state only with the help of one low-grade agent
while low-grade agent Charlie1 or Charlie2 needs the assistance of all the other agents.

Alice possesses a secret three-qubit state:

|ϕ〉123 = (α0|000〉+ α1|001〉+ α2|010〉+ α3|011〉
+α4|100〉+ α5|101〉+ α6|110〉+ α7|111〉)123.

(1)

She knows nothing about the state except that the complex parameters α0, · · · , α7 satisfy

the normalization condition
7
∑

j=0
|αj|2 = 1.

Three NME four-qubit cluster states,

|Ψj〉AjBjC1jC2j = (β j0|0〉|ψ0〉+ β j1|1〉|ψ1〉)AjBjC1jC2j , j = 1, 2, 3 (2)

are selected as entangled resource, where

|ψ0〉 = |000〉+ |011〉, |ψ1〉 = |100〉 − |111〉, (3)
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β j0, β j1 are nonzero real numbers satisfying β2
j0 + β2

j1 = 1
2 and |β j0| < |β j1|. The qubit Aj is

held by Alice, qubits Bj, C1j and C2j are distributed to the agents Bob, Charlie1 and Charlie2,
respectively.

The initial whole system can be expressed as:

|ϕ〉123 ⊗ |Ψ1〉A1B1C11C21 ⊗ |Ψ2〉A2B2C12C22 ⊗ |Ψ3〉A3B3C13C23
= (α0|000〉+ α1|001〉+ α2|010〉+ α3|011〉+ α4|100〉+ α5|101〉+ α6|110〉

+α7|111〉)123(
1
∑

p1,p2,p3=0
βp|p1 p2 p3〉|ψp1 ψp2 ψp3〉)A1A2A3B1C11C21B2C12C22B3C13C23 .

(4)

For convenience, we denote β1p1 β2p2 β3p3 = βp, where p is the decimal form of the binary
string p1 p2 p3. In other words, p = p122 + p221 + p320.

To complete the task, the participants need to perform the following operations.
Step 1 The sender Alice performs two-qubit projective measurements on her qubits

(1, A1), (2, A2), (3, A3) under Bell basis,

|ξ00〉 =
|00〉+ |11〉√

2
, |ξ01〉 =

|01〉+ |10〉√
2

, |ξ10〉 =
|00〉 − |11〉√

2
, |ξ11〉 =

|01〉 − |10〉√
2

. (5)

After the measurements, she broadcasts 6 bit classical information s1t1s2t2s3t3 correspond-
ing to her measurement outcome |ξs1t1〉1A1 |ξs2t2〉2A2 |ξs3t3〉3A3 , sj, tj = 0, 1, j = 1, 2, 3.

As a result, the remaining state collapses with equal probability into one of the 64 states
|gs1t1s2t2s3t3〉:

1
2
√

2
{

1
∑

j=0
(−1)js1 β1,t1⊕j|ψt1⊕j〉[α4jβ2,t2 β3,t3 |ψt2 ψt3〉+ (−1)s3 α4j+1β2,t2 β3,t3⊕1|ψt2 ψt3⊕1〉

+(−1)s2 α4j+2β2,t2⊕1β3,t3 |ψt2⊕1ψt3〉+ (−1)s2⊕s3 α4j+3β2,t2⊕1β3,t3⊕1|ψt2⊕1ψt3⊕1〉]}.
(6)

Here and hereafter ⊕means modulo 2 addition.
In order to clearly explain how our protocol implements, suppose Alice’s measurement re-

sult is |ξ11〉1A1 |ξ01〉2A2 |ξ10〉3A3 . The three agents’ qubits (B1, C11, C21, B2, C12, C22, B3, C13, C23)
become

|g110110〉 = 1
2
√

2
(α0β3|ψ0ψ1ψ1〉+ α1β2|ψ0ψ1ψ0〉 − α2β1|ψ0ψ0ψ1〉 − α3β0|ψ0ψ0ψ0〉

+α4β7|ψ1ψ1ψ1〉+ α5β6|ψ1ψ1ψ0〉 − α6β5|ψ1ψ0ψ1〉 − α7β4|ψ1ψ0ψ0〉).
(7)

At this time, none of the agents can recover the target state privately since their qubits are
entangled with each other. Other agents’ cooperation is indispensable for the designated
agent to complete his recovery task.

Step 2 According to Alice’s classical message, the agents apply the appropriate
operations to achieve the goal that any one of agents recovers the secret state.

It will be discussed in two cases as far as the agents’ different authorities are concerned.
Case 1 The high-grade agent is designated as the receiver.
The state in Equation (7) can be decomposed as:

|g110110〉 = 1
2
√

2
[|000〉⊗2 f (−α6, α7,−α4, α5, α2,−α3, α0,−α1)

+|001〉⊗2 f (−α6,−α7,−α4,−α5, α2, α3, α0, α1)
+|010〉⊗2 f (−α6, α7, α4,−α5, α2,−α3,−α0, α1)
+|011〉⊗2 f (−α6,−α7, α4, α5, α2, α3,−α0,−α1)
+|100〉⊗2 f (−α6, α7,−α4, α5,−α2, α3,−α0, α1)
+|101〉⊗2 f (−α6,−α7,−α4,−α5,−α2,−α3,−α0,−α1)
+|110〉⊗2 f (−α6, α7, α4,−α5,−α2, α3, α0,−α1)
+|111〉⊗2 f (−α6,−α7, α4, α5,−α2,−α3, α0, α1)]C11C12C13C21C22C23B1B2B3 ,

(8)
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where

f (u0, · · · , u7) = u0β0|000〉+ u1β1|001〉+ u2β2|010〉+ u3β3|011〉
+u4β4|100〉+ u5β5|101〉+ u6β6|110〉+ u7β7|111〉. (9)

It is clear that Charlie1’s and Charlie2’s qubits are identical. From Equation (8), if one of
them carries out single-qubit projective measurements under Z-basis {|0〉, |1〉}, the qubits
of Bob and the other low-grade agent will collapse into a product state. That means only
one of the low-grade agents is sufficient to supply assistance. Suppose Charlie1 performs
projective measurements and gets result |0〉C11 |1〉C12 |0〉C13 , which is sent to Bob in the form
of classical message 010. Then Bob’s qubits collapse into:

1
2
√

2
(−α0β6|110〉+ α1β7|111〉+ α2β4|100〉 − α3β5|101〉

+α4β2|010〉 − α5β3|011〉 − α6β0|000〉+ α7β1|001〉)B1B2B3 .
(10)

One can see that Bob’s state mix the information of the secret state and the entangled
channel. To reconstruct the secret state, Bob introduces three auxiliary qubits with initial
states |000〉e1e2e3 and executes Controlled-NOT (CNOT) operations CBjej with the qubit Bj
as the controlled qubit and ej as the target one, j = 1, 2, 3. Thus, Bob’s state transforms into:

|Γ〉 = 1
2
√

2
(−α0β6|110〉⊗2 + α1β7|111〉⊗2 + α2β4|100〉⊗2 − α3β5|101〉⊗2

+α4β2|010〉⊗2 − α5β3|011〉⊗2 − α6β0|000〉⊗2 + α7β1|001〉⊗2)B1B2B3e1e2e3 .
(11)

Denote

|K000〉
|K001〉
|K010〉
|K011〉
|K100〉
|K101〉
|K110〉
|K111〉


= H⊗3 · diag{−α6, α7, α4,−α5, α2,−α3,−α0, α1}



|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉


(12)

and 

|Q000〉
|Q001〉
|Q010〉
|Q011〉
|Q100〉
|Q101〉
|Q110〉
|Q111〉


= H⊗3 · diag{β0, β1, β2, β3, β4, β5, β6, β7}



|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉


, (13)

where H is the Hadamard matrix
(

1 1
1 −1

)
. Then Equation (11) can be rephrased as:

|Γ〉 = 1
16
√

2

1

∑
r1,r2,r3=0

|Kr1r2r3〉B1B2B3 |Qr1r2r3〉e1e2e3 . (14)

It shows that |Kr1r2r3〉 can be obtained if performing appropriate measurements on the auxil-
iary qubits and obtains the measurement result |Qr1r2r3〉. Unfortunately, |Q000〉, · · · , |Q111〉
are not mutually orthogonal such that they cannot be distinguished deterministically by
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the usual projective measurement. To differentiate non-orthogonal states, Bob needs to
execute POVM on his auxiliary qubits under measurement operators {O000, · · · , O111, O8}:

Or1r2r3 =
1
ω
|Mr1r2r3〉〈Mr1r2r3 |, O8 = I −

1

∑
r1,r2,r3=0

Or1r2r3 , (15)

where ω is a coefficient related with β0, · · · , β7 and

|M000〉
|M001〉
|M010〉
|M011〉
|M100〉
|M101〉
|M110〉
|M111〉


= 1√

ε
H⊗3 · diag{ 1

β0
, 1

β1
, 1

β2
, 1

β3
, 1

β4
, 1

β5
, 1

β6
, 1

β7
}



|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉


. (16)

Here, ε =
7
∑

j=0

1
β2

j
= 1

8β2
10β2

11β2
20β2

21β2
30β2

31
. In order to ensure operator O8 is positive, ω should

satisfy ω ≥ 64max{β2
0, · · · , β2

7}.
If Bob obtains the measurement result Or1r2r3 with the probability 〈Γ|Or1r2r3 |Γ〉 = 1

8ωε ,
he can restore the target state by performing appropriate Pauli operations. For clarity,
assume his measurement result is O011. Then Bob performs operation YB1

XB2
IB3

on his
collapsed state

|K011〉 = (α0|110〉+ α1|111〉+ α2|100〉+ α3|101〉
−α4|010〉 − α5|011〉 − α6|000〉 − α7|001〉)B1B2B3

(17)

and recovers the target state. Bob’s recovery operations conditioned on Charlie1’s (or
Charlie2’s) measurement result and his own POVM outcome Or1r2r3 are summarized in
Table 1, where I, X, Y, Z are the Pauli operations. However, Bob may also get O8 with the
probability 1− 1

ωε . In this case, he cannot infer the secret state of his qubits. Therefore, the
total success probability is:

P =
1

8ωε
× 8× 8× 64 =

(64β10β11β20β21β30β31)
2

ω
. (18)

Case 2 The low-grade agent is designated as the receiver.
Suppose Charlie1 is appointed as the receiver since Charlie1 and Charlie2 have the

same authority.
Denote

|0̃〉 = |+〉 = |0〉+ |1〉√
2

, |1̃〉 = |−〉 = |0〉 − |1〉√
2

(19)

and

f̃ (u0, · · · , u7) = u0|+++〉+ u1|++−〉+ u2|+−+〉+ u3|+−−〉
+u4| −++〉+ u5| −+−〉+ u6| − −+〉+ u7| − −−〉.

(20)
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Then the state in Equation (7) can be rewritten as:

|g110110〉 = 1
8

1
∑

b1,b2,b3=0
|b̃1b̃2b̃3〉B1B2B3 [|+++〉 f̃ (α̂6, α̂7, α̂4, α̂5, α̂2, α̂3, α̂0, α̂1)

+|++−〉 f̃ (α̂7, α̂6, α̂5, α̂4, α̂3, α̂2, α̂1, α̂0)

−|+−+〉 f̃ (α̂4, α̂5, α̂6, α̂7, α̂0, α̂1, α̂2, α̂3)

−|+−−〉 f̃ (α̂5, α̂4, α̂7, α̂6, α̂1, α̂0, α̂3, α̂2)

−| −++〉 f̃ (α̂2, α̂3, α̂0, α̂1, α̂6, α̂7, α̂4, α̂5)

−| −+−〉 f̃ (α̂3, α̂2, α̂1, α̂0, α̂7, α̂6, α̂5, α̂4)

+| − −+〉 f̃ (α̂0, α̂1, α̂2, α̂3, α̂4, α̂5, α̂6, α̂7)

+| − −−〉 f̃ (α̂1, α̂0, α̂3, α̂2, α̂5, α̂4, α̂7, α̂6)]C21C22C23C11C12C13 ,

(21)

where

α̂0 = α0β6, α̂1 = −(−1)b3 α1β7, α̂2 = (−1)b2 α2β4,
α̂3 = −(−1)b2⊕b3 α3β5, α̂4 = −(−1)b1 α4β2, α̂5 = (−1)b1⊕b3 α5β3,
α̂6 = −(−1)b1⊕b2 α6β0, α̂7 = (−1)b1⊕b2⊕b3 α7β1.

(22)

Table 1. Bob’s recovery operations (BRO) depending on one low-grade agent’s measurement outcome
(LAMO) and his own POVM outcome Or1r2r3 .

LAMO r1r2r3 BRO r1r2r3 BRO

|000〉 000 YB1 XB2 ZB3 100 XB1 XB2 ZB3

001 YB1 XB2 IB3 101 XB1 XB2 IB3

010 YB1 YB2 ZB3 110 XB1 YB2 ZB3

011 YB1 YB2 IB3 111 XB1 YB2 IB3

|001〉 000 YB1 XB2 IB3 100 XB1 XB2 IB3

001 YB1 XB2 ZB3 101 XB1 XB2 ZB3

010 YB1 YB2 IB3 110 XB1 YB2 IB3

011 YB1 YB2 ZB3 111 XB1 YB2 ZB3

|010〉 000 YB1 YB2 ZB3 100 XB1 YB2 ZB3

001 YB1 YB2 IB3 101 XB1 YB2 IB3

010 YB1 XB2 ZB3 110 XB1 XB2 ZB3

011 YB1 XB2 IB3 111 XB1 XB2 IB3

|011〉 000 YB1 YB2 IB3 100 XB1 YB2 IB3

001 YB1 YB2 ZB3 101 XB1 YB2 ZB3

010 YB1 XB2 IB3 110 XB1 XB2 IB3

011 YB1 XB2 ZB3 111 XB1 XB2 ZB3

|100〉 000 XB1 XB2 ZB3 100 YB1 XB2 ZB3

001 XB1 XB2 IB3 101 YB1 XB2 IB3

010 XB1 YB2 ZB3 110 YB1 YB2 ZB3

011 XB1 YB2 IB3 111 YB1 YB2 IB3

|101〉 000 XB1 XB2 IB3 100 YB1 XB2 IB3

001 XB1 XB2 ZB3 101 YB1 XB2 ZB3

010 XB1 YB2 IB3 110 YB1 YB2 IB3

011 XB1 YB2 ZB3 111 YB1 YB2 ZB3

|110〉 000 XB1 YB2 ZB3 100 YB1 YB2 ZB3

001 XB1 YB2 IB3 101 YB1 YB2 IB3

010 XB1 XB2 ZB3 110 YB1 XB2 ZB3

011 XB1 XB2 IB3 111 YB1 XB2 IB3

|111〉 000 XB1 YB2 IB3 100 YB1 YB2 IB3

001 XB1 YB2 ZB3 101 YB1 YB2 ZB3

010 XB1 XB2 IB3 110 YB1 XB2 IB3

011 XB1 XB2 ZB3 111 YB1 XB2 ZB3
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To achieve the goal, both Bob and Charlie2 carry out projective measurements under
X-basis {|+〉, |−〉} and inform Charlie1 of the measurement outcomes in forms of classical
message. Corresponding to Charlie2’s measurement outcome, Charlie1 first performs the
unitary operation listed in Table 2.

To be explicit, assume Bob and Charlie2’s measurement outcomes are |+−−〉B1B2B3

and |+−+〉C21C22C23 , then the remaining qubits collapse into:

1
8 (α0β6| −++〉+ α1β7| −+−〉 − α2β4| − −+〉 − α3β5| − −−〉
−α4β2|+++〉 − α5β3|++−〉+ α6β0|+−+〉+ α7β1|+−−〉)C11C12C13 .

(23)

Charlie1 performs the operation HC11(XH)C12 HC13 and gets:

1
8 f (α6, α7,−α4,−α5,−α2,−α3, α0,−α1). (24)

In the following, Charlie1 employs similar operations to those of the assigned receiver Bob
in Case 1. Charlie1 introduces three qubits with initial states |000〉e1e2e3 and obtains

|Γ′〉 = 1
8 (α0β6|110〉⊗2 + α1β7|111〉⊗2 − α2β4|100〉⊗2 − α3β5|101〉⊗2

−α4β2|010〉⊗2 − α5β3|011〉⊗2 + α6β0|000〉⊗2 + α7β1|001〉⊗2)C11C12C13e1e2e3

(25)

after performing the CNOT operations CC1jej , j = 1, 2, 3. Then he performs POVM defined

in Equation (15). If Charlie1 obtains Or1r2r3 with equal probability 〈Γ′|Or1r2r3 |Γ′〉 = 1
64ωε ,

he can execute appropriate Pauli operations listed in Table 3 to recover the secret state.
Otherwise, he fails.

Similar discussions can be made for other measurement results of Alice, Bob and
Charlie2. Take all the possible measurement results into account, one can find that the
success probability of Charlie1 is identical to that in Equation (18).

Table 2. Charlie1’s operations depending on Charlie2’s measurement outcome (MO).

Charlie2’s MO Charlie1’s Operation

|+++〉 HC11 HC12 HC13

|++−〉 HC11 HC12 (XH)C13

|+−+〉 HC11 (XH)C12 HC13

|+−−〉 HC11 (XH)C12 (XH)C13

| −++〉 (XH)C11 HC12 HC13

| −+−〉 (XH)C11 HC12 (XH)C13

| − −+〉 (XH)C11 (XH)C12 HC13

| − −−〉 (XH)C11 (XH)C12 (XH)C13

Table 3. Charlie1’s recovery operation (CRO) depending on his own POVM measurement outcome
Or1r2r3 when Bob and Charlie2’s outcomes are |+−−〉B1B2B3 and |+−+〉C21C22C23 .

r1r2r3 CRO r1r2r3 CRO

000 YC11 YC12 IC13 100 XC11 YC12 IC13

001 YC11 YC12 ZC13 101 XC11 YC12 ZC13

010 YC11 XC12 IC13 110 XC11 XC12 IC13

011 YC11 XC12 ZC13 111 XC11 XC12 ZC13

3. Probabilistic HQIS of Arbitrary n-Qubit States with Three Agents

The above scheme for an arbitrary three-qubit state can be generalized to an arbitrary
n-qubit state,

|ϕ〉1···n =
1

∑
a1,··· ,an=0

αa|a1 · · · an〉1···n, (26)
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where the subscript a represents the decimal form of binary string a1 · · · an, αa is a complex

number satisfying
2n−1

∑
a=0
|αa|2 = 1.

n NME four-qubit cluster states |Ψj〉AjBjC1jC2j defined in Equation (2) are shared as
the quantum channel, where the particle Aj is in Alice’s possession, while the agents Bob,
Charlie1 and Charlie2 possess particles Bj, C1j, C2j, j = 1, · · · , n.

The combined state of the total system is:

|ϕ〉1···n ⊗ |Ψ1〉A1B1C11C21 ⊗ · · · ⊗ |Ψn〉AnBnC1nC2n

=
1
∑

a1,··· ,an=0
αa

n
∏
j=1

(
1
∑

pj ,qj=0
(−1)pjqj β jpj |aj pj pjqjqj〉)jAjBjC1jC2j .

(27)

The detailed process is described as follows.
Step 1 Alice initially executes joint projective measurements on her qubits (1, A1), · · · ,

(n, An) under the Bell basis. Then, she broadcasts 2n cbits s1t1 · · · sntn to announce her
measurement result |ξs1t1〉1A1 · · · |ξsntn〉nAn .

Since

|kh〉 = 1√
2

1

∑
n=0

(−1)kn|ξn,k⊕h〉, (28)

the state collapses into

|gs1t1···sntn〉 =
1

2n/2

1

∑
a1,··· ,an=0

αa

n

∏
j=1

(
1

∑
qj=0

(−1)aj(sj⊕qj)⊕tjqj β j,aj⊕tj |aj ⊕ tj〉|qj〉|qj〉)BjC1jC2j . (29)

Step 2 According to Alice’s measurement result, the agents perform the appropriate
operations to realize that any one of agents recovers the secret state.

Due to the different grades of agents, we still discuss it in two cases.
Case 1 The high-grade agent is designated as the receiver.
The high-grade agent Bob only requires the help of one low-grade agent as Charlie1

and Charlie2 have exactly the same qubits. If one of the low-grade agents performs n
single-qubit projective measurements under the Z-basis and obtains the measurement
result |c1〉 · · · |cn〉 which is sent to Bob in the form of classical bits c1 · · · cn, Bob’s qubits
collapse into

1
2n/2

1

∑
a1,··· ,an=0

αa

n

∏
j=1

(−1)aj(sj⊕cj)β j,aj⊕tj |aj ⊕ tj〉. (30)

Bob introduces n auxiliary qubits |0 · · · 0〉e1···en and performs CNOT operations CBjej .
Thus, he gets

|Γ〉 = 1
2n/2

1

∑
a1,··· ,an=0

αa

n

∏
j=1

(−1)aj(sj⊕cj)β j,aj⊕tj |aj ⊕ tj〉Bj |aj ⊕ tj〉ej . (31)

The state in the above equation can be decomposed into:

|Γ〉 = 1
23n/2

1

∑
r1,··· ,rn=0

|Kr1···rn〉B1···Bn |Qr1···rn〉e1···en , (32)

where

|Kr1···rn〉 =
1

∑
a1,··· ,an=0

αa

n

∏
j=1

(−1)aj(sj⊕cj⊕rj)⊕tjrj |aj ⊕ tj〉Bj (33)

and

|Qr1···rn〉 =
1

∑
a1,··· ,an=0

n

∏
j=1

(−1)ajrj β jaj |aj〉ej . (34)
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Since |Qr1···rn〉, r1, · · · , rn = 0, 1 are not mutually orthogonal in general, Bob had better
perform POVM which plays an important role in state discrimination. The measurement
operators are:

Or1···rn =
1
ω
|Mr1···rn〉〈Mr1···rn |, O2n = I −

1

∑
r1···rn=0

Or1···rn , (35)

where ω is related to the coefficient of the quantum channel and

|Mr1···rn〉 =
1√

ε

1

∑
a1,··· ,an=0

n

∏
j=1

(−1)ajrj
1

β jaj

|aj〉. (36)

Here, ε =
1
∑

a1,··· ,an=0

1
β2

1a1
···β2

nan
and ω satisfies ω ≥ 4nmax{β2

0, · · · , β2
2n−1} which is to meet

the condition that the elements of POVM must be positive operators. If Bob obtains mea-
surement result Or1···rn with equal probability 〈Γ|Or1···rn |Γ〉 = 1

2nωε , his qubits (B1, · · · , Bn)
collapse to |Kr1···rn〉. Then, Bob performs

RB = (Zs1⊕c1⊕r1 Xt1)B1 · · · (Zsn⊕cn⊕rn Xtn)Bn (37)

and recovers the target state. If his measurement outcome is O2n , he fails.
Case 2 The low-grade agent is designated as the receiver.
Suppose Charlie1 is assigned as the receiver. Bob and Charlie2 need to perform projec-

tive measurements under the X-basis and inform him of the measurement outcomes. Since

|h〉 =
1

∑
l=0

(−1)lh|l̃〉, h = 0, 1, (38)

Charlie1’s qubits collapse into:

(−1)

n
∑

j=1
tjbj 1

2n

1

∑
a1,··· ,an=0

αa

n

∏
j=1

(−1)aj(sj⊕bj)β j,aj⊕tj | ˜aj ⊕ tj ⊕ cj〉C1j . (39)

If Bob’s and Charlie2’s measurement outcomes are |b̃j〉 and |c̃j〉, bj, cj ∈ {0, 1}, j = 1, · · · , n.
Charlie1 performs (Xc1 H)C11 · · · (Xcn H)C1n and gets:

(−1)

n
∑

j=1
tjbj 1

2n

1

∑
a1,··· ,an=0

αa

n

∏
j=1

(−1)aj(sj⊕bj)β j,aj⊕tj |aj ⊕ tj〉C1j . (40)

Similar to Case 1, Charlie1 carries out POVM in Equation (35) after introducing auxiliary
qubits and performing CNOT operations. If his measurement outcome is Or1···rn , Charlie1
can reconstruct the secret state by performing recovery operation

RC = (Zs1⊕b1⊕r1 Xt1)C11 · · · (Zsn⊕bn⊕rn Xtn)C1n . (41)

While measurement result O2n indicates the task is failed.
Regardless of the grade of agents, the total success probability is:

P =
2n × 4n

ωε
=

23n(β10β11 · · · βn0βn1)
2

ω
. (42)

Since |β j0| ≤ |β j1|, the total success probability is

P ≤ 4nβ2
10 · · · β2

n0. (43)
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4. Probabilistic HQIS of Arbitrary n-Qubit States with N Agents

It is necessary to investigate the situation of multiple agents as there are many users
in a practical communication network. The hierarchy of agents may be diverse. Here, we
consider one simple case in which the N agents are divided into two grades: u agents (Bob1,
· · · , Bobu) lie in high grade and v agents (Charlie1, · · · , Charliev) lie in low grade.

The main aim is teleporting an arbitrary n-qubit state |ϕ〉1···n shown in Equation (26)
from the sender to any one of the N agents in an asymmetrical way.

Before the scheme officially begins, Alice prepares n NME four-qubit cluster states
|Ψj〉AjB1jC1jC2j , j = 1, · · · , n and introduces some qubits |0 · · · 0〉B2j ···BujC3j ···Cvj . Then she
carries out a series of CNOT operations as shown in Figure 1 and gets

|Ψ′j〉 = (β j0|0〉|ψ0〉+ β j1|1〉|ψ1〉)AjB1j ···BujC1j ···Cvj , j = 1, · · · , n, (44)

where

|ψ0〉 = | 0 · · · 0︸ ︷︷ ︸
u

0 · · · 0︸ ︷︷ ︸
v

〉+ | 0 · · · 0︸ ︷︷ ︸
u

1 · · · 1︸ ︷︷ ︸
v

〉, |ψ1〉 = | 1 · · · 1︸ ︷︷ ︸
u

0 · · · 0︸ ︷︷ ︸
v

〉 − | 1 · · · 1︸ ︷︷ ︸
u

1 · · · 1︸ ︷︷ ︸
v

〉. (45)

Figure 1. The generation circuit of the state |Ψ′j〉.

Next, Alice distributes the qubits B1j, · · · , Buj, C1j, · · · , Cvj to Bob1, · · · , Bobu, Charlie1,
· · · , and Charliev, respectively. The distribution of qubits among N agents is shown in
Figure 2.

Figure 2. The qubit shared by the sender and N agents. White points represent Alice’s secret particles,
black points represent particles in the NME cluster states. The solid lines stand for entanglements.
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The initial whole system is:

|ϕ〉12···n ⊗ |Ψ′1〉A1B11···Bu1C11···Cv1 ⊗ · · · ⊗ |Ψ
′
n〉AnB1n ···BunC1n ···Cvn

=
1
∑

a1,··· ,an=0
αa

n
∏
j=1

(
1
∑

pj ,qj=0
(−1)pjqj β jpj |aj pj · · · pjqj · · · qj〉)jAjB1j ···BujC1j ···Cvj .

(46)

The scheme can be illustrated as follows.
Step 1 The sender Alice carries out Bell-basis measurements on her qubits (1, A1), · · · ,

(n, An). If the measurement result is |ξs1t1〉, · · · , |ξsntn〉, she broadcasts classical bits
s1t1 · · · sntn, sj, tj ∈ {0, 1}, j = 1, · · · , n.

Since the state in Equation (46) can be rewritten as:

1
2n/2

1
∑

a1,··· ,an=0
αa

n
∏
j=1

(
1
∑

qj ,sj ,tj=0
(−1)aj(sj⊕qj)⊕tjqj β j,aj⊕tj |ξsjtj〉|aj ⊕ tj〉⊗u|qj〉⊗v), (47)

the state collapses to:

|gs1t1···sntn〉 = 1
2n/2

1
∑

a1,··· ,an=0
αa

n
∏
j=1

(
1
∑

qj=0
(−1)aj(sj⊕qj)⊕tjqj β j,aj⊕tj |aj ⊕ tj〉⊗u|qj〉⊗v). (48)

Step 2 According to Alice’s classical message, the agents apply the appropriate
operations to achieve the goal that any one of agents recovers the secret state.

Since the same-grade agents have the same authority, we assume that the high-grade
agent Bob1 or the low-grade agent Charlie1 recovers the secret state.

Case 1 The high-grade agent Bob1 is designated as the receiver.
The state in Equation (48) can be rewritten as:

1
∑

a1,··· ,an=0
αa

n
∏
j=1
{

1
∑

qj=0
(−1)aj(sj⊕qj)⊕tjqj |aj ⊕ tj〉

u
∏

t=2
(

1
∑

kl j=0
(−1)(aj⊕tj)ltj β j,aj⊕tj |k̃l j〉)|qj〉⊗v} (49)

up to the global phase.
Only if the other high-grade agent and one low-grade agent respectively perform

projective measurements under the X-basis and Z-basis, can Bob1 restore the target
state with a certain probability. Assume the measurement results of Bob2, · · · , Bobu

are |b̃2j〉, · · · , |b̃uj〉 and the measurement outcomes of Charlie1 are |cj〉, where b2j, · · · , buj,
cj ∈ {0, 1}, j = 1, · · · , n. At the moment, Bob1’s qubits collapse into:

1
∑

a1,··· ,an=0
αa

n
∏
j=1

(−1)aj(sj⊕cj⊕b2j ···⊕buj)β j,aj⊕tj |aj ⊕ tj〉 (50)

up to the global phase.
Bob1 introduces auxiliary qubits |0 · · · 0〉e1···en and performs CNOT operations CBjej .

Thus, he gets:

1

∑
a1,··· ,an=0

αa

n

∏
j=1

(−1)aj(sj⊕cj⊕b2j ···⊕buj)β j,aj⊕tj |aj ⊕ tj〉Bj |aj ⊕ tj〉ej . (51)

Then he performs POVM in Equation (35) on the auxiliary qubits. Analogously, if his
POVM outcome is Or1···rn , Bob1 carries out unitary operation

RB = (Zc1⊕s1⊕b21⊕···⊕bu1⊕r1 Xt1)B11 · · · (Zcn⊕sn⊕b2n⊕···⊕bun⊕rn Xtn)B1n (52)

and restores the secret state on his own qubits. If he obtains measurement result O2n , the
goal cannot be achieved.

Case 2 The low-grade agent Charlie1 is designated as the receiver.
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To assist Charlie1 in recovering the target state, all the other agents perform projective
measurements under the X-basis and inform him of the measurement outcomes. Assume
the measurement outcomes of Bob1, · · · , Bobu, Charlie2, · · · Charliev are |b̃1j〉, · · · , |b̃uj〉,
|c̃2j〉, · · · , |c̃vj〉, j = 1, · · · , n. Then Charlie1’s qubits collapse into:

1
∑

a1,··· ,an=0
αa

n
∏
j=1

(−1)aj(sj⊕b1j⊕···⊕buj)β j,aj⊕tj | ˜aj ⊕ tj ⊕ c2j ⊕ · · · ⊕ cvj〉C1j (53)

up to a global phase.
Charlie1 performs (Xc21⊕···⊕cv1 H)C11 · · · (Xc2n⊕···⊕cvn H)C1n and gets

1

∑
a1,··· ,an=0

αa

n

∏
j=1

(−1)aj(sj⊕b1j⊕···⊕buj)β j,aj⊕tj |aj ⊕ tj〉C1j . (54)

Similar to Case 1, Charlie1 performs POVM in Equation (35) after introducing auxiliary
qubits and executing CNOT operations. If the measurement outcome is Or1···rn , his recovery
operation can be summarized as:

RC = (Zs1⊕b11⊕···⊕bu1⊕r1 Xt1⊕c21⊕···⊕cv1 H)C11 · · · (Zsn⊕b1n⊕···⊕bun⊕rn Xt1⊕c2n⊕···⊕cvn H)C1n . (55)

While measurement result O2n indicates task is failed.
The total success probability is the same as the case of three agents.

5. Security Analysis

For simplicity, take the case of three agents as an example. In order to ensure the
security, Alice adopts the following strategies to detect eavesdropping. Besides n NME four-
qubit cluster states |Ψj〉AjBjC1jC2j , j = 1, · · · , n, Alice generates an ordered sequence PA =

{A1, · · · , An} using all the first qubits in her possession. Similarly, she forms another three
ordered sequences PB = {B1, · · · , Bn}, PC1 = {C11, · · · , C1n} and PC2 = {C21, · · · , C2n}.
Then she prepares 3n decoy photons {d1, · · · , d3n} chosen from {|0〉, |1〉, |+〉, |−〉} and
randomly insert them into the three sequence to yield the larger sequences P′B, P′C1

, P′C2
. It

should be emphasized that the final order of all sequences is only known by Alice.
There are two kinds of eavesdropping. One is that an illegal external eavesdropper Eve

manages to steal secret information, the other is that there is a dishonest internal eavesdropper.
(I) Outsider attack.
It is not determined which agent is the receiver until the entangled channel particles

are distributed. In order to obtain the secret state, Eve intercepts all particles distributed
from Alice to the three agents and resends the forged one to them. In this case, once Alice
conducts eavesdropping inspection, she tells the three agents about the location, state
and measurement basis (Z-basis or X-basis). Then she asks each agent to measure the
decoy photons under the measurement basis and publish the measurement results. Only
if the agents’ measurement results are consistent with Alice’s predicted results, does the
protocol continue. In addition, since Eve has no access to the coefficients of the NME
channel, he can not carry out correct POVM to restore the secret state even if he intercepts
the agents’ particles.

(II) Insider attack.
The influence of dishonest agents is destructive. Without loss of generality, assume

that high-grade agent Bob is the internal eavesdropper. If everyone completely ignores
his identity and consents to him as the receiver, he can easily acquire the secret state. In
this case, our agreement cannot resist internal attacks. If the low-grade agent is designated
as the receiver and Bob wants to steal the confidential state, one way is to intercept the
channel particles of the low-grade agents and resend them false particles. However, because
the decoy photons of different agents are different, eavesdropping will be found by the
eavesdropping inspection. Another way is an entanglement measurement attack. Bob
performs the unitary operation to act on Charlie1’s or Charlie2’s particles he has intercepted
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and the auxiliary particles he has prepared, so that he can measure the auxiliary particles
to obtain information about the secret state. This attack will also be detected because of
errors caused by decoy particles. The specific process is similar to that in Ref. [37].

6. Discussions and Conclusions

In fact, besides POVM, the designated receiver can adopt the collective unitary opera-
tion to restore the secret state. Taking the high-grade agent Bob as the receiver, based on one
of the low-grade agent’s help, Bob’s qubits collapse into the state in Equation (30). Similar
to Ref. [34], Bob first introduces an auxiliary qubit |0〉e and performs a collective unitary
transformation diag(U0, · · · , U2n−1) on his qubits (B1, · · · , Bn, e). Then Bob measures the
auxiliary qubit under the Z-basis. If the measurement result is |0〉e, he performs appropriate
operations on the collapsed state and recovers the target state. If the measurement result is
|1〉e, the protocol fails.

In conclusion, we devise a universal scheme to probabilistically realize the HQIS of
arbitrary multi-qubit states among multiple agents by using NME four-qubit cluster states
as the quantum resource. Comparing with the HQIS scheme for arbitrary single- and two-
qubit states [22,23], our work has the following advantages: (1) Our schemes are applicable
for arbitrary multi-qubit states with the aid of elaborately constructed multi-qubit POVM;
(2) We derive the general expression of a recovery operation which clearly discloses the
relationship with the measurement results; (3) We describe the specific process of HQIS
with multiple agents. Our schemes are practical as NME states are easier to generate and
maintain than the maximally entangled resources and agents’ unequal authorities are in line
with the actual communication. Moreover, the preparation of the NME four-qubit cluster
states, Bell-basis measurement, local CNOT and Pauli operations and POVM are required in
our schemes. Besides POVM, other operations are easily implemented. Fortunately, POVM
can be realized by using measurement assisted programmable quantum processors [38]
and the ensemble approach to polarization optics [39]. It means our schemes are achievable
since these necessary operations are feasible under the current experimental technologies.
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