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Abstract: This paper studies the privacy of wireless communications from an eavesdropper that
employs a deep learning (DL) classifier to detect transmissions of interest. There exists one transmitter
that transmits to its receiver in the presence of an eavesdropper. In the meantime, a cooperative
jammer (CJ) with multiple antennas transmits carefully crafted adversarial perturbations over the
air to fool the eavesdropper into classifying the received superposition of signals as noise. While
generating the adversarial perturbation at the CJ, multiple antennas are utilized to improve the
attack performance in terms of fooling the eavesdropper. Two main points are considered while
exploiting the multiple antennas at the adversary, namely the power allocation among antennas and
the utilization of channel diversity. To limit the impact on the bit error rate (BER) at the receiver, the
CJ puts an upper bound on the strength of the perturbation signal. Performance results show that
this adversarial perturbation causes the eavesdropper to misclassify the received signals as noise
with a high probability while increasing the BER at the legitimate receiver only slightly. Furthermore,
the adversarial perturbation is shown to become more effective when multiple antennas are utilized.

Keywords: deep learning; covert communications; signal classification; adversarial attack

1. Introduction

Privacy is a fundamental problem in wireless communications due to the open and
shared nature of wireless medium. An eavesdropper may overhear the communications
intended between a transmitter and a receiver. The eavesdropper may pursue different
objectives such as decoding transmissions or detecting whether there is an ongoing trans-
mission, or not (e.g., for launching follow-up jamming attacks). The privacy of information
regarding unapproved decoding has been extensively studied from both encryption-based
security and information theory perspectives [1,2]. In this paper, we consider an eavesdrop-
per that pursues the second objective, namely detecting an ongoing transmission for future
adversarial purposes such as jamming to degrade the quality of communications.

Covert communications has been studied to hide information in noise where the main
goal has been to reduce the signal-to-noise ratio (SNR) at the eavesdropper [3,4]. A funda-
mental bound has been demonstrated on the total transmit power over a given number of
channel users while maintaining covert communications, generally known as the square-
root law [5]; see also [6] for related work. In this paper, we study covert communications
from an adversarial machine learning (AML) point of view. Overall, AML is an emerging field
that studies machine learning (ML) in the presence of adversaries that may aim to manipu-
late the test and/or training pipelines of ML algorithms [7–9]. While the applications of
AML have originated in the computer vision domain, there has been a growing interest in
applying AML to wireless communications [10–12], including exploratory (inference) at-
tacks [13,14], evasion (adversarial) attacks [15–33] and their extensions to secure and covert
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communications against eavesdroppers [34–37], causative (poisoning) attacks [38–40],
membership inference attacks [41,42], Trojan attacks [43], and spoofing attacks [44–47].

We consider an eavesdropper with a deep learning (DL)-based classifier to detect
an ongoing transmission where this classifier achieves a high accuracy for distinguishing
the received signals from noise. We introduce a cooperative jammer (CJ) that has been
extensively used in the physical layer security literature [48–50]. In this paper, the CJ
transmits signals over the air at the same time as the transmitter with the purpose of
fooling the eavesdropper’s classifier for covert communications. These signals from CJ
corresponds to an evasion attack (or adversarial attack) in AML where evasion attacks
have been used to manipulate wireless signal classification (in particular, modulation
classification) [15–28], spectrum sensing [29], autoencoder communications [30], initial
access [31], channel estimation [32], and power control [33]. In this paper, adversarial
attack is used as a means of covert communications to prevent an eavesdropper from
distinguishing an ongoing transmission from noise.

We use the CJ as the source of adversarial perturbation to manipulate the classifier
at an eavesdropper into making classification errors. While a perturbation with high
power level transmitted by the CJ can easily fool the classifier, it would also increase the
interference and the bit error rate (BER) at the intended receiver to an unacceptable level.
Therefore, an upper bound on the perturbation strength is imposed. A special case of
our setting has been considered in [34], where the transmitter with a single antenna adds
perturbations to its own signals to fool an eavesdropper with a modulation classifier while
aiming to maintain its own communication performance. In this paper, our focus is on
covert communications aided by a CJ, whose position can further boost the impact on the
eavesdropper to classify received signal as noise while reducing the impact on the BER
performance. Note that we only consider fooling a classifier into misclassifying a signal
as noise since it is typically more demanding. Further, we extend the analysis to the use
of multiple antennas at the CJ to generate multiple concurrent perturbations over different
channel effects (subject to a total power budget) for better covert communications. This
problem setting is different from computer vision applications of adversarial attacks that
are limited to a single perturbation that is directly added to the input of a deep neural
network (DNN). We assume that the CJ has multiple antennas to transmit adversarial
perturbations against the eavesdropper and aims to decrease the probability of detection at
the eavesdropper.

In this paper, we design a white-box attack at the CJ where the signal of the CJ is
time-aligned with the transmitted signal and uses the maximum received perturbation
power (MRPP) attack that was introduced in [20]. We propose different methods to allocate
power among antennas at the CJ and to exploit the channel diversity. We first propose a
genie-aided adversarial attack where the CJ selects one antenna to transmit the perturbation
such that it would result in the worst classification performance depending on the channel
condition over the entire symbol block (that corresponds to the input to the DNN at the
receiver). Then, we consider transmitting with all the antennas at the adversary where the
power allocation is based on the channel gains, either proportional or inversely proportional
to the channel gains. Finally, we propose the elementwise maximum channel gain (EMCG)
attack to utilize the channel diversity more efficiently by selecting the antenna with the best
channel gain at the symbol level to transmit perturbations.

For the performance evaluation, we first consider a CJ with a single antenna using
basic modulated signals (e.g., QPSK and 16-QAM), and then extend the setting to a more
complicated 5G communication signal. Our results show that we can effectively hide these
signals from an eavesdropper that uses a DL-based classifier to detect transmissions. Then,
we use multiple antennas at the CJ to investigate the performance of multiple concurrent
perturbations over different channel effects on the eavesdropper’s classifier.

During simulations, the perturbation of the CJ is selected to minimize the strength of
the perturbation subject to the condition of successfully fooling the eavesdropper and an
upper bound on the perturbation power that can translate to limiting the BER at the receiver.
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We show that Gaussian noise is not effective as an adversarial perturbation and develop
an algorithm to optimize the perturbations for the CJ to enable covert communications,
which we demonstrate for signals with different modulation types and 5G communications.
Furthermore, we show that the EMCG attack outperforms other attacks and effectively
uses the channel diversity provided by multiple antennas to cause misclassification at the
receiver. This attack improvement remains effective regardless of the channel variance or
correlation between channels, whereas the proportional to the channel gain (PCG) attack
is greatly affected by the correlation between channels. Finally, we show that increasing
the number of antennas at the adversary significantly improves the attack performance by
better exploiting the channel diversity to craft and transmit adversarial perturbations.

In summary, our contributions are given as follows:

• We present how a CJ is used to make wireless communications covert by transmitting
adversarial attack against the classifier of the eavesdropper.

• For a CJ equipped with multiple antennas, we investigate the use of multiple antennas
to generate multiple concurrent perturbations over different channel effects against
the eavesdropper. Furthermore, we propose different methods to utilize the channel
diversity.

• With simulations, we show that the CJ can generate perturbation signals that cause mis-
classification at the eavesdropper for both basic modulated signals and sophisticated
5G signals, while the BER at the receiver is slightly affected.

The rest of the paper is organized as follows. Section 2 describes the system model.
Section 3 presents the white-box adversarial attacks when the CJ has one antenna. Section 4
introduces different methods to generate adversarial attacks when the CJ has multiple
antennas. Section 5 presents the performance evaluation results. Section 6 concludes
the paper.

2. System Model

We consider a wireless system that consists of a transmitter, a receiver, a CJ, and an
eavesdropper as shown in Figure 1. The transmitter sends p complex symbols consecutively
in time, x ∈ Cp, by mapping a binary input sequence m ∈ {0, 1}l . Specifically, x = gs(m),
where gs : {0, 1}l → Cp and s represents the modulation type of the transmitter. Then,
the transmitter’s signal received at node j (either the receiver r or the eavesdropper e) is
given by

rtj = Htjgs(m) + ntj = Htjx + ntj, j ∈ {r, e}, (1)

where Htj = diag{htj,1, · · · , htj,p} ∈ Cp×p and ntj ∈ Cp are the channel and complex
Gaussian noise from the transmitter to node j, respectively. Upon receiving the signal rtr,
the receiver decodes the message with the BER given by

Pe(m, rtr) =
1
l

l

∑
i=1

I{mi 6= m̂i}, (2)

where m̂i is a decoded bit and I{·} is an indicator function.

Transmitter

Cooperative
Jammer

Receiver

Eavesdropper

x

Figure 1. System model.
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The eavesdropper tries to detect the existence of wireless transmission using a pre-
trained DL-based classifier, namely a DNN, f (.,θ) : X → R2, where θ is the set of DNN
parameters and X ⊂ Cp. An input x ∈ X is assigned a label l̂(x, θ) = arg maxk fk(x, θ),
where fk(x, θ) is the output of a classifier f corresponding to the kth class.

To make communications between the transmitter and its receiver covert, the CJ
with q antennas transmits perturbation signals δ1, δ2, · · · , δq ∈ Cp, where the ith antenna
transmits δi, to cause misclassification at the eavesdropper by changing the label of the
received signal rte from signal to noise. Thus, if the transmitter transmits x, the received
signal at node j is given by

r′tj(δ1, · · · , δq) = Htjx +
q

∑
i=1

Hci jδi + ntj, j ∈ {r, e}, (3)

where Hci j = diag{hci j,1, · · ·, hci j,p} ∈ Cp×p is the channel from the ith antenna of the CJ to
node j.

Since the perturbation signals from the CJ not only creates interference at the eaves-
dropper, but also at the receiver, the CJ determines its signals δ1, δ2, · · · , δq to cause
misclassification at the eavesdropper using a fixed power budget Pmax that also limits the
BER at the receiver. Formally, the CJ first determines δ1, δ2, · · · , δq by solving the following
optimization problem:

arg min
δi

q

∑
i=1
||δi||22

s.t. l̂(rte, θ) 6= l̂(r′te(δ1, · · · , δq), θ)
q

∑
i=1
||δi||22 ≤ Pmax. (4)

The solution δ∗i to (4) results in a BER, Pe(m, r′tr(δ
∗
i )), at the receiver that can be

bounded to a target level by selecting Pmax accordingly. Since solving (4) is difficult, dif-
ferent methods have been proposed in computer vision to approximate the adversarial
perturbations such as the fast gradient method (FGM) [7]. The FGM is computationally
efficient for crafting adversarial attacks by linearizing the loss function, L(θ, x, y), of the
DNN classifier in a neighborhood of x where y is the label vector. This linearized function
is used for optimization. In this paper, we consider a targeted attack, where the perturbation
of the CJ aims to decrease the loss function of the label noise and cause a specific misclassifi-
cation, from signal to noise, at the eavesdropper even though there is an actual transmission.
We approach the problem from an AML point of view and aim to fool a target classifier,
which is equivalent to hiding communications in noise from a wireless communications
perspective. While designing the perturbation, we constrain the BER at the receiver to
stay below a certain level while satisfying the power constraint at the CJ, as stated in the
constraints of the optimization problem (4). We assume that the CJ collaborates with the
transmitter and thus knows the transmitted signal from the transmitter.

3. Adversarial Perturbation for the CJ

In this section, we design the white-box perturbation for the CJ using a targeted
FGM to solve (4). We first assume that the CJ has one antenna, q = 1. We will relax
the assumption in Section 4. For the targeted attack, the CJ minimizes L(θ, r′te(δ), ytarget)
with respect to δ where ytarget is the one-hot-encoded desired target class. We fix ytarget

as noise label since the CJ always tries to add perturbation to fool the eavesdropper into
misclassifying a received signal as noise. We use FGM to linearize the loss function
as L(θ, r′te(δ), ytarget) ≈ L(θ, rte, ytarget) + (Hceδ)T∇xL(θ, rte, ytarget) and then minimize
it by setting Hceδ = −α∇xL(θ, rte, ytarget), where α is a scaling factor to constrain the
adversarial perturbation power to Pmax. The details of determining the CJ’s perturbation
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signal are presented in Algorithm 1. After we obtain the δ that causes misclassification
at the eavesdropper and satisfies the power constraint, we check the BER at the receiver.
The perturbation power can further be adjusted to meet a target BER level. Specifically,
if the BER level at the receiver is more important than fooling the eavesdropper, we can
decrease the adversarial perturbation power. On the other hand, if fooling the eavesdropper
is the priority, we can increase the adversarial perturbation power.

Algorithm 1: Generating the perturbation of the CJ
Inputs: input rte, desired accuracy εacc, power constraint Pmax, and L(θ, ·, ·).
Initialize: ε← 0, εmax ←

√
Pmax, εmin ← 0.

δnorm = ∇x L(θ,rte ,ytarget)
(||∇x L(θ,rte ,ytarget)||2)

.

while εmax − εmin > εacc do
εavg ← (εmax + εmin)/2
xadv ← rte − εavgδnorm

if l̂(xadv) == noise then εmin ← εavg
else εmax ← εavg

end
ε∗ = εmax, δjam = −ε∗δnorm

4. Adversarial Perturbations Using Multiple Antennas at the CJ

In this section, we present different methods to utilize q antennas at the CJ to improve
the performance of the adversarial attack against the eavesdropper. Note that the adversary
can allocate power differently to each antenna and increase the channel diversity by using
multiple antennas. In this paper, we apply the targeted MRPP attack in [20], which has
been developed from the attack in [15] by accounting for additional channel effects.

4.1. Single-Antenna Genie-Aided (SAGA) Attack

We first begin with an attack where the CJ allocates all the power to only one an-
tenna for the entire symbol block of an input to the classifier at the eavesdropper as
shown in Figure 2a. In this attack, we assume that the CJ is aided by a genie and thus
knows in advance the best antenna out of q antennas that causes a misclassification. Then,
the genie-aided CJ puts all the power to that one specific antenna to transmit the adversarial
perturbation against the eavesdropper.

Adversary

f

n

Receiver

(a)

Adversary

f

n

Receiver

(b)

Figure 2. Illustration of (a) SAGA attack and (b) EMCG attack.
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4.2. Proportional to Channel Gain (PCG) Attack

To exploit the channel with the better channel gain, the CJ allocates more power to
better channels. Specifically, the power allocation for the ith antenna is proportional to

the channel gain ‖hcie‖2, where hcie = [hcie,1, · · ·, hcie,p]T , using weight wi =
‖hci e‖2

∑
q
j=1 ‖hcje‖2

, i =

1, · · · , q. The adversarial perturbation that is transmitted by each antenna is generated
using the MRPP attack as before and transmitted with the power allocated to each antenna.
The detailed algorithm is presented in Algorithm 2.

Algorithm 2: PCG attack
Inputs: input rte, desired accuracy εacc, power constraint Pmax, and model of the
classifier L(θ, ·, ·).

Initialize: wi =
‖hci e‖2

∑
q
j=1 ‖hcje‖2

, i = 1, · · · , q.

εmax ←
√

Pmax, εmin ← 0.
for i = 1 to q do

δi =
H∗ci e∇x L(θ,rte ,ytarget)

(‖H∗ci e∇x L(θ,rte ,ytarget)‖2)

end
while εmax − εmin > εacc do

εavg ← (εmax + εmin)/2
xadv ← x− εavg ∑

q
i=1 wiHcieδi

if l̂(xadv) == noise then εmin ← εavg
else εmax ← εavg

end
ε∗ = εmax
δi = wiε

∗δi for ∀i

4.3. Inversely Proportional to Channel Gain (IPCG) Attack

In contrast to the PCG attack, the CJ allocates more power to weak channels to
compensate for the loss over the weak channels, i.e., inversely proportional to the channel
gain. The perturbations that are transmitted by each antenna are generated using the
MRPP attack and the power for each antenna is determined to be inversely proportional to
the channel gain. The algorithm is the same as Algorithm 2 except that wi changes to be
inversely proportional to the channel, i.e., wi =

1
‖hci e‖2

1
∑

q
j=1

1
‖hcje‖2

, i = 1, · · · , q.

4.4. Elementwise Maximum Channel Gain (EMCG) Attack

Unlike the previous attacks that considered the channel gain of the channel vector
with dimension p × 1 as a way to allocate power among antennas, the EMCG attack
considers the channel gain for each time instance to fully utilize the channel diversity as
shown in Figure 2b. First, the CJ compares the channel gains elementwise and selects
one antenna that has the largest channel gain at each instance. Specifically, the CJ finds
and transmits with the antenna j∗ = arg max

j=1,··· ,q
{‖harj ,t‖2} that has the largest channel

gain at instance t. Furthermore, a virtual channel hvir,t at instance t is defined as the
channel with the largest channel gain among antennas which is harj∗ ,t. Then, the adversary

generates the perturbation δvir with respect to hvir = [hvir,1, · · · , hvir,p]
T using the MRPP

attack and transmits each element of δvir with the antenna that has been selected previously.
The details are provided in Algorithm 3.
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Algorithm 3: EMCG attack
Inputs: input rte, desired accuracy εacc, power constraint Pmax, and model of the
classifier L(θ, ·, ·).

Initialize: k← 0p×1, δi ← 0p×1 for ∀i.
for i = 1 to p do

hvir,i = max{‖hc1e,i‖2, · · · , ‖hcme,i‖2}
k[i] = arg max{‖hc1e,i‖2, · · · , ‖hcme,i‖2}

end
Virtual channel : Hvir = diag{hvir,1, · · · , hvir,p}
εmax ←

√
Pmax, εmin ← 0

δ =
H∗vir∇x L(θ,rte ,ytarget)

(‖H∗vir∇x L(θ,rte ,ytarget)‖2)

while εmax − εmin > εacc do
εavg ← (εmax + εmin)/2
xadv ← x− εavgHvirδ

if l̂(xadv) == noise then εmin ← εavg
else εmax ← εavg

end
ε∗ = εmax
δvir = ε∗δ
for i = 1 to p do

δk[i] = δvir[i]
end
Transmit δi, i = 1, · · · , q

5. Simulation Results

We analyzed the success of covertness achieved by CJ’s perturbation at the eaves-
dropper and the corresponding effect on the BER at the receiver. We first assumed that
the CJ only had one antenna to analyze the impact of the CJ on the eavesdropper. Then,
we increased the number of antennas at the CJ to observe the performance when multiple
antennas are used with different methods. We compared this perturbation with random
Gaussian noise transmitted by the CJ. Furthermore, we changed the location of the CJ to
investigate the effects of topology and channel.

5.1. Simulation Settings

We assumed that the binary source data were generated independently and uniformly
at the receiver. The classifier at the eavesdropper was a convolutional neural network
(CNN). The input to the CNN was of two dimensions (2, 16) corresponding to 16 in-
phase/quadrature (I/Q) data samples. The CNN consisted of a convolutional layer with
kernel size (1, 3), a hidden layer with dropout rate 0.1, a rectified linear unit (ReLU)
activation function at the convolutional and hidden layers and a softmax activation function
at the output layer that provides the label signal or noise. We applied a backpropagation
algorithm with the Adam optimizer to train the CNN using cross-entropy as the loss
function. The CNN was implemented in Keras with the TensorFlow backend. We assumed
that the eavesdropper already knew the signal type that was used at the transmitter. Thus,
the classifier at the eavesdropper was only trained with two labels, signal and noise. For each
signal type, we trained a separate classifier using different datasets, where 20,000 symbols
were generated and split into blocks of 16 I/Q symbols. The channel between the nodes
had path-loss effects and Rayleigh fading such that the channel gain from node i to node j

was hij =
(

d0
dij

)γ
hi,j, where dij is the distance from node i to j, d0 is the reference distance,

hi,j is Rayleigh fading between node i to j, and γ is the path loss exponent. We set d0 = 1
and γ = 2.8 throughout the simulations. Note that there was only a path loss component
in the channels for the simulations with CJ for the case of one antenna.
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We used the perturbation-to-noise ratio (PNR) metric from [15] that captures the
relative perturbation power at the CJ with respect to the noise and measured how the
increase in the PNR affected the accuracy of the classifier at the eavesdropper. As the
PNR increases, the perturbation generated by the CJ is more likely to be detected by the
eavesdropper and increases the BER at the receiver.

5.2. Performance Evaluation of CJ with One Antenna for Signals with Different Modulations

We first assumed that the CJ only had one antenna, q = 1, and aimed to hide signals
with a fixed modulation scheme, namely QPSK or 16QAM, used by the transmitter using
Algorithm 1. Note that we used only Algorithm 1 since the CJ only had a single antenna.
The first topology that we considered was dcr = dce = 1. In Figure 3, we show how the
perturbation signal generated by the CJ affects the classifier at the eavesdropper. The x-axis
is the PNR (measured in dB) and the y-axis is the success of covertness (measured in
percentage) that indicates the success of making wireless communications covert, namely
the likelihood that the eavesdropper classifies a signal plus perturbation as noise. We
observe that as the SNR of the signal increases, the CJ needs more perturbation power to
cause misclassification at the eavesdropper. Furthermore, the 16QAM-modulated signal
is more susceptible to adversarial perturbation than the QPSK-modulated signal, since it
is more difficult to distinguish the 16QAM-modulated signal from the noise for the same
SNR. Furthermore, we observe that the success of covertness suddenly increases after
some PNR value for both modulation types. On the contrary, the Gaussian noise based
perturbation has negligible effect on the classifier for all SNR values. We further observe
that the Gaussian noise with more power decreases the success of covertness when the
SNR of 16-QAM modulated signal is 3 dB. The reason is the Gaussian noise strengthens the
noise which makes the received signal at the eavesdropper resemble the strength of the
signal, thus the classifier at the eavesdropper classifies the received signal as signal.
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Figure 3. Success of covertness at the eavesdropper when dce = dcr = 1.

In Figure 4, we consider dcr,= 1.5 and dce = 0.5 (namely, the distance between the
CJ and the receiver is increased and the distance between the CJ and the eavesdropper
is decreased compared to Figure 3). As the SNR of the signal increases, the CJ requires
more power to cause misclassification at the eavesdropper, as we also observed in Figure 3.
Due to the reduced path loss effect between the CJ and the eavesdropper, less power is
required to cause misclassification compared to Figure 3. This result motivates the use of
AML instead of conventional jamming (e.g., [51]) to attack an eavesdropper.
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Figure 4. Success of covertness at the eavesdropper when dce = 0.5 and dcr = 1.5.

Reliability of Communications

The BER performance at the receiver for different modulation types and SNR values
is compared in Figure 5 when dcr = dce = 1. We observe that the BER of the 16QAM-
modulated signals is more susceptible to the adversarial perturbation signal than the BER
of QPSK-modulated signals. The reason is that since the 16QAM transmits more bits than
the QPSK per symbol, the distances between constellation points are smaller, which leads
to a larger BER for a given SNR. Moreover, as the SNR increases, the average BER decreases
as expected. For the CJ with the proposed adversarial perturbation, we observe that the
BER curve saturates after some PNR value because the successful perturbation signal can
be generated using less power than the maximum power that the CJ can use. Figure 5 can
be used as a guideline to determine the maximum PNR to satisfy the BER requirement
at the receiver. For example, to meet the target BER of 0.15 for a QPSK-modulated signal,
the PNR is selected to be at most −8 dB when the SNR is 3 dB and the resulting success of
covertness is 65%. Furthermore, we observe that the Gaussian noise based perturbation
results in a lower BER than the adversarial perturbation in the low PNR regime. However,
the BER gap between these two CJ schemes decreases when the PNR increases, and the
adversarial perturbation results in a smaller BER in the high PNR region.
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Figure 5. BER at the receiver when dce = dcr = 1.
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The BER performance at the receiver for different modulation types and SNR values is
compared in Figure 6 when dcr = 1.5 and dce = 0.5. We observe that the BER gap between
the Gaussian noise and adversarial perturbation for the same SNR value decreases due to
the increased path loss effect between the CJ and the receiver. Thus, the CJ can create a
perturbation signal that causes misclassification with higher success without increasing the
BER further if the location of the CJ is closer to the eavesdropper. This result motivates the
control of the CJ positions to fool a target classifier while protecting the BER performance
of the intended receiver.
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Figure 6. BER at the receiver when dce = 0.5 and dcr = 1.5.

5.3. Performance Evaluation for 5G Communications

As a full-fledged waveform to hide, we considered the 5G physical layer communi-
cations where a 5G user equipment (UE) transmits a 5G uplink signal to a base station
(gNodeB) in the presence of the perturbation from the CJ. MATLAB’s 5G toolbox was
used to generate 5G signals that included the transport (uplink shared channel, UL-SCH)
and physical channel. The transport block was segmented after the cyclic redundancy
check (CRC) addition and low-density parity-check (LDPC) coding was used as forward
error correction. The output codewords were QPSK-modulated as an example. Next,
the generated resource grid was OFDM-modulated with inverse fast Fourier transform and
cyclic prefix (CP) addition operations where the subcarrier spacing was 15 kHz. The target
code rate was set to 820

1024 and the output I/Q samples were stored after the signal passed
through the channel. The eavesdropper attempted to distinguish the received signals
from noise, whereas the receiver attempted to decode the received signals by removing
the CP and performing FFT, channel equalization, QPSK demodulation, LDPC, and CRC
decoding operations.

5.3.1. Covertness of Communications

The success of covertness for 5G communications is considered in Figure 7. As in the
previous figures for QPSK-modulated signals and 16QAM-modulated signals, the proposed
perturbation outperforms the Gaussian noise significantly in the high-PNR region for 5G
signals. Furthermore, we observe that more power is needed for the CJ to fool the classifier
at the eavesdropper when the distance between the CJ and the eavesdropper increases.

5.3.2. Reliability of Communications

The BER for 5G communications is shown in Figure 8. When dce = dcr = 1 and
the SNR is 5 dB, the Gaussian noise based perturbation has a higher BER performance
compared to the proposed perturbation and a similar result is also observed for other SNR
values. Note that the adversarial perturbation by the CJ not only increases the success of
covertness, but also has less effect on the BER performance of the receiver compared to
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the Gaussian noise based perturbation for 5G communication signals. We further observe
that the Gaussian noise based perturbation results in a higher BER than the proposed
adversarial perturbation when dce = 0.5 and dcr = 1.5.
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Figure 7. 5G communications covertness performance at the eavesdropper.
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Figure 8. 5G communications BER performance at the receiver.

5.4. Performance Evaluation of CJ with Multiple Antennas

Next, we analyzed the performance of the CJ with multiple antennas when a QPSK-
modulated signal was used at the transmitter. Note that the channel between the CJ
and the receiver and the channel between the CJ and the eavesdropper had Rayleigh
fading. Note that hi,j ∼ Rayleigh(0, 1) if specified otherwise. Figure 9a presents the success
of covertness when the CJ transmits an adversarial perturbation with q = 2 antennas
using the different attack methods introduced in Section 4. We observe that all different
methods using multiple antennas outperform the attack generated by the CJ with one
antenna. Furthermore, randomly selecting one antenna at the CJ performs worst among
attacks using multiple antennas and the performance of the IPCG attack is similar to the
performance of the PCG attack. Moreover, the EMCG attack outperforms other attacks by
fully utilizing the channel diversity.

Figure 9b presents the BER performance of different attack methods. We observe that
the CJ using one antenna gives the largest BER whereas the PCG and IPCG attacks give
the smallest BER. Furthermore, the EMCG attack gives a moderate BER increase while
successfully making communications covert.

The performance of the CJ with different number of antennas is presented in Figure 10a.
As the number of the antennas at the CJ increases, the success of covertness also increases
suggesting that using more antenna at the CJ helps the covertness of communications.
Furthermore, the BER decreases when more antennas are used at the CJ as we can see from
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Figure 10b. Therefore, using more antennas at the CJ is always beneficial for communica-
tions in terms of covertness and BER when the EMCG attack is used at the CJ.
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Figure 9. Performance when CJ has q = 2 antennas: (a) success of covertness and (b) BER at
the receiver.

Next, we varied the SNR levels to analyze how the SNR affected the covertness and
the BER in Figure 11a,b. As expected, the CJ needs a higher PNR to fool the eavesdropper
when the SNR is high. Furthermore, we observe that the BER slightly increases when the
PNR increases and the BER is higher for a lower SNR.

Finally, we increased the variance of the Rayleigh fading between the CJ and the
eavesdropper to analyze the effect of the channel on the covertness of communications.
In Figure 12a, we observe that a lower PNR is needed to fool the eavesdropper when the
variance of the Rayleigh fading is high. Furthermore, as a consequence of using a lower
PNR at the CJ, a higher variance of Rayleigh fading results in a lower BER at the receiver.
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Figure 10. Performance with different number of antennas at the CJ: (a) success of covertness and (b)
BER at the receiver.

−25 −20 −15 −10 −5 0
PNR [dB]

0

20

40

60

80

Su
cc
es
s o

f c
ov
er
tn
es
s %

SNR = 10
SNR = 7
SNR = 5
SNR = 3

(a)

−25 −20 −15 −10 −5 0
PNR [dB]

0.00

0.02

0.04

0.06

0.08

0.10

BE
R

SNR = 10
SNR = 7
SNR = 5
SNR = 3

(b)

Figure 11. Performance with respect to different SNR levels: (a) success of covertness and (b) BER at
the receiver.
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Figure 12. Performance with respect to different Rayleigh fading variances: (a) success of covertness
and (b) BER at the receiver.

6. Conclusions

We considered a wireless communications system in which a CJ with multiple an-
tennas transmits perturbation signals to fool a DL-based classifier at the eavesdropper
into classifying the ongoing transmissions as noise. Following the AML approach, the CJ
was designed to generate the perturbation signal with different methods. For both basic
modulated signals and sophisticated 5G signals, we showed that the CJ could generate a
perturbation signal that caused misclassification at the eavesdropper (from signal to noise)
with high success, while the BER at the receiver was only slightly affected. Furthermore, we
showed that by adding more antennas at the CJ always improved the attack performance
and lowered the BER when the EMCG attack was used. These results demonstrate that
wireless communications can be successfully kept covert when multiple antennas are used
at the CJ by allocating the transmit power efficiently.
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