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Abstract: Cross-corpus speech emotion recognition (SER) is a challenging task, and its difficulty lies
in the mismatch between the feature distributions of the training (source domain) and testing (target
domain) data, leading to the performance degradation when the model deals with new domain data.
Previous works explore utilizing domain adaptation (DA) to eliminate the domain shift between
the source and target domains and have achieved the promising performance in SER. However,
these methods mainly treat cross-corpus tasks simply as the DA problem, directly aligning the
distributions across domains in a common feature space. In this case, excessively narrowing the
domain distance will impair the emotion discrimination of speech features since it is difficult to
maintain the completeness of the emotion space only by an emotion classifier. To overcome this issue,
we propose a progressively discriminative transfer network (PDTN) for cross-corpus SER in this
paper, which can enhance the emotion discrimination ability of speech features while eliminating
the mismatch between the source and target corpora. In detail, we design two special losses in the
feature layers of PDTN, i.e., emotion discriminant loss Ld and distribution alignment loss La. By
incorporating prior knowledge of speech emotion into feature learning (i.e., high and low valence
speech emotion features have their respective cluster centers), we integrate a valence-aware center
loss Lv and an emotion-aware center loss Lc as the Ld to guarantee the discriminative learning of
speech emotions except an emotion classifier. Furthermore, a multi-layer distribution alignment
loss La is adopted to more precisely eliminate the discrepancy of feature distributions between the
source and target domains. Finally, through the optimization of PDTN by combining three losses,
i.e., cross-entropy loss Le, Ld, and La, we can gradually eliminate the domain mismatch between the
source and target corpora while maintaining the emotion discrimination of speech features. Extensive
experimental results of six cross-corpus tasks on three datasets, i.e., Emo-DB, eNTERFACE, and
CASIA, reveal that our proposed PDTN outperforms the state-of-the-art methods.

Keywords: cross-corpus speech emotion recognition; domain adaptation; distribution alignment;
discriminative feature learning

1. Introduction

Emotions reflect the psychological state of human beings, which are usually mani-
fested in physiological and psychological signals [1–5], e.g., facial expression, speech, and
electroencephalogram (EEG). As a commonly used communication mean, speech contains
rich emotional information. Therefore, making the machine recognize the emotional states
of speech, known as the speech emotion recognition (SER) task, is crucial for human–
computer interaction (HCI). Generally, the task setting of SER suggests that the training
and testing data come from the same corpus, which will cause the trained model on the
training data to perform poorly on a new corpus. In recent years, the SER task, which
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involves training one dataset or several datasets and testing others, i.e., cross-corpus SER,
has attracted wide attention.

Since the training and testing data are collected from different datasets, cross-corpus
SER faces the issue that the speech samples are quite different in terms of background noise,
recording device, language, or speaker, which will lead to the “corpus bias” [6]. Therefore,
the cross-corpus SER is more practical than traditional SER tasks. To deal with the bias
issue, early works investigated the utilization of low-level descriptors (LLDs) to enhance
the emotion discrimination of speech features [7,8]. For instance, Shami et al. [7] firstly
implemented the cross-corpus task by using utterance-level acoustical parameters for the
naive classifiers, e.g., K-nearest neighbors (KNNs) and support vector machines (SVMs).
Further, Schuller et al. [8] defined the cross-corpus SER settings standardly and explored
several normalization methods (e.g., speaker normalization, corpus normalization, and
speaker-corpus normalization) to reduce the “corpus bias”.

With the rapid development of transfer learning (TL) [9], TL-based methods have
shown to be promising for cross-corpus SER [6,10–13]. TL aims to eliminate the bias
between the training and testing data, especially domain adaption (DA) [13–16], which
focuses on the issue of only labeled training data (source domain) and unlabeled testing
data (target domain). Motivated by TL, Hassan et al. [17] regarded the dataset difference as
a covariance shift, and explored the application of three importance weights (IWs) methods,
i.e., kernel mean matching (KMM), unconstrained least-squares importance fitting (uLSIF),
and the Kullback–Leibler importance estimation procedure (KLIEP), into the support
vector machine (SVM) classifier to reduce this shift and achieved the UAR of 42.7% on FAU
Aibo-Mont. Then, Zong et al. [10] proposed a domain-adaptive least-squares regression
(DaLSR) method for the corpus shift in cross-corpus SER by projecting speech features to
the emotion label space, in which the feature distributions of the training and testing data
are as close as possible. The DaLSR obtained the best WAR (52.47%) and UAR (44.41%) for
the task of eNTERFACE to Emo-DB at that time. Further, Zhang et al. [13] jointly performed
the transfer subspace learning and regression in [10] to learn the corpus-invariant speech
features, which achieved the UAR of 49.58% on the task of CASIA to Emo-DB. These
works mainly measure the distribution distance of two domains based on the maximum
mean discrepancy (MMD). Instead of MMD, Song et al. [6,11,12] also adopted the nearest
neighbor graph as the distribution distance metric to reduce domain shifts in the latent
space of speech features.

In addition to the subspace learning methods, deep learning methods have also
achieved dominating performance as a recent research hotspot. In [18], a domain classifier
with a deep neural network (DNN) has been intergraded into the feature extractor and the
emotion classifier to learn the emotion-discriminative and domain-invariant feature for
cross-corpus SER. Similarly, Abdelwahab et al. [14] also adopted adversarial training to
eliminate the domain discrepancy during the common feature learning by an additional
domain classifier. Furthermore, Gideon et al. [15] introduced a “meet in the middle”
method, i.e., adversarial discriminative domain generalization (ADDoG), to learn the
feature of each dataset closer to one another, which can improve the generalization of the
dataset representations and then extend it to multiclass ADDoG for the training data with
more datasets. The ADDoG obtained the UAR of 0.4749% on the task of MSP-Improv to
IEMOCAP.

Although previous works have achieved promising progress in cross-corpus SER,
these methods simply consider the SER task as a DA problem, which first learns the
common space of speech emotion features for the source and target datasets, and then
decreases the distribution distance between the two domains in the common space. In
this case, therefore, excessively narrowing the domain distance will impair the emotion
discriminativeness of speech features because it is difficult to maintain the completeness of
the emotion space only by the emotion classifier (e.g., KNN, SVM, or DNN) [13]. Aiming
at this issue, the subspace learning methods perform the sparse constraints (e.g., `1 norm,
`2 norm, or `2,1 norm) on the projection matrix of speech features to avoid redundant
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information for the discriminative emotion feature space [6,10,13]. However, the linear
mapping of the subspace learning limits the representation ability of features, which is one
of its disadvantages. In addition, the deep learning methods on cross-corpus SER still only
consider eliminating the distribution shifts across the source and target domains, while
ignoring the preservation of emotion discrimination on speech features.

To address the above issues, we jointly consider the emotion discrimination preser-
vation of speech features and the distribution elimination between the source and target
domains, and integrate them into the deep feature extractor. A benefit of this approach is to
enhance the emotion discriminativeness of speech while narrowing the distribution discrep-
ancy between two domains such that the emotion-discriminative and domain-invariant
speech features can be obtained through the training of a deep end-to-end network.

Therefore, in this paper, we propose a progressively discriminative transfer network
(PDTN) for the cross-corpus SER. In the PDTN, we adopt two special losses i.e., emotion
discriminant loss Ld and distribution alignment loss La, in the high-level feature layers
(i.e., fc layers), where Ld is combined with the emotion classification loss Lce to enhance
the emotion discrimination of speech features and La decreases the distribution distance
of features between the source and target domains. Specifically, Ld contains a valence-
aware center loss Lv and an emotion-aware center loss Lc, which are inspired by the
prior knowledge of speech emotions, i.e., speech emotion features of the high and low
valences have their respective cluster centers. Further, we utilize the multi-layer MMD
in La to measure the domain shift of marginal distributions between two domains. The
proposed PDTN integrates the three losses, i.e., La, Ld, and Lce to progressively eliminate the
inter-domain discrepancy and improve the emotion discriminativeness of speech features
through an end-to-end network training stage. Experimental results on three datasets, i.e.,
Emo-DB, eNTERFACE, and CASIA, demonstrate the superiority of our proposed PDTN
over the comparison methods.

Overall, the contributions of this paper can be summarized as the following three points:

• This paper proposes a novel progressively discriminative transfer network for cross-
corpus SER, which jointly considers the two aspects of eliminating the distribution
discrepancy across the source and target domains, and enhancing the emotion dis-
crimination of speech features during deep feature learning. Thus, it can avoid the
dilemma that previous methods only consider one of two above aspects.

• As far as we know, it is the first work to introduce the prior knowledge of speech
emotions, i.e., speech emotion features of high and low valences with their respective
cluster centers, into the deep feature learning to enhance the emotion discrimination
of speech representations.

• We adopt high-level features of fc layers to perform a practical distribution discrepancy
measures under multi-layer features between the source and target domains through
a multi-layer MMD metric.

The rest of this paper is organized as follows: Section 2 illustrates the proposed method
in detail. Then, we conduct our experiments and discuss the results in Section 3. Finally,
Section 4 concludes the paper and gives some points for future research.

2. The Proposed Method

In this section, we will illustrate the framework of PDTN in detail, shown in Figure 1,
which can be divided into three parts, i.e., deep feature extraction, emotion discrimination
preservation, and distribution discrepancy elimination.
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Figure 1. The overview of the progressively discriminative transfer network (PDTN) for cross-corpus
SER. PDTN firstly extracts the high-dimensional fc layer features (i.e., f 1, f 2, and f 3) of the source
domain data xs and the target domain data xt through DNN (i.e., AlexNet and VGGNet). Then, it
uses fc features to calculate the valence-aware center loss Lv and emotion-aware center loss Lc in
emotion discriminant loss Ld, and distribution alignment loss La, respectively. Finally, it predicts the
emotion label of source samples for the emotion classification cross-entropy loss Lce.

2.1. Deep Feature Extraction

Compared with traditional methods, deep learning has performed well in speech
processing, e.g., SER, speech recognition, and speech enhancement. Especially in the
SER, DNNs (e.g., CNN and RNN) can extract the high-level feature of speech with more
discriminative emotion information. Therefore, we adopt the deep CNN (DCNN) as
the backbone network of our proposed PDTN for the deep feature extraction of speech
emotion, according to [18,19]. Moreover, as a time–frequency representation of speech, the
spectrogram is commonly used for the input feature of DCNN instead of the hand-crafted
features.

To illustrate the process of deep feature extraction clearly, firstly, we formalize the
labeled training dataset as Ds = {xs

i , li}ns
i=1 and the unlabeled testing dataset Dt = {xt

j}
nt
j=1,

where xs
i and xt

j are donated as the spectrogram of the ith speech sample in source data
and the jth sample in source data, li represents the emotion label of the ith speech in source
dataset, and ns and nt are the numbers of source and target samples. Notably, since our
proposed method is based on unsupervised domain adaptation (UDA) in TL, the target
speech samples have no labels.

Then, the spectrogram features of the source and target dataset are fed into the DCNNs
to extract the high-level representations of speech emotions. In this paper, we select the
AlexNet and VGGNet as the comparison backbones of the proposed PDTN to evaluate
the method’s performance. Through the backbones, the spectrograms x are encoded in
time and frequency domains by a series of stacked convolutional layers, and further pass
through several fully connected (fc) layers to obtain high-dimensional emotional semantic
features f = { f s

k, f t
k}

nl
k=1, where f s

k and f t
k represent the features of source and target

datasets in the kth fc layer, and nl is the number of the fc layers. Eventually, the extraction
process of the high-level emotion feature f k = [ f s

k, f t
k] in the kth fc layer of backbone

network G f (·) can be formalized as

f k = G f ([x
s, xt]; θ f ), (1)

where θ f is the parameters of the feature extraction network G f (·). The numbers of fc
layers in AlexNet and VGGNet are both set as 3 in this paper.

2.2. Emotion Discrimination Preservation

In cross-corpus SER, after extracting the deep speech emotion feature f k, the common
practice is to either input these high-dimensional features into a fully connected network-
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based classifier for emotion recognition or to align the distribution of these features both
in the source and target domains [14,15,18]. However, since speech emotion is easily
disturbed by other factors, e.g., background noise, speaker identity, and language, the
emotion features are always confused with the features of these factors [10–12]. Therefore,
in cross-corpus SER, when the feature distributions between domains are aligned, only
utilizing a single emotion classifier cannot effectively disentangle the emotion information
from the confusing features in a sufficiently complete feature subspace, which will damage
the emotion discrimination of speech features in the feature generalization learning. To
address this issue, we introduce an emotion discrimination preservation learning of speech
features in the distribution alignment process, which can decouple independent emotion
features in the common feature space using the prior knowledge of emotions.

As we know, the emotions can be represented on the two-dimensional arousal–valence
emotion wheel [20–22], shown in Figure 2. It is obvious that each of seven emotions (i.e.,
angry, disgust, fear, happy, neutral, sad, and surprise) have a specific position on the arousal
and valence axes of the emotion wheel. According to these positions, the prior knowledge
of emotion categories can be indicated, that is, the seven emotions are divided into the
negative-valence group (i.e., angry, disgust, fear, sad, and surprise), the neutral valence group
(i.e., neutral), and the positive-valence group (i.e., happy and surprise) on the valence axis.
Under these groups, the emotions in the same group are naturally near each other on the
valence, indicating that the centers of their classes are relatively close. On the contrary, the
emotions in the different groups have distant centers of emotion classes. Therefore, we
introduce the prior knowledge of emotion categories into deep feature learning to maintain
the emotion discrimination of speech features.

Negative Positive

High

Low

Figure 2. The representation of seven emotions on the 2-dimensional arousal–valence emotion wheel.

Specifically, we design a valence-aware center loss Lv to model the emotion similarity
inside groups and dissimilarity outside groups, which can be donated as

Lv =
nb

∑
i=1

max(0, ‖ f s,i
k − vl,i‖2

2 − α1) + max(0, α2 − ‖vb
n − vb

p‖2
2), (2)

where nb is the mini-batch size; f s,i
k represents the kth fc layer feature of the ith speech

sample in the source dataset; vb
n and vb

p are the mini-batch feature centers of the negative-
valence emotion group N = {angry, disgust, fear, sad, surprise} and the positive-valence
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emotion group P = {neutral, happy}, respectively; vl,i is the feature center of the emotion
group where the lth class of the ith speech sample belongs; and α1 and α2 are the thresholds
to adjust the feature distances within group and between groups, respectively. The feature
center of vl,i can be obtained as follows

vl,i =

{
vn, li ∈ N ,

vp, li ∈ P ,
(3)

where vn and vp are the global centers of the negative-valence and positive-valence emotion
groups in the whole source data, which can be calculated during the parameter updating
in Algorithm 1. Moreover, the negative-valence feature centers vb

n and the positive-valence
feature centers vb

p in each mini-batch can be denoted as

vb
n =

1
n′b

∑
1≤i≤n′b ,

li∈N

f s,i
k , (4)

vb
p =

1
n′′b

∑
1≤j≤n′′b ,

lj∈P

f s,j
k , (5)

where n′b and n′′b are the numbers of speech samples belonging to N and P in a mini-batch,
respectively, and nb = n′b + n′′b .

In addition to the arousal-valance-based center loss, we also construct a fine-grained
emotion discrimination preservation strategy by fully using the prior information of each
emotion category to finely maintain the emotion discriminativeness. Specifically, we design
a novel emotion-aware center loss Lc, which can decrease the inter-class distance and
increase the intra-class distance in the source data, represented as follows

Lc =
ns

∑
i=1

max(0, ‖ f s,i
k − ci‖2

2 − α1) +
c

∑
p,q=1,
p 6=q

max(0, α2 − ‖cb
p − cb

q‖2
2), (6)

where ci is the feature center of the emotion category corresponding to the ith speech
sample in the whole source data, which is implemented for details in Algorithm 1. α1 and
α2 are the thresholds to adjust the distances, respectively. cb

p and cb
q are the mini-batch

feature centers of the pth and qth emotion category, where cb
q can be formalized as

cb
q =

1
nq

b
∑

1≤i≤nq
b

f s,i
k , (7)

where nq
b is the number of speech samples in a mini-batch corresponding to the qth emotion

category. The formalization of cb
p is similar to cb

q.
Consequently, we combine Lv and Lc in deep feature learning to ensure the discrimina-

tion of emotions from coarse to fine in the process of distribution discrepancy elimination.
Therefore, the loss of emotion discrimination preservation can be represented as

Ld = λLv + γLc, (8)

where λ and γ are the tradeoff parameters to balance the two losses.
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Algorithm 1 Algorithm for the parameter optimization of PDTN.

Input: the input features of source and target data: {xs
i }

ns
i=1, {xt

j}
nt
j=1;

training labels of source data: {li}ns
i=1; fc layers: [ f c1, f c2, f c3];

learning rate: lr and trade-off parameters λ, γ, and µ.
Initialize: θ f , θc randomly.
Output: the optimized parameters: θ̂ f , θ̂c.
while the total loss Ltotal < ε or iter n < maxIter do
(1) Generate a mini-batch features of source and target data: {xs

i }
nb
i=1, {xt

j}
nb
j=1;

(2) Extract the high-level features of source and target data: { f s
k, f t

k}
nl
k=1 = G f ([xs, xt]; θ f );

(3) Calculate the negative-valence and positive-valence feature centers vb
n and vb

p
in each mini-batch by the Equations (4) and (5);

(4) Calculate the feature center of qth class cb
q in each mini-batch by the Equation (7);

(5) if iter n = 1:
Initialize global centers vn, vp, and cq (or cp) in whole source data using steps (4) and

(5);
else:

Ovn =
1

1 + n′b
∑

1≤i≤n′b ,
li∈N

(vb
n − f s,i

k ), vn ← vn − ηOvn,

Ovp =
1

1 + n′′b
∑

1≤j≤n′′b ,
lj∈P

(vb
p − f s,i

k ), vp ← vp − ηOvp,

cq =
1

1 + nq
s

∑
1≤i≤nq

b

(cb
q − f s,i

k ), cq ← cq − ηOcq;

(6) Calculate Lv, Lc, La, Lce, and Ltotal using Equations (2), (6), and (10)–(12), respectively;
(7) Update the parameter θ f and θc:

θc ← θc − µ
Lce

θc
, θ f ← θ f − µ

Ltotal
θ f

;

(8) n = n + 1.
end while

2.3. Distribution Discrepancy Elimination

Besides the discriminative feature of emotional speech, another challenge in cross-
corpus SER is how to eliminate the domain shift between the source and target data, caused
by the factors such as background noise, speaker identity, language, etc. To address this
challenge, the moment matching-based methods [12,13] and adversarial learning-based
methods [14,15] have been widely investigated and achieved great success. Adversarial
learning adopts a domain discriminator to confuse the domain information of features
for the discriminative representation of emotional speech, which is prone to a lack of
convergence [14]. Moment matching is used to find a suitable metric function to measure
the discrepancy between domains, e.g., MMD [13], `2 distance [23], Deep Coral [24], which
is a non-parameter method and easy to implement. Therefore, the previous works of
cross-corpus SER mainly integrated MMD into the subspace learning. Nevertheless, the
speech emotion features generated by subspace learning are low-level such that it cannot
accurately represent the feature distribution of the source and target data, which brings
errors to the distance measurement. Thus, in this paper, we utilize the high-level features
in fc layers to measure the distribution distance precisely. In addition, since the features of
each fc layer correspond to the specific discrimination, inspired by [25–27], we also extend
the feature alignment of a single layer to a multi-layer adaptation to obtain a more accurate
measurement for the domain shift.
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Firstly, we implement the distribution discrepancy of the signal layer high-level feature
in the kth fc layer, namely Dk, which can be formalized as

Dk
H =

1
n2

s

ns

∑
i=1

ns

∑
j=1
K( f s,i

k , f s,j
k )

+
1
n2

t

nt

∑
i=1

nt

∑
j=1
K( f t,i

k , f t,j
k )

− 2
nsnt

ns

∑
i=1

nt

∑
j=1
K( f s,i

k , f t,j
k ), (9)

where k ∈ [1, 2, . . . , nl ], K( f s,i
k , f s,j

k ) = 〈φ( f s,i
k ), φ( f s,j

k )〉 is the kernel function in the high-
dimension reproducing kernel Hilbert space (RKHS) H, which is denoted as the inner
product 〈:, :〉 of the source and target features’ mapping function φ.

Further, Dk
H can be extended to the multi-layer feature distribution distance measure-

ment by integrating the MMD in the two domain features of several fc layers to match
the discrepancy between the source and target domains more accurately. Therefore, we
can obtain the multi-layer distribution discrepancy distance and take it as the distribution
alignment loss La to constrain the model to gradually eliminate the domain shift between
domains during the feature learning process. So, La can be represented as follows

La =
1
n2

s

ns

∑
i=1

ns

∑
j=1

nl

∏
k=1
Kk( f s,i

k , f s,j
k )

+
1
n2

t

nt

∑
i=1

nt

∑
j=1

nl

∏
k=1
Kk( f t,i

k , f t,j
k )

− 2
nsnt

ns

∑
i=1

nt

∑
j=1

nl

∏
k=1
Kk( f s,i

k , f t,j
k ), (10)

where Kk is the kernel function corresponding to the features in the kth fc layer.

2.4. PDTN for Cross-Corpus SER

In cross-corpus SER, the spectrograms xs and xt of the source and target data are
fed into the backbone network (e.g., AlexNet, VGGNet) to extract the high-level emotion
semantic features in the kth fc layer, i.e., f s

k and f t
k. After this step, the high-level features

in the first fc layer of the source and target data are utilized to calculate the valence-aware
center loss Lv, and the features in the second fc layer are used to generate the emotion-aware
center loss Lc. The combination of Lv and Lc is regarded as the emotion discrimination
preservation loss Ld to maintain the emotion information of speech features from coarse to
fine. Furthermore, the source feature f s

3 in the final fc layer is adopted to predict emotion
labels for cross-entropy loss Lce by emotion classifier Gc(·), which can be represented as

Lce =
ns

∑
i=1

J(Gc( f s,i
nl

; θc), li), (11)

where θc denotes the parameter of the emotion classifier Gc(·) and J(·) is the cross-entropy
function.

Then, the high-level features in three fc layers of the source and target data are adopted
to produce the distribution alignment loss La for eliminating domain shifts between the
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source and target domains. Consequently, we can obtain the corpus-invariant and discrimi-
native emotion representation through the total loss Ltotal, which can be denoted as

Ltotal = Lce + Ld + µLa

= Lce + λLv + γLc + µLa, (12)

where Lce is the cross-entropy loss of the emotion classifier. λ, γ, and µ are all the tradeoff
parameters used to balance the different losses.

According to the aforementioned pipeline, the proposed PDTN is optimized by the
Ltotal to update the parameters of the backbone network and classifier. The detailed op-
timization processing is illustrated in Algorithm 1. Thus, in this paper, we utilize three
fc layers in both AlexNet and VGGNet backbones, i.e., f c1, f c2, and f c3. Specifically,
the features in f c1 and f c2 are utilized to calculate the Lv and Lc, respectively. The La is
obtained by integrating the features in three fc layers into the alignment loss.

3. Experiments

In this section, several experiments are implemented to evaluate our proposed method,
and the results are also discussed to illustrate its applicability for cross-corpus SER.

3.1. Dataset

• eNTERFACE [28] is a public English multi-modal emotion dataset, which contains
1290 audio-visual samples with a sample rate of 48 kHz. In this dataset, six emotions,
i.e., anger, disgust, fear, happiness, sadness, and surprise, are induced by the pre-prepared
performance contents. Forty-three volunteers coming from different countries with
males and females participated in the recording of the dataset.

• CASIA [29] includes 7200 emotional speech sentences with the Chinese language.
Each sample is recorded with six emotions, i.e., anger, fear, happiness, neutral, sadness,
and surprise, through some acting contents from four actors containing two males and
two females. We utilize 1200 public speech samples with the sample rate of 16 kHz for
the experiments.

• Emo-DB [30] is collected as a German emotional speech dataset with 535 speech
samples by ten native speakers, including five males and five females. In Emo-DB,
each sentence is recorded with 16 kHz under seven emotions, i.e., anger, boredom,
disgust, fear, happiness, neutral, and sadness.

In this paper, to perform the cross-corpus SER conveniently, we pick common emotion
categories inside two datasets which are adopted for the cross-corpus task. We also design
six tasks according to three datasets and the detailed setting is shown in Table 1, in which e,
c, and b represent the datasets of eNTERFACE, CASIA, and Emo-DB, respectively.

Table 1. Data statistics of six cross-corpus SER tasks on three public datasets, where e, c, and b
represent eNTERFACE, CASIA, and Emo-DB, respectively.

Task Dataset (# Total Number) Emotion Category (# Samples of Each Emotion)

b→ e, e→ b
b (375) anger (127), disgust (46), fear (69), happiness (71), sadness (62)

e (1052) anger (211), disgust (211), fear (211), happiness (208), sadness (211)

b→ c, c→ b
b (408) anger (127), fear (69), happiness (71), neutral (79), sadness (62)

c (1000) anger (200), fear (200), happiness (200), neutral (200), sadness (200)

c→ e, e→ c
c (1052) anger (200), fear 200, happiness (200), sadness (200), surprise (200)

e (1000) anger (211), fear (211), happiness (208), sadness (211), surprise (211)



Entropy 2022, 24, 1046 10 of 15

3.2. Experimental Setting

In order to obtain the input of the proposed PDTN, we transform the speech signals to
spectrogram features through the short-time discrete Fourier transform (STFT) with the
Hamming window, in which the frame length is set as 350, and the FFT points is 1024. It is
noted that all speech samples are chosen as the signal channel data and resampled to the
sample rate of 16 kHz.

In PDTN, we select the AlexNet [31] and VGGNet (i.e., VGGNet-11) [32] as the back-
bone networks to evaluate the PDTN’s performance on different networks. In the backbone
networks, their three fc layers with the dimensions of 4096, 4096, and class number, i.e., f c1,
f c2, and f c3, are adopted to calculate the emotion discrimination preservation loss Ld and
the distribution alignment loss La. Moreover, to match the input size of backbone networks,
the dimension of spectrogram features is resized as 224× 224. The implementation of our
proposed PDTN is based on the deep learning framework Pytorch with NVIDIA GeForce
RTX3090 GPUs and it is optimized by the Adam optimizer [33] with a batch size of 32. Its
initialized learning rate is set as 0.0002 with a decay weight of 0.9 and the training epoch is
set as 500.

We also describe other parameters for the detail as follows. For instance, we utilize
the Gaussian kernel in the MMD of La and its bandwidth is set according to [34]. For the
trade-off parameters, we set the γ and λ by the grid search strategy in the parameter set
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.5]. µ is set by an adjusting strategy, which can
be formalized as µ = 2

1+e−δp − 1. Then, δ is fixed to 10 and p is defined as the ratio of the
current number of iterations to the total number of iterations.

In addition, in this paper, we adopt the setting of the cross-corpus SER task by training
the PDTN in one dataset (e.g., eNTERFACE) and testing the model in another dataset
(e.g., CASIA). Therefore, the six cross-corpus tasks are generated by three datasets, which
are summarized as the task section in Table 1. Furthermore, two widely used measure
criteria for the recognition accuracy are adopted to evaluate the performance of our pro-
posed PDTN, i.e., the weighted average recall (WAR) and the unweighted average recall
(UAR). WAR is denoted as the ratio of the number of correctly predicted samples to the
total number of samples, and UAR is the average of the correct rate of each class. UAR
has an advantage on measuring the model’s performance on class imbalance databases
over WAR. Therefore, combining WAR and UAR can more comprehensively evaluate the
performance of PDTN with state-of-the-art methods.

3.3. Comparison Methods

To effectively estimate the performance of our proposed PDTN on the cross-corpus SER
tasks, we choose several state-of-the-art methods for the comparison, which are described
as follows:

• Baseline methods: both backbone networks used to extract the high-level features for
the experiments.

AlexNet [31]: includes five convolution blocks with the kernel of 5× 5 or 3× 3 and
three fc layers with the dimensions of 4096, 4096, and class number.

VGGNet-11 [32]: consists of eight convolution blocks with the kernel of 3× 3 and
three fc layers with the dimensions of 4096, 4096, and class number.

• DA-based methods: all domain adaptation-based methods for cross-corpus SER tasks
by our own implementation.

DAN [27]: contains a deep feature extractor and a domain alignment layer with the
MMD in multiple fc layers.

DANN [35]: utilizes the domain adversarial training strategy by a domain discrimina-
tor to obtain the task-specific and domain-invariant representation.

Deep CORAL [24]: integrates the CORAL loss based on the second-order statistics
(i.e., covariances) into a deep neural network for the end-to-end unsupervised domain
adaptation framework.
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DSAN [34]: proposes a non-adversarial sub-domain adaptation to align the local
distribution discrepancy using joint local MMD.

Note that our proposed PDTN is non-parameterized because the calculation of Lce,
Ld, and La does not require the parameter updating. Therefore, the parameter number of
PDTN depends on the backbone networks, i.e., PDTN (AlexNet) has a similar parameter
number with AlexNet (60 millions) [31] and the parameter number of PDTN (VGGNet-
11) is the same as VGGNet-11 (133 millions) [32]. Furthermore, the parameters of other
comparison methods, e.g., DAN, Deep CORAL, and DSAN, also rest with backbone
networks. However, DANN has larger parameters than others because of the additional
domain discriminator [35]. In addition, compared with AlexNet, VGGNet-11, and DANN,
the proposed PDTN, DAN, Deep CORAL, and DSAN all design novel lossless resulting in
extra computational complexity. Specifically, PDTN, DAN, and DSAN are based on MMD
(O(n2)) and Deep CORAL is based on the second-order covariance (O(n4)), where n is the
larger one of source number ns and target number nt.

3.4. Results and Discussions

The experimental results of six cross-corpus SER tasks are reported in Table 2 with
WAR and UAR. The comparison results reveal that our proposed PDTN based on the
two backbone networks, i.e., AlexNet and VGGNet-11, can achieve the best performance
over other state-of-the-art methods. In detail, the DA-based methods are superior to the
baseline methods for all six tasks of cross-corpus SER on the average accuracies. For each
task, the DA-based methods also surpassed the performance of most tasks. Significantly,
the discrepancy-based methods, i.e., DAN and Deep CORAL, achieve the comparable
recognition rate with the adversarial-based method, i.e., DANN, demonstrating that the
distribution alignment strategy, either distance measurement or adversarial training, can
promote the corpus-invariant emotion features. Furthermore, DSAN has better perfor-
mance than these three DA-based methods due to the sub-domina alignment strategy taken
into account in DSAN. Furthermore, our proposed method goes beyond the mentioned
DA-based methods. This is because the proposed PDTN framework not only adapts the
marginal distribution between multiple layers but also maintains the emotion discrimina-
tive of speech features.

Table 2. The experimental results (WAR/UAR[%]) compared with the state-of-the-art methods on
CASIA, eNTERFACE, and Emo-DB for cross-corpus SER tasks, where the best results are highlighted
in bold.

Method e → b b → e b → c c → b e → c c → e Average

AlexNet [31] 42.40/31.03 29.56/29.49 32.90/32.90 43.13/42.23 27.60/27.60 26.33/26.30 33.65/31.59

VGGNet-11 [32] 44.26/43.23 30.70/30.70 35.10/35.10 44.36/38.95 28.80/28.80 29.65/29.60 35.48/34.40

DAN [27] 49.82/40.41 36.12/36.13 39.00/39.00 50.98/49.85 29.00/29.00 31.46/31.47 39.89/37.64

DANN [35] 52.80/43.68 33.27/33.38 39.20/39.20 54.16/53.71 29.80/29.80 29.24/29.25 39.62/38.05

Deep
CORAL [24] 53.07/43.38 35.07/35.03 38.30/38.30 50.73/48.28 31.00/31.00 30.89/30.89 39.84/37.81

DSAN [34] 52.16/46.90 36.29/36.25 40.30/40.30 51.81/50.69 29.70/29.70 32.61/32.61 40.47/39.41

PDTN (AlexNet) 54.60/47.12 38.30/38.32 42.80/42.80 57.59/57.21 35.10/35.10 35.50/35.50 43.99/ 42.70

PDTN
(VGGNet-11) 56.80/54.48 38.49/38.60 44.70/44.60 62.01/61.65 35.20/35.20 35.74/35.43 45.49/44.99

From the results in the Table 2, we can also observe that the tasks of b → e, e → c,
and c→ e have worse performances than other tasks (i.e., e→ b, b→ c, and c→ b). This
situation indicates that variations in training and test datasets may affect the generalization
performance of all cross-corpus methods. In addition, it is also interesting to find that the
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actuaries of b→ e are less than e→ b, which may be because the database of Emo-DB is
small such that it cannot sufficiently obtain robust speech emotion features. Furthermore,
neither c → e nor e → c perform promisingly. This is very likely because the CASIA
and eNTERFACE are based on different languages, as CASIA is a Chinese dataset and
eNTERFACE is an English one. The disparities across languages lead to the emotion
variations in speech, which is also a research hotspot in the field of SER. Nevertheless, our
proposed PDTN outperforms both the average accuracies and the performance of each
task, demonstrating the superiority of the PDTN.

3.5. Ablation Experiments

To verify the effects of different components in the proposed PDTN, we also conduct
the ablation study to illustrate this point through extensive experiments. The results with
WAR and UAR for ablation experiments are illustrated in Table 3, in which PDTN_S and
PDTN_M represent the signal-layer and multi-layer distribution alignment strategy in the
PDTN framework according to Section 2.3. Furthermore, we select several key components
of PDTN to explore their functions for cross-corpus SER. For instance, PDTN_M w/o
Lc & Lv, PDTN_M w/o Lv denote the model under the PDTN framework without the Lc
and Lv losses and the one without the Lv loss, respectively. Thus, for convenient comparison
purposes, we adopt VGGNet-11 as the backbone network of PDTN for the ablation study.
Thus, the PDTM_M herein is the proposed PDTN (VGGNet-11) in Table 2.

Table 3. Ablation experiments of PDTN based on the VGGNet-11 backbone network, where the best
results (WAR/UAR[%]) are highlighted in bold.

Method e → b b → e b → c c → b e → c c → e Average

PDTN_S w/o
Lc & Lv

52.80/50.40 35.83/35.81 40.20/40.20 55.39/54.85 34.10/34.10 34.03/33.97 42.05/41.54

PDTN_M
w/o Lc & Lv

53.00/51.07 36.31/36.36 41.60/41.50 58.33/54.55 33.80/33.80 34.88/34.77 42.99/42.01

PDTN_M
w/o Lv

54.44/51.56 38.02/37.97 44.00/43.90 59.06/58.66 34.60/34.60 35.93/35.67 44.34/43.31

PDTN_M 56.80/54.48 38.49/38.60 44.70/44.60 62.01/61.65 35.20/35.20 35.74/35.43 45.49/44.99

PDTN_S 54.66/51.87 36.43/36.32 44.40/44.40 57.84/ 56.53 34.50/34.50 35.45/35.14 43.88/43.12

From the ablation results in Table 3, firstly, it is clear that PDTN_M w/o Lc & Lv
outperforms PDTN_S w/o Lc & Lv in terms of the average accuracies, which indicates that
the multi-layer alignment can obtain more domain-invariant features of speech emotions.
Secondly, the performances of PDTN_M w/o Lc & Lv and PDTN_M w/o Lv demonstrate
that the emotion-aware loss Lc we designed in the PDTN framework could facilitate the
speech emotion feature learning with more discrimination. Thirdly, the PDTN achieves
the best performance compared to other ablation components in the average accuracies.
Moreover, PDTN illustrates its superior recognition rates in most of cross-corpus SER
tasks except c → e. These comparison results all demonstrate our proposed emotion
discrimination preservation loss Ld, including the valence-aware loss Lv and emotion-
aware loss Lc, and distribution alignment loss La can obtain more discriminative and
corpus-invariant representations of emotional speech.

3.6. Visualization for Feature Distribution

The key to copying with cross-corpus SER is to extract the discriminative speech
emotion feature. Therefore, to demonstrate the superiority of the proposed method on
emotion discriminative preservation, we choose the features under the task of e→ b for
the visualization. The feature distributions of different emotions are visualized in Figure 3,
in which the features are generated by the fc layers (i.e., f c1, f c2, and f c3) in the PDTN
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based on VGGNet-11. The distributions are shown through t-SNE [36], and the points of
different colors represent the corresponding emotions, i.e., anger, disgust, fear, happiness, and
sadness.

Figure 3. The visualization of feature distributions under different emotions generated by three fc
layers (i.e., f c1, f c2, and f c3) of PDTN (VGGNet-11) for the task of e→ b.

The sub-figures from (a)–(c) of Figure 3(1)–(3) illustrate that the deeper the fc layer, the
more compact the distribution margin of each emotion, indicating that the deeper fc layer
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features contain stronger emotion discrimination. In addition, from Figure 3(1)–(3), we can
also observe that, with the integration of distribution alignment loss La, emotion-aware loss
Lc, and valance-aware loss Lv, the features in three fc layers become more dispersed among
different emotions, and more compact among the same emotion. These visualizations all
demonstrate that our proposed PDTN framework is adept at maintaining the emotion
discrimination of speech features while eliminating the distribution shift between training
and testing data.

4. Conclusions

In the paper, we propose a progressively discriminative transfer network (PDTN)
for cross-corpus SER, aiming at preserving the emotion discrimination of speech emotion
features and eliminating distribution discrepancy between the training and testing data.
In PDTN, we design the special discriminative loss Ld based on the prior knowledge of
speech emotions, including the valence-aware loss Lv and emotion-aware loss Lc, to assist
the emotion classifier in enhancing the discrimination of speech features in deep feature
learning processing. Then, we also adopt the multi-layer distribution alignment based on
MMD to reduce the domain shifts between the source and target data. The experimental
results of six cross-corpus SER tasks on three public datasets (i.e., Emo-DB, eNTERFACE,
and CASIA) show that our proposed PDTN can obtain the more discriminative and domain-
invariant representation of emotional speech than the state-of-the-art methods. In fact, the
distance metric we adopt is based on the marginal distribution. Therefore, we will explore
integrating conditional distribution to obtain a finer-grained measure for the domain shift
in the future.
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