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Abstract: Dynamical stabilization processes (homeostasis) are ubiquitous in nature, but the needed
energetic resources for their existence have not been studied systematically. Here, we undertake
such a study using the famous model of Kapitza’s pendulum, which has attracted attention in the
context of classical and quantum control. This model is generalized and rendered autonomous,
and we show that friction and stored energy stabilize the upper (normally unstable) state of the
pendulum. The upper state can be rendered asymptotically stable, yet it does not cost any constant
dissipation of energy, and only a transient energy dissipation is needed. Asymptotic stability under a
single perturbation does not imply stability with respect to multiple perturbations. For a range of
pendulum–controller interactions, there is also a regime where constant energy dissipation is needed
for stabilization. Several mechanisms are studied for the decay of dynamically stabilized states.

Keywords: dynamical stabilization; Kapitza’s pendulum; energy storage; asymptotic stability

1. Introduction

Dynamical stabilization is an important concept in physics (particle trapping, Floquet
engineering) [1–4], control theory (vibrational stabilization and robotics) [5–8], biology
(homeostasis) [9–12], animal locomotion [13,14], and population dynamics (polymorphism
in time-dependent environments) [15,16]. The meaning of this concept is that certain rele-
vant parameters (concentrations, coordinates) are stabilized against external perturbations
by active and frequently self-regulating means. This is achieved via specific engines or
controllers, and no stability exists without their action.

Is there an energy cost for dynamic stabilization, and how is it estimated? This question
is obviously relevant to controlling methods. A general explanation for homeostasis in
biology is that it offers energetically cheaper realizations of physiological functions [9],
which leads to asking about its own energy costs.

In order to study the energy cost problem, we chose a simple but nontrivial model
that exhibits dynamical stabilization. This is the driven nonlinear pendulum whose upper
(normally unstable state) can be stabilized by a sufficiently fast external force thereby defy-
ing gravity. Such models were first studied by Stephenon [17], and then by Kapitza [18,19];
see [20] for a review. They still produce new physical results [21–23] and have interesting
applications [1–8,13,14].

Our first step is to replace the external field with a controller degree of freedom
in order to render the driven pendulum autonomous. This ensures finite energies and
accounts of all relevant degrees of freedom; see Section 2. The autonomous pendulum
predicts the two following scenarios for the dynamical stabilization of the unstable state.
Within the first scenario, the state is asymptotically stable. There are two factors behind
this strong notion of stabilization: the energy stored in the controller that ensures the
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needed effective potential, and the friction acting on the pendulum (obviously, friction is
necessary for asymptotic stability). There are no permanent energy costs here, i.e., once the
asymptotically stable state is reached, the interaction with the controller is automatically
switched off. There is only a moderate transient dissipation of energy during relaxation.
The interaction emerges online together with an external perturbation.

However, the notion of asymptotic stability is not sufficient for characterizing this
scenario of dynamic stabilization. Contrary to passively stabilized systems, asymptotic
stability does not guarantee stability under a sequence of well-separated perturbations
acting within the attraction basin. For characterizing this more general notion of stability,
we again need the concept of stored energy.

The second scenario predicted by the model is realized when the back-reaction from
pendulum to controller is sizeable. Here, asymptotic stability is replaced by a metastable
stabilization that has a finite (though possibly long) lifetime because the controller steadily
dissipates the stored energy for supporting the metastable state. Once this energy is lower
than a certain threshold, the metastable state suddenly decays with dissipating away
all the energy. Therefore, dynamic stabilization within this scenario requires permanent
energy costs.

Thus, the model provides conceptual tools and scenarios for addressing the energy
cost problem in more general (especially biological) dynamic stabilization situations.

This paper is organized as follows. The generalized Kapitza’s model is formulated in
Section 2 and is approximately solved in Section 3. We show that the asymptotic stability
of the inverted pendulum is determined (among other factors) by the energy stored in
the controller. This extends the stability criterion presented in [18–20]. In Section 4, we
confirm the analytic bound and numerically work out two basic scenarios of dynamic
stability. Section 4.2 discusses a new scenario of noise-induced metastability. Our results
are summarized in Section 5, where we also discuss possible biological implications of
our research.

2. Pendulum and Controller

As a result of its numerous applications, Kapitza’s pendulum can be introduced in
a variety of contexts. For clarity, we introduce its generalization within a mechanical picture;
cf. [19]. Consider a pendulum moving on (x, y) plane in a homogeneous gravity field g;
see Figure 1. The pendulum is a material point with mass m fixed at one end of a rigid rod
with length l. Let the coordinates and velocities of the mass be

x = l sin ϕ, ẋ ≡ dx
dt

= l cos ϕ · ϕ̇, (1)

y = ξ0 − l cos ϕ, ẏ ≡ dy
dt

= ξ̇0 + l sin ϕ · ϕ̇, (2)

where ξ0 refers to the vertical (along y axes) motion of the opposite end of the road. The
Lagrangian of the autonomous system with coordinates (x, y, ξ) reads

L =
m
2
[ẋ2 + ẏ2]−mgy +

µ

2
ξ̇2

0 −
k
2

ξ2
0, (3)

where µ is the mass of ξ0, and we assumed a harmonic potential k
2 ξ2

0 for ξ0. Putting (1)
and (2) into (3), denoting ξ = ξ0 +

mg
k , and dropping a constant term from the Lagrangian,

we find

L =
ml2

2
ϕ̇2 +

µ + m
2

ξ̇2 + mlξ̇ ϕ̇ sin ϕ + mgl cos ϕ− k
2

ξ2, (4)

which implies Lagrangian equations of motion d
dt

∂L
∂q̇ = ∂L

∂q with coordinates q = (ϕ, ξ) and

velocities q̇ = (ϕ̇, ξ̇):

ϕ̈ +
g
l

sin ϕ = −1
l

sin ϕ · ξ̈, (5)
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ξ̈ + ω2ξ = −ε [ cos ϕ · ϕ̇2 + sin ϕ · ϕ̈ ], (6)

ω2 ≡ k/(µ + m), ε ≡ l/(1 +
µ

m
), (7)

where ω is the frequency of ξ, while ε characterizes the back-reaction of x on ξ. From (3)
and (6), whenever µ � m, i.e., controller ξ is much heavier than the pendulum, we can
neglect the left-hand side of (6) and revert to the usual (nonautonomous) driven pendulum.
This, however, does not suffice for the full understanding of energy costs, which arise due
to the very back-reaction of x on ξ.

Figure 1. A schematic representation of the inverted pendulum. Angle ϕ is defined such that the
upper (normally unstable) position refers to ϕ = π. The end point of the pendulum moves vertically
with coordinate ξ that is subject to a harmonic potential; cf. (3).

Equations (5) and (6) are deduced from the time-independent Lagrangian (4); hence,
they are conservative and reversible. The conserved energy related to (4) reads:

E = ϕ̇
∂L
∂ϕ̇

+ ξ̇
∂L
∂ξ̇
− L =

ml2

2
ϕ̇2 +

µ + m
2

ξ̇2 + mlξ̇ ϕ̇ sin ϕ−mgl cos ϕ +
k
2

ξ2. (8)

We now add a friction with parameter γ > 0 to (5), writing it as

ϕ̈ +
g
l

sin ϕ + γϕ̇ = −1
l

sin ϕ · ξ̈. (9)

As seen below, this friction is a means of stabilizing the motion of ϕ. We did not add
a friction to the controller degree of freedom ξ, since this achieves no constructive goal
besides providing an additional channel for loosing energy. We also mostly neglect random
noises acting on ϕ, i.e., we do not study Langevin equations. The influence of a random
noise is discussed in Section 4.2.

Energy (8) governed by (6) and (9) decays in time, as it should:

dE
dt

= −ml2γϕ̇2 ≤ 0. (10)

As confirmed below, it is useful to separate energy E in (8) into two contributions, those
describing the motion of ξ and ϕ:

E = Eϕ + Eξ , Eξ =
µ + m

2
ξ̇2 +

k
2

ξ2. (11)

3. Solving the Model via Slow and Fast Variables

To solve nonlinear (6) and (9), we apply both the separation of time scales and pertur-
bation theory. We assumed that ω in (6) is a large parameter, i.e., ξ oscillates fast. Next, we
separate ϕ as [19]:

ϕ = Φ + ζ, ζ � Φ (12)
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where Φ is slow, and ζ is fast and also small compared with Φ. Then, from (6), (9), and (12),
after expanding over ζ and keeping the first nonvanishing term only, we obtain:

Φ̈ + ζ̈ +
g
l

sin Φ + ζ
g
l

cos Φ + γΦ̇ + γζ̇ = −1
l

sin Φ · ξ̈ − 1
l

cos Φ · ζξ̈, (13)

ξ̈ + ω2ξ = −ε[(cos Φ− ζ sin Φ)(Φ̇ + ζ̇)2 + (sin Φ + ζ cos Φ)(Φ̈ + ζ̈)]. (14)

Assuming that γ & 1
ω , and noting that, for fast variables, ζ̇, ζ̈, ξ̇, and ξ̈ are large, we can

equalize fast and large components in (13) and (14):

ζ̈ + γ ζ̇ = −1
l

sin Φ · ξ̈, (15)

ξ̈ + ω2ξ = −ε sin Φ · ζ̈, (16)

ζ(0) = 0, (17)

where initial condition (17) is imposed without loss of generality; cf. (12). In (16) we partic-
ularly neglected the factor −ε cos Φ · ζ̇2, because it is quadratic over ζ. Equations (15) and
(16) do not contain the contribution ζ

g
l cos Φ coming from the potential−mgl cos ϕ [cf. (13)],

since this contribution is not sufficiently fast, i.e., (15) and (16) involve only time-derivatives
of ζ.

Equation (15) can be integrated over the time. A constant of integration should be put
to zero, since ζ and ξ̇ are oscillating in time, with their time average being zero. Hence, the
integration of (15) implies

ζ̇(0) = − sin Φ
l

ξ̇(0). (18)

Equations (15) and (16) are linear over unknown variables ζ and ψ, and they can be
solved via the Laplacean transform (see Appendix A). Now, we can average (13) over
fast oscillations:

Φ̈ +
g
l

sin Φ + γΦ̇ +
1
l

cos Φ · ζ(t) ξ̈(t) = 0, (19)

where ... means time averaging over fast oscillations. Factor ζ(t) ξ̈(t) in (19) is worked out
in Appendix A. It contributes to an effective (generally time-dependent) potential Π(Φ):

Φ̈ + γΦ̇ = −∂ΦΠ(Φ). (20)

The form of this potential is simplified if we assume that a slow variable β ≡ sin2 Φ
1+ µ

m
holds

β� 1 due to µ
m � 1 (weak back-reaction), and take the first nonvanishing term over β; see

Appendix A. This approximation is only supported when slow variable Φ relaxes to π or
to 0. Eventually, we have a simplified form of the effective potential:

Π = − g
l

cos Φ− ω2

γ2 + ω2 ·
ξ̇2(0) + ω2ξ2(0)

8l2 · cos 2Φ. (21)

Now, Φ = π is stable, i.e., ∂ΦΠ(Φ)|Φ=π = 0 and ∂2
ΦΠ(Φ)|Φ=π > 0, if:

ξ̇2(0) + ω2ξ2(0)
2gl

> 1 +
γ2

ω2 . (22)

Larger values of ω expectedly increase the stability domain. However, larger values of
friction constant γ decrease it. Hence, friction plays a double role in this system, since the
very relaxation of Φ(t) (e.g., Φ(t)→ π) is achieved due to friction. Note that the authors
in [23] studied the inverted pendulum with friction and deduced an effective potential
that is akin to (21) (and even contains higher-order terms), but does not contain friction
explicitly since the latter was assumed to be small.
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Equations (20) and (21) imply that, when Φ = π is a stable rest point, we obtain that
the slow part Φ(t) of the angle variable ϕ(t) convergence due to the friction: Φ(t) → π,
if Φ(0) is in the attraction basin of Φ = π. What happens to the fast part ζ(t) of ϕ(t)? This is
a convoluted question that we numerically clarify below. Our results in Appendix A show
that, when derivation (12)–(18) applies, i.e., both time-scale separation and the perturbation
over β hold, we obtain ζ(t) → 0 together with Φ(t) → π; see (A5). This was indeed
observed numerically, as seen below. However, there is also a regime that is not described
by (12)–(18), where Φ(t) → π for sufficiently long but finite times, and where ζ(t) stays
nonzero; see below for details. This regime is realized when back-reaction parameter ε
is sufficiently large. As we emphasized, the above analytic derivations do not hold for
this case. Eventually, the fact of large back-reaction leads to decaying of the Φ = π state,
i.e., Φ = π turns out to be a metastable state.

Lastly, the left-hand side of (22) is just the initial dimensionless energy of ξ; cf. (7) and
(11). We call this quantity the initial stored energy, and (22) was obtained for vanishing
back-reaction ε→ 0.

4. Scenarios of (De-)Stabilization for the Inverted Pendulum
4.1. Asymptotic Stability and Stability with Respect to Several Perturbations

Figure 2a shows the solution of (6) and (9) when condition (22) holds. State ϕ = π
is indeed asymptotically stabilized, ϕ(t) → π at least when Φ(0) is sufficiently close to
π, i.e., when ϕ(0) is in the attraction basin of π. This relaxation was accompanied by the
energy dissipation. The decaying (dissipating) quantity here is mostly the stored energy

1
2gl [ξ̇

2(t) + ω2ξ2(t)], i.e., the dimensionless energy related to Eξ in (11). Once ϕ approaches
π sufficiently close, the coupling between ξ and ϕ is switched off; recall the discussion
after (22). This means that the stored energy is not dissipated anymore and stays constant
for subsequent times; see Figure 2a. Thus, we confirmed that the originally unstable fixed
point of the pendulum can be rendered asymptotically stable without permanent energy
costs, but with only transient energy dissipation.

For parameters of Figure 2a, point ϕ = π is asymptotically stable with a well-defined
attraction basin, i.e., it is stable with respect to a single perturbation, which refers to initial
state ϕ(0) = 0.93π, ϕ̇(0) = 0, and specific initial state (ξ(0), ξ̇(0)) of ξ; see Figure 2a. It is
necessary to generalize the notion of asymptotic stability because it is unrealistic to consider
only a single perturbation. Let us assume that, after ϕ(t) relaxed to π, we apply at some
random time τ (which is larger than the relaxation time) yet another (second) perturbation
ϕ = π → ϕ(0) = ϕ(τ) within the same attraction basin, i.e., ϕ(0) = 0.93 for parameters
of Figure 2b. The initial state of ξ is then reset as (ξ(τ), ξ̇(τ)). Hence, we now run the
dynamics anew with initial states ϕ(0) = 0.93π, ϕ̇(0) = 0, ξ(τ) and ξ̇(τ).

For the parameters of Figure 2a, ϕ = π is unstable after the second perturbation.
The issue here is that the back-reaction ε is sufficiently large; hence, the second perturbation
alters the controlling degree of freedom ξ(t) and dries out its stored energy, which already
decreased after the first perturbation. If, for parameters of Figure 2a, we decrease ε from
0.8 to 0.1, ϕ becomes stable to many well-separated (in the above sense) perturbations
coming at random times. One reason for this is that the stored-energy decrease within one
perturbation is smaller. Another reason that numerically clearly differs from the first one is
that the motion of ξ becomes more stable with respect to resetting the initial conditions of
ϕ during the perturbation.
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Figure 2. (a) Angle variable ϕ (black, upper curve) and controller ξ (blue, oscillating curve) as the
numerical solutions of (6) and (9) versus time t. Red curve (in the middle) is the scaled energy
η = E

µ+m that includes stored energy 1
2 [ξ̇

2 + ω2ξ2]; cf. (8) and (22). Parameters in (6) and (9) are:

ε = 0.8, ξ̇(0) = 2 (ξ(0) = 0), ϕ(0) = 0.93π (ϕ̇(0) = 0), ω = 4, γ = 3, m = g = l = 1. It is seen that
ϕ quickly stabilizes at ϕ = π, which is normally an unstable state. The stabilization process takes
a relatively small amount of energy. After stabilization, ϕ and ξ decouple; ξ continues oscillating,
and scaled energy η is then constant in time. Stability Condition (22) holds (the difference between
its LHS and RHS is 0.4375). (b) The same parameters as in (a), but back-reaction parameter ε = 0.9
is slightly larger. We also display ηϕ = E

µ+m −
1
2 ξ̇2 − ω2

2 ξ2 (green curve, third from top), where
ηϕ is the (scaled) energy related to the angle variable only; cf. (8). There is a rather long (t ∼ 150)
period of metastability accompanied by a slow dissipation of energy. After this, stability is lost: ϕ

quickly relaxes to the minimal ϕ = 0 of the potential, and ξ loses all its energy and eventually stops
moving (i.e., ξ(t) → 0). The whole stored energy dissipates. The physical reason of scenario in
(b) is that fast oscillations around ϕ = π do not disappear, i.e., they persist in the metastable state,
continuously dissipate energy [cf. (10)], and once the initial energy decreases sufficiently, ϕ and ξ

(relatively) suddenly move to global energy minima ϕ = ϕ̇ = ξ = ξ̇ = 0. Energy 1
2 ξ̇2 + ω2

2 ξ2 stored
in ξ decays in time. To confirm this, (b) also shows the scaled energy ζϕ related to ϕ. It stays constant
in time for the whole metastability period; see the green curve. A similar scenario happens, when the
initial condition ϕ(0) is out of the attraction basin of ϕ = π. However, here ϕ(t) never reaches π.

4.2. Random Noise

Above, we assumed multiple strong and well-separated (in time) perturbation. An-
other way of implementing multiple perturbations is to include external noise in (9). Let us
add to the right-hand side of (9) white Gaussian random noise:

σ f (t), 〈 f (t)〉 = 0, 〈 f (t) f (t′)〉 = δ(t− t′), (23)

where σ is the noise intensity. The modified (9) then becomes the Langevin equation (for
ϕ(t)). In contrast to strong and well-separated (in time) perturbations, (23) allows for
uncorrelated, densely located perturbations that are (most probably) weak if σ is small.

Figure 3a shows that a weak-random noise monotonously dries out the stored en-
ergy; hence, the stability of ϕ = π is lost after a sufficiently long time. Figure 3b shows
that the same scenario hold for stronger noise, though in somewhat blurred form and for a
shorter lifetime of the metastable state. For parameters of Figure 3a and σ = 0, ϕ = π is
asymptotically stable with respect to 10–11 strong, well-separated perturbations.

This metastability under noise differs from the well-known noise-induced escape from
a local energy minimum to a deeper minimum. There, a sufficiently strong random kick
brings the system to the attraction basin of the deeper minimum. In contrast, here, the
attraction basin is not changed (and no strong kicks are to be waited for). Rather, the stored
energy needed for maintaining the stability is drained out and the very local minimal
state is destroyed. Hence, what we described here constitutes a new type of noise-induced
metastability that deserves further study.
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Figure 3. (a) Angle ϕ (blue, piecewise constant curve) as the numerical solution of (6) and (9) versus
time t, where to the RHS of (9) we added white noise f (t) with intensity σ = 0.1; see (23). Here,
η = E

µ+m (orange, decaying curve) is the scaled energy; cf. (8). Parameters in (6) and (9) are: ε = 0.4,

ξ̇(0) = 4 (ξ(0) = 0), ϕ(0) = 0.93π (ϕ̇(0) = 0), ω = 4, γ = 3, m = g = l = 1. It is seen that φ is
stabilized around π in a metastable state whose lifetime is ' 500. During this lifetime, energy η

slowly decays till it is below some critical value, and then the metastable state suddenly decays.
(b) The same as in (a), but for a stronger noise σ = 1.25. Metastable decay is smeared, but still
clearly visible.

4.3. Metastability

For parameters of Figure 2a, if back-reaction ε is larger than 0.8, another interesting
scenario takes place: the notion of asymptotic stability with respect a single perturbation is
lost and replaced by metastability; see Figure 2b.

Now, small oscillations of ϕ(t) around Φ = π persist and do not decay in time;
cf. (12). According to (10), these oscillations slowly drain out the initial stored energy

1
2gl [ξ̇

2(0)+ω2ξ2(0)], and when it gets sufficiently low, the metastable state Φ = π suddenly

decays to the global energy minimum ϕ = ϕ̇ = ξ = ξ̇ = 0; see Figure 2b. During this
sudden decay, the whole stored energy is dissipated away. In the metastability time window,
energy Eϕ related to ϕ stays constant; see (11) and Figure 2b.

The transition between regimes in Figure 2a,b, i.e., between the truly stable and
the metastable state takes place for a critical value of the back-reaction parameter εc.
For parameters of Figure 2a,b, we have εc ≈ 0.86075. We checked numerically that the
lifetime of the metastable state could be very large for ε approaching εc from above. Hence,
this time can be arbitrary large for ε→ εc + 0.

The transition between regimes in Figure 2a,b is described for the initial fixed condi-
tions of ϕ: ϕ(0) = 0.93π (ϕ̇(0) = 0), i.e., for a fixed attraction basin of the stabilized state.
If these initial conditions are changed by rendering ϕ(0) closer to the stability point π (i.e.,
the attraction basin is shrunk), then the transition from the stable to metastable regime takes
place at a larger value of ε or does not take place at all. Likewise, if the attraction basin is
enlarged, the transition taken place for smaller ε. For example, if ϕ(0) = 0.92π (ϕ̇(0) = 0),
then the transition takes place at εc ' 0.6536, while for ϕ(0) = 0.935π (ϕ̇(0) = 0), the solu-
tion is stable for all ε < 1, which is the physical range of ε for parameters of Figure 2a,b;
cf. (7). The stabilization with the largest attraction basin demands vanishing values of
ε. In particular, for parameters of Figure 2a, no stabilization of the ϕ = π state occurs
for |ϕ(0)| < 0.64105π (ϕ̇(0) = 0), while for |ϕ(0)| & 0.64105π the stabilization demands
ε→ 0.

The metastability in Figures 3a,b is different from that in Figure 2b because, in the
latter case, the metastability is due to a strong back-reaction and not permanently act-
ing perturbations.
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5. Summary and Discussion

The purpose of this work is to understand energy costs of dynamical stabilization
(homeostasis): a process that stabilizes an unstable state due to an active controlling
process. To this end, one needs plausible models with a well-established history of physi-
cal [1–4,17–23] and control-theoretic [5–8,13,14] applications. Here, we studied the inverted
(Kapitza’s) pendulum model, where the upper (normally unstable) state is stabilized by
a fast motion of a controlling degrees of freedom. Usually, this degree of freedom is re-
placed by an external field. Here, we modeled it explicitly because we wanted to study an
autonomous system with full control of energy and its dissipation. Our main results are
summarized as follows.

The unstable state of the pendulum can be asymptotically stabilized with a finite at-
traction basin and without permanent energy dissipation because the controller–pendulum
interaction is automatically switched off once the pendulum is stabilized. There is only a
transient dissipation of a small amount of energy related to the stabilization. This regime is
reached when both the back-reaction of the pendulum to the controller is sufficiently small
and the controller oscillates sufficiently fast, i.e., it has sizeable stored energy.

However, the notion of asymptotic stability was not sufficient: we needed to study
stability with respect to multiple perturbations. We implemented two scenarios for multiple
perturbations: strong, widely separated in time perturbations, and weak white noise acting
on the pendulum. An asymptotically stable state may not be stable with respect to several
perturbations. The latter type of stability is achieved only if the back-reaction to the
controller is small. In the second scenario, weak white noise led to the noise-driven decay
of a metastable state. This decay differed in several ways from the usual noise-driven
escape. There is a need for further, more systematic research on this effect.

When the back-reaction was larger, the very notion of asymptotic stability was lost and
replaced by metastability. The stabilization was then temporary (metastable), because small
oscillations around the stabilized state do not decay. They dry out the stored energy of the
controller, and once it is lower than some threshold, the metastable state decays. In this
case, a constant dissipation rate was needed for supporting the metastable state.

The energy cost problem was actively studied for the case of adaptation [24]. Here,
stability was required with respect to external changes of intensive variables; e.g., tem-
perature and chemical potential [24–28]. Adaptation should be distinguished from the
proper dynamical stabilization (homeostasis) [29]. Adaptation is about the stability of
intensive variables (e.g., temperature) and relates to structural changes in the system,
while homeostasis does not. Hence, adaptation is thermodynamically restricted by the
Le Chatelier–Braun principle, whereas homeostasis is not [26,29,30]. Existing approaches
to the energy cost of adaptation show that the energy is to be dissipated continuously if
an adaptive state is maintained [25–28]. In that sense, adaptation is similar to proofreading
and motor transport, biological processes that are essentially nonequilibrium and demand
constant dissipation of energy; see [31] for a review. The question of relating dynamical
stabilization and adaptation more directly remains open; so far, the two concepts have been
quite separate.

Conceptual tools gained from the physical model should be useful for studying
the energy cost of biological examples of dynamical stabilization (homeostasis) [9–12].
Biological and physiological discussions imply that homeostasis is needed for controlling
(and providing advantages for) metabolic processes in organisms [9–12]. This demands
asking about the proper energy costs of the homeostasis itself. Such costs can be substantial,
e.g., humming birds (colibri), for which energy saving is crucial, fall at night into a torpor
state that is different from normal sleep. In this state several homeostatic mechanisms
including internal energy regulation are ceased. Thereby birds are able to save a substantial
amount of energy: an increase of ' 60% of the normal usage [32].

Since realistic models of homeostasis are derived from systems biology [9,24,33], they
frequently lack a physical form that allows for us to ask questions about energy balance, let
alone its dissipation. Nonetheless, some analogies can be drawn and might prove useful in
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future research. We saw that the energy stored in the controlling degree of freedom can be
the main resource of homeostasis. In that respect, it is similar to the energy stored in the
living organism, one of the major concepts in biological thermodynamics [34–40]. It also
relates to adaptation energy introduced in physiology [24]; cf. [29] for a critical discussion.
The stored energy is phenomenologically employed in dynamic energy budget theory
(DEBT) [39,40] and applied for estimating metabolic flows of concrete organisms.

This concept is not yet well-formalized, but some of its qualitative features are known.
The stored energy is not the usual free energy, since the latter is present in equilibrium
as well. From the viewpoint of a modern thermodynamics, the notion of stored energy
resembles energy kept at a certain negative temperature because it is capable of doing
work in a cyclic process [41]. For the inverted pendulum, the stored energy is mechanical
(not chemical) and relates to an oscillating degree of freedom, but it is also capable of
performing cyclic work. The inverted pendulum demonstratess how stored energy relates
to stabilizing unstable states.
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Appendix A. Derivation of the Effective Potential

Here we explain how to solve Equations (15) and (16), and deduce the effective
potential from that solution. Define from (7)

β ≡ ε sin2 Φ
l

=
sin2 Φ
1 + µ

m
< 1, (A1)

and solve (15) and (16) via the Laplace transform as:

ξ̂(s) =
(1− β)a(s)

(s2 + ω2)(s + γ)− βs3 , ζ̂(s) = − sin Φ
l

(1− β)b(s)
(s2 + ω2)(s + γ)− βs3 , (A2)

a(s) = (s + γ)ξ̇(0) + s(s +
γ

1− β
)ξ(0), b(s) = sξ̇(0)− ξ(0)

ω2

1− β
(A3)

where in addition to initial condition (17) we also employed (18).
The inverse Laplacian transform taken from (A2) reads

ξ(t) =
[

es1ta(s1)

(s2 − s1)(s3 − s1)
+

es2ta(s2)

(s1 − s2)(s3 − s2)
+

es3ta(s3)

(s1 − s3)(s2 − s3)

]
, (A4)

ζ(t) = − sin Φ
l

[
es1tb(s1)

(s2 − s1)(s3 − s1)
+

es2tb(s2)

(s1 − s2)(s3 − s2)
+

es3tb(s3)

(s1 − s3)(s2 − s3)

]
, (A5)
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where s1, s2 and s3 solve

s3 +
γs2

1− β
+

ω2s
1− β

+
ω2γ

1− β
= (s− s1)(s− s2)(s− s3) = 0. (A6)

Without loss of generality, we take the following parametrization:

s1 = −Γ, s2 = −γ̃ + iω̃, s3 = −γ̃− iω̃, (A7)

Γ > 0, γ̃ ≥ 0. (A8)

Now, we calculate ζ(t) ξ̈(t). Hence, when taking the product ζ(t) ξ̈(t) all oscillating terms
with frequency ω̃ are to be neglected:

ζ(t) ξ̈(t) = − sin Φ
l

(
s2

1a(s1)b(s1) e−2Γt

[(γ̃− Γ)2 + ω̃2]2
+

(s2
2a(s2)b(s3) + s2

3a(s3)b(s2)) e−2γ̃t

4ω̃2[(γ̃− Γ)2 + ω̃2]

)
. (A9)

If in (A1), β → 0 due to µ/m � 1, we can keep in (A6) only the simplest nonzero
order putting there β = 0. This approximation is supported if slow variable Φ tends to
π, i.e., β gets additional smallness. Now, (A6) reads (s + γ)(s2 + ω2) = 0, i.e., we obtain
via (A7):

Γ = γ, γ̃ = 0, ω̃ = ω. (A10)

This means that the term ∝ e−2Γt in (A9) can be neglected, and we have

ζ(t) ξ̈(t) =
sin Φ [ξ̇2(0) + ω2ξ2(0)]

l
ω2

2(γ2 + ω2)
. (A11)

Equation (A11) leads us to (19) and (21).
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