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Abstract: Under the framework of computational integral imaging, a multi-image encryption scheme
based on the DNA-chaos algorithm is proposed. In this scheme, multiple images are merged to one
image by a computational integral imaging algorithm, which significantly improves the efficiency of
image encryption. Meanwhile, the computational integral imaging algorithm can merge images at
different depth distances, thereby the different depth distances of multiple images can also be used
as keys to increase the security of the encryption method. In addition, the high randomness of the
chaos algorithm is combined to address the outline effect caused by the DNA encryption algorithm.
We have experimentally verified the proposed multi-image encryption scheme. The entropy value of
the encrypted image is 7.6227, whereas the entropy value of the merge image with two input images
is 3.2886, which greatly reduces the relevance of the image. The simulation results also confirm that
the proposed encryption scheme has high key security and can protect against various attacks.

Keywords: multi-image encryption; computational integral imaging; DNA-chaos algorithm

1. Introduction

As a basic way of carrying data, the importance of images in the information industry
is self-evident. However, there is no doubt that this will raise a lot of privacy concerns if the
image information owned by an individual or team is accessed by others. Image encryption
is a proven means of solving image security problems [1–6]. Encrypted images lack intuitive
information about the original image, in other words, the thief cannot obtain any valuable
information from the encrypted image, thereby achieving the privacy protection of the
image owner. At present, researchers have proposed many methods of image encryption,
and optical encryption has attracted much attention in the study of image encryption
because of its unique multi-dimensional capabilities, high parallelism and high-speed
processing power [7–12].

Since Javidi and Refregier proposed the classic optical Dual Random Phase Encoding
(DRPE) system in 1995 [13], optical encryption technology began to enter a period of
rapid development. Researchers have found that the encryption system based on DRPE
technology has some security problems due to its own linear factors [14]; it is vulnerable
to selective plaintext attacks. In order to enhance the security of the encryption system,
researchers have proposed a series of feasible optical encryption improvement schemes
based on DRPE. The improvements are mainly made from the following four aspects:
(1) Expansion of optical transformations; (2) Pre-process according to the characteristics
of the encrypted image and the purpose of encryption; (3) Improvements of the random
phase mask; (4) Non-linear operation. On this basis, more encryption algorithms have been
proposed [15–20]. It is worth noting that these proposed methods of encrypting objects are
all for a single image. Compared with single image encryption, multi-image encryption
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can process multiple images at a time, which can greatly improve encryption efficiency on
the basis of ensuring encryption security.

Computational Integral Imaging (CII), as a well-performing optical imaging system,
can achieve a full-color, wide-angle 3D light field display [21–27]. Integral imaging tech-
nology can record image information from multiple perspectives of a scene, which can
provide more robustness in the recovery process of image encryption. Researchers have
proposed many image encryption methods based on the CII framework, and confirmed
that these algorithms have strong robustness [28–30]. In addition, computational integral
imaging technology can also record scene information at different depths; at the same
time [31–33], it is possible to achieve the synthesis of multiple images, which provides a
new idea for multi-image encryption.

DNA algorithm with vast parallelism, large-scale storage and extraordinary informa-
tion density is often applied in the study of data encoding, and some DNA-based encoding
algorithms were proposed and showed a better performance [34–39]. The proposed DNA-
based encryption algorithms have two main ideas—one is to explore the impact of different
DNA rules on encryption performance, and the other is to improve the performance of
DNA encryption by combining other encryption algorithms [40]. There will be an outline
effect when DNA encryption algorithm is used, which causes the saliency boundaries of
the original image to be seen from the encrypted image clearly. The chaos system possesses
a variety of characteristics, such as strong confidentiality, good randomness, a large amount
of keys and so on [41–43]. In addition, recently, elliptic curves-based image encryption
schemes have been considered an alternative to the chaos-based schemes [44–47]. Therefore,
they are widely used in combination with DNA algorithms to improve the performance of
encryption systems.

In this paper, a multi-image encryption scheme based on CII using a DNA-chaos
encryption algorithm is proposed. Two or more images are merged in different depths
using the CII algorithm, which will obtain an Element Image Array (EIA) image, and then
the EIA image is encrypted by the DNA-chaos encryption algorithm. Finally, the decrypted
image can be reconstructed at different depths to restore the original image. Based on the
high security of the DNA-chaos encryption algorithm, EIA data recorded by computational
integral imaging technology to ensure the strong robustness and the multi-image merge
scheme of different depths further improves the key space by using depth information as
the key.

The paper is arranged as follows. In Section 2, we briefly introduce a theoretical
analysis of our method, including the CII pickup process, DNA sequence operations, chaos
theory, the CII Reconstruction (CIIR) algorithm and entropy analysis theory. A multi-image
encryption scheme is proposed in Section 3. In Section 4, we analyze the performance of
the proposed multi-image encryption scheme in terms of key security, statistical results,
robustness and time analysis. The conclusions reached in this article are presented in
Section 5.

2. Previous Theoretical Analysis
2.1. Pickup Original Scene by CII

CII [22] is an advanced optical imaging solution, which is the most promising com-
mercial 3D display technology, and has important research significance in the field of 3D
image processing. The modulation of optical information from CII mainly includes two
processes—one is the pickup of the original scene, which can obtain the EIA, and the other
is the reconstruction of the original scene through EIA. In the pickup of the original scene,
an EIA is recorded, and the EIA contains a lot of redundant information about the scene,
which can improve the robustness of the encryption scheme for image encryption.

Figure 1 shows the pickup of the original scene by CII algorithm. The original scene is
recorded by the sensor as EIA through a lenslet array, and the EIA contains many EIs; each
EI represents the encrypted information converted by part of the original scene. Each EI is
calculated by [22]:
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E(x, y, z) = P
(
− xd

l
+ iφ,−yd

l
+ jφ, z

)
, (1)

where x, y and z represent the spatial coordinates of the lenslet array, and the size of the
lenslet array determines the number of EIs. φ represents the size of lens, and the distance
from image to lenslet array is l.

Figure 1. The pickup of the original scene by CII.

2.2. DNA Sequence Operations

A Deoxyribo Nucleic Acid (DNA) sequence consists of four different basic nucleotides:
adenine (A), guanine (G), thymine (T) and cytosine (C). These four nucleotides can be
combined to form a long sequence, and T is paired with A,G is paired with C. We will
obtain 24 different encoding schemes if A,C,G and T are encoded as binary numbers with
two bits, respectively, but only eight encoding schemes suit the Watson–Crick rule, and they
are shown in Table 1. Assuming that A-10, T-01, C-11, G-00, such as the binary sequence
10110100, the DNA sequence can be written as ACTG.

Table 1. DNA coding rules.

Rule One Two Three Four Five Six Seven Eight

A 00 00 01 01 10 10 00 11
C 01 10 00 11 00 11 01 10
G 10 01 11 00 11 00 10 01
T 11 11 10 10 01 01 00 00

DNA computing has received a lot of attention from researchers, so it has developed
rapidly. Some researchers have proposed certain algebraic operations for DNA sequences,
such as addition operations, subtraction operations and Ex-OR operations. Corresponding
to the eight DNA coding schemes there are also eight DNA addition, subtraction and Ex-OR
operations. Table 2 lists one of the arithmetic rules which, according to DNA encoding rule
one, are listed in Table 1 [34].

Table 2. DNA addition, subtraction and XOR operations.

+ A T C G - A T C G ⊕ A T C G

G G A T C G G C T A G G C T A
C C G A T C C T A G C C G A T
T T C G A T T A G C T T A G C
A A T C G A A G C T A A T C G
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For DNA recovery operations, the corresponding DNA sequences must meet the
conditions specified by [36]:{

YB 6= Cp(YB) 6= Cp
(
Cp(YB)

)
6= Cp

(
Cp

(
Cp(YB)

))
YB = Cp

(
Cp

(
Cp

(
Cp(YB)

))) , (2)

where YB denotes one of the four different basic nucleotides, and Cp(YB) is the base
pair of YB.

2.3. Chaos Theory

Chaos as a nonlinear dynamic process that is highly sensitive to initial states and is un-
predictable becomes a natural physical code. It widely applies in the fields of cryptography,
random number generation, confidential communication and image encryption. In this
paper, two chaos functions containing SLMM and a logistic map are selected to improve
the performance of DNA encryption.

2D-SLMM is defined as [48]:{
X(n + 1) = α(sin(πY(n)) + β)X(n)(1− X(n))
Y(n + 1) = α(sin(πX(n + 1)) + β)Y(n)(1−Y(n))

, (3)

where α and β are control parameters, and 0 ≤ α ≤ 1, 0 ≤ β ≤ 3. It should be noted that if
we want SLMM to work in a chaotic state, the β should close to 3 [48].

There will be a 1D chaos function to describe the logistic map, which is defined as [49]:

x(n + 1) = γx(n)(1− x(n)), (4)

where γ ∈ [0, 4] is the logistic map parameter, and xn ∈ (0, 1). Only when 3.5699456 ≤ γ ≤ 4,
does the logistic map exhibit a state of chaos [49].

2.4. CIIR Algorithm

In the multi-image encryption scheme we proposed, the CIIR algorithm is used to
recover different image scenes. However, traditional CIIR algorithms easily cause some
pixels to coincide, resulting in a decrease in the intelligibility quality of the recovered
scene. To improve the effects of pixel coincidence, we apply a modified reconstruction
algorithm [50] so that every reconstructed scene pixel can be calculated. The calculation of
the original scene uses the following formula:

YR(x, y, z) =
1
Tz

M−1

∑
i=0

N−1

∑
j=0

Ei,j

(
x− i

M× p
m× u

, j
N × p
n× u

)
, (5)

where Tz denotes the number of overlaps at the reconstruction distance z, M and N
determine the number of EIs, m and n represent the size of the imaging sensor, p represents
the pitch between each pinhole, and u is the magnification parameter.

2.5. Entropy Analysis Theory

To illustrate the performance of our proposed encryption scheme quantitatively, we
introduce an entropy analysis method. Image entropy describes the average amount
of information in an image, representing the aggregation characteristics of the image
pixel distribution [51]. For image encryption, the original image contains more spatial
features, the pixel distribution is more dispersed, the entropy value is small. While the
encrypted image should contain the original image information as less as possible, the pixel
distribution is relatively concentrated, so the entropy value is larger than in the original
image. Therefore, the size of the entropy value can be analyzed to judge the performance
of the encryption scheme.
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The entropy of image I can be obtained by the following formula:

H(I) = −
n

∑
i=1

P(ai) · log2 P(ai), (6)

where p(ai) denotes the probability of occurrence of pixel with value of ai in image I with
0 ≤ p(ai) ≤ 1 and ∑

p
i=1(ai) = 1.

3. Multi-Image Encryption Scheme Based on CII
3.1. Framework of Multi-Image Encryption Scheme

In this paper, a multi-image encryption scheme is proposed based the principle of CII,
and the overall framework of the scheme is shown in Figure 2.

Figure 2. Framework of multi-image encryption scheme.

In the multi-image encryption scheme we proposed, the input can be two or more
images (two images are shown in Figure 2, and the following is also described in two
images). Firstly, the two input images are placed on different position planes, then it is
recorded on an EIA by a microlens array. The EIA merges information from two original
images. It is worth noting that the different distances between two images and the microlens
array can be used as keys. After that, the EIA is encrypted by the DNA-chaos encryption.
Finally, the CIIR is used to reconstruct different original images with different depths. The
detailed encryption and decryption procedure is described in Section 3.2.

3.2. Encryption and Decryption Procedure

Figure 3 shows the detailed steps of the encryption algorithm we proposed. It is worth
noting that we introduce the chaos algorithm to solve the outline effect caused by the DNA
algorithm. The proposed multi-image encryption scheme is a symmetric process, so the
decryption process of the image can be achieved by reversing the encryption process. The
steps of the decryption process are shown in Figure 4, we only introduce the encryption
procedure of the multi-image encryption scheme in detail.

The encryption procedure of the multi-image encryption scheme is introduced
as follows:

Step 1 : Convert the original scene into the form of merge image f (i, j) with size
M× N using the integral imaging pickup algorithm.

Step 2: Generate two high-quality pseudo-random sequences M1(i, j) and M2(i, j)
with size M× N by cellular automata with two different initial states.

Step 3: Decompose the merge image f (i, j) to three binary matrices R1(i, j), G1(i, j) and
B1(i, j) with the size of M× N. Then transform the three binary matrices into three DNA
sequence matrices R2(i, j), G2(i, j) and B2(i, j) with the size of M× 4N based on the DNA
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coding rules defined in Table 1 and the random encoding sequence En_M(i, j) generated
from pseudo-random sequences M1(i, j). The random coding sequence En_M(i, j) can be
obtained by:

En_M(i, j) = f loor(mod(M1(i, j), 8)) + 1. (7)

Step 4 : Perform the diffusion operations by DNA addition to get three DNA diffused
matrices R3(i, j), G3(i, j) and B3(i, j) with the size of M× 4N.

Figure 3. The encryption procedure of multi-image encryption scheme.

Figure 4. The decryption procedure of multi-image encryption scheme.

Step 5: Select the rule from four complementary rules according to pseudo-random
sequence M3(i, j). Based on M3(i, j) and the selected complementary rule, perform the
DNA complementary operation on DNA diffused matrices and obtain three DNA com-
plementary matrices R′3(i, j), G′3(i, j) and B′3(i, j). The pseudo-random sequence M3(i, j) is
described as:

M3(i, j) = M1(i, j)⊕M2(i, j). (8)
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Step 6: Decode three DNA matrices R′3(i, j), G′3(i, j) and B′3(i, j) using DNA random
decoding sequence De_M(i, j) generated form pseudo-random sequences M2(i, j) and the
DNA encoding rules. The random decoding sequence is described as:

De_M(i, j) = f loor(mod(M2(i, j), 8)) + 1. (9)

Step 7: Perform the DNA Ex-OR operations and then convert them into the decimal
matrices R4(i, j), G4(i, j) and B4(i, j) with the size of M×N. Perform scrambling operations
on the decimal three matrices with three pseudo-random sequences M1(i, j), M2(i, j) and
M3(i, j) respectively and obtained decimal three matrices R5(i, j), G5(i, j) and B5(i, j) with
the size of M× N.

Step 8: Perform chaos encryption algorithm on the decimal three matrices R5(i, j),
G5(i, j) and B5(i, j) and combine them into an encrypted image.

4. Experiment Results and Performance Analysis

In this section, the EIA is calculated by the CII algorithm from two images, “lemon”
and “apple”. Figure 5 shows the experiment results of the multi-image encryption scheme
we proposed. Figure 5a,b shows the original images “lemon” and “apple” with a size of
240× 240, and Figure 5c shows the EIA of original images “lemon” and “apple” generated
by the CII algorithm. Figure 5d shows the encrypted image using the DNA-chaos algorithm.
Figure 5e,f shows images reconstructed by the CIIR algorithm, and the reconstruction
depths are 15 mm and 6 mm, respectively.

Figure 5. The experiment results of multi-image encryption scheme (240× 240). (a) Original image
“lemon”. (b) Original image “apple”. (c) EIA of image “lemon” and “apple”. (d) Encrypted image.
(e) Reconstructed image (d = 15 mm). (f) Reconstructed image (d = 6 mm).

From Figure 5, we can qualitatively see that the multi-image encryption scheme we
proposed has an excellent encryption and decryption performance. In order to illustrate
that the multi-image encryption scheme we proposed can be applied to different scenarios,
we select original images of different sizes and numbers for testing. The experimental
results are shown in Figures 6 and 7.

In Figure 6, two original images with a size of 360× 360 as the encryption images are
different from Figure 5 with a size of 240× 240. From Figure 6, we can also qualitatively
see that the multi-image encryption scheme we proposed has an excellent encryption and
decryption performance.
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In Figure 7, three original images with a size of (240× 240) are the encryption images.
For obvious comparison, we put the encrypted image in the last position. From Figure 7h,
we cannot observe any information about the original images. As can be seen from the first
three columns in Figure 7, the reconstructed image can clearly restore the information of
the original images.

Figure 6. The experiment results of multi-image encryption scheme (360× 360). (a) Original image
“sheep”. (b) Original image “grass”. (c) EIA of image “sheep” and “grass”. (d) Encrypted image.
(e) Reconstructed image (d = 15 mm). (f) Reconstructed image (d = 6 mm).

Figure 7. The experiment results with three original images of multi-image encryption scheme
(240× 240). (a) Original image “basketball”. (b) Original image “ball”. (c) Original image “foot-
ball”. (d) EIA of image “basketball”, “ball” and “football”. (e) Reconstructed image (d = 6 mm).
(f) Reconstructed image (d = 15 mm). (g) Reconstructed image (d = 21 mm). (h) Encrypted image.

The experimental results in Figures 5–7 fully indicate that the multi-image encryption
scheme we proposed can be applied to different scenarios, such as original images of
different sizes (240× 240 in Figure 5 and 360× 360 in Figure 6) and different numbers
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(three original images in Figure 7). Following this section, we will analyze the multi-image
encryption scheme we proposed quantitatively by taking two original images as examples.

4.1. Key Security Analysis

The encryption scheme must consider the security of the key, that is, the original image
cannot be decrypted with the wrong key. Figure 8 shows the results of the key security
analysis of our proposed multi-image encryption scheme.

Figure 8. The results of key security analysis. (a) The decrypted image of Figure 5d using right key.
(b) The decrypted image of Figure 5d using wrong key. (c) The reconstructed image of Figure 7a
with wrong depths (d = 18 mm). (d) The reconstructed image of Figure 7a with wrong depths
(d = 24 mm). (e) The decrypted image of Figure 6d using right key. (f) The decrypted image of
Figure 6d using wrong key. (g) The reconstructed image of Figure 7e with wrong depths (d = 18 mm).
(h) The reconstructed image of Figure 7e with wrong depths (d = 24 mm).

Figure 8 shows the results of key security analysis; the encrypted images corresponding
to the first and second columns are Figures 5d and 6d respectively. Figure 8a,e shows
the decrypted image with the right key and Figure 8b,f shows the decrypted image
with the wrong key; we cannot obtain any useful information about the original image.
Figure 8c,d,g,h separately shows the reconstructed image with wrong depths; when the
reconstruction depth is wrong, we cannot obtain a clear image relative to the correct re-
construction depth, such as in Figure 5d,h. This shows that the multi-image encryption
scheme we proposed has high key security.

4.2. Statistical Analysis

In order to quantitatively illustrate the performance of our proposed multi-image
encryption scheme, we performed a statistical analysis of the experimental results, which is
shown in Figure 9.

Figure 9a is the EIA of two original images, “lemon” and “apple”, and Figure 9d
shows the encrypted image only by DNA algorithm. We can see the outline of two saliency
objects in the EIA clearly from the result. Figure 9g represents the image encrypted by
the DNA-chaos algorithm, and we cannot see any information about the original image.
Figure 9b,e,h represents a histogram (R channel) of Figure 9a,d,g separately. The results of
the histogram indicate that the distribution of the image encrypted by DNA-chaos is very
flat. Figure 9c,f,i represents the autocorrelation (R channel) of Figure 9a,d,g separately, and
we can also find that the autocorrelation is very weak for the image encrypted by DNA-
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chaos. So the multi-image encryption scheme we proposed has an excellent performance
according to the statistical analysis results.

Figure 9. The results of statistical analysis. (a) The EIA of two original images. (d) The encrypted
image only by DNA. (g) The encrypted image by DNA-chaos. (b,e,h) represent histogram (R channel)
of (a,d,g) respectively. (c,f,i) show autocorrelation results (R channel) of (a,d,g) respectively.

In addition, we calculated the entropy value of Figure 9a,d,g from the RGB channel
separately, then took the average of them, and the results are 3.2886, 7.4900 and 7.6277. The
entropy value of the encrypted image is significantly larger than the entropy value of the
EIA image, which shows that the encryption scheme we proposed performs well.

4.3. Robustness Analysis

In order to verify the reliability of the multi-image encryption scheme we proposed
in the noisy environment, we designed simulation experiments to analyze the robustness.
We simulated Gaussian noise, Speckle noise, Poisson noise, Salt and Pepper noise and
Clip attack channel environments to test the robustness of the scheme. The simulation
experiment results are shown in Figure 10.

From Figure 10, we can intuitively see that the multi-image encryption scheme we
proposed can reconstruct the original scene correctly in a variety of noise environments.

In order to qualitatively illustrate the visual quality the recovered scene, we use the
peak signal-to-noise ratio (PSNR) image quality evaluation index that is widely recognized
by researchers. The PSNR value of an image can be obtained by the formula [39]:

PSNR = 10 log10

(
2552

MSE(E, E′)

)
, (10)
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MSE =
1

MN

M−1

∑
j=0

N−1

∑
j=0

(
E− E′

)2, (11)

where M and N indicate the width and height of the image, respectively, E is the original
scenes, and E′ is the recovered scenes.

The PSNR values of the decrypted images with the the Gaussian noise, Speckle noise,
Poisson noise, Salt and Pepper noise and Clip attack channel environments are shown in
the Table 3.

It can be clearly seen from the Table 3 that the multi-image encryption scheme we
proposed has a strong robustness in various noise environments.

Figure 10. The results of robustness analysis. (a) No noise. (b) Salt & Pepper noise (0.01). (c) Salt &
Pepper noise (0.02). (d) Clip attack (6.25%). (e) Clip attack (12.5%). (f) Speckle noise (0.01). (g) Speckle
noise (0.02). (h) Gaussian noise (0.01). (i) Gaussian noise (0.02). (j) Possion noise.

Table 3. PSNRs of Decrypted Scenes Against Attacks With Different Schemes.

Attacks R (dB) G (dB) B (dB)

Gaussian (0.01) 31.5444 33.0175 34.5347
Gaussian (0.02) 31.3144 32.8944 34.8444
Speckle (0.01) 31.7404 33.2693 34.7687
Speckle (0.02) 31.7186 33.2382 34.4183

Possion 31.7075 33.0537 34.3427
Salt & Pepper (0.01) 43.6942 47.6408 50.1849
Salt & Pepper (0.02) 40.8340 43.9806 46.3331

Clip (6.25 %) 48.6002 43.7822 53.1990
Clip (12.5 %) 38.4986 41.1150 44.3709

There are two indexes to qualitatively illustrate the key sensitivity and plaintext
sensitivity encryption scheme, namely number of pixels change rate (NPCR) and unified
average changing intensity (UACI) [52]. NPCR indicates the number of pixels that change
between two images and UACI represents the average number of changes in intensity
between two images. The calculation formula of NPCR and UACI is as follows:

NPCR =
∑i,j D(i, j)

W × H
× 100% (12)

UACI =
1

W × H

[
∑
|C1(i, j)− C2(i, j)|

255

]
× 100, % (13)
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where D(i, j) is defined as:

D(i, j) =
{

1, C1(i, j) 6= C2(i, j)
0, otherwise,

(14)

where W and H denote the width and height of the image. C1 and C2 are two images.
That the plaintext images are sensitive is a basic requirement of a good image cryp-

tosystem. Only those image cryptosystems with plaintext sensitivity can resist the cho-
sen/known plaintext attacks. For any given key, if the plain image is changed slightly,
its encrypted image will be changed dramatically, and this image cryptosystem is plain-
text sensitive.

Key sensitivity analysis includes three aspects: (1) When encrypting a plaintext image,
if the key changes slightly, the encryption system will produce two completely different en-
crypted images, which means that the key is sensitive in the encryption process. Meanwhile,
such a key is an effective encryption key; (2) When encrypting a plaintext image, if the key
changes slightly, the encryption system will produce two completely different encrypted
images, which means that the key is sensitive in the encryption process. Meanwhile, such a
key is an effective encryption key; (3) When decrypting a cipher image using an illegal key,
if the key changes slightly, the decryption system will produce two completely different
images, both totally different from the original plaintext image. This means that the illegal
key is sensitive in the decryption process. Such an illegal key is effective.

We use NPCR and UACI to qualitatively illustrate the key sensitivity and plaintext
sensitivity of the multi-image encryption scheme we proposed. We still use Figure 5c as
our test image; the results are shown in Table 4.

Table 4. The analysis of key sensitivity and plaintext sensitivity using NPCR and UACI.

Index NPCR (%) UACI (%)

Plaintext sensitivity 99.6091 33.4591
Encryption process 99.6100 33.4603

Decryption process (legal) 99.6064 28.6356
Decryption process (illegal) 99.6085 33.4673

Theoretical value 99.6094 33.4635

The theoretical value of NPCR is 99.6094% and UACI is 33.4635%. From the
Table 4, we can find that the NPCR and UACI are very close to the theoretical value, Which
indicates the multi-image encryption scheme we proposed has excellent key sensitivity and
plaintext sensitivity.

4.4. Time Analysis

Encryption time is very important for an encryption scheme. An image encryption
scheme with good performance should use as little time as possible in the process of image
encryption and decryption. In this section, we select different sizes of images and more
than two images as input to test the multi-image encryption scheme we proposed. The
results of the encryption and decryption analysis of different images are shown in Figure 11.

Figure 11a is the EIA of two input images with the size of 240× 240, Figure 11d is the
EIA of two input images with the size of 360× 360, and Figure 11g is the EIA of three input
images with the size of 240× 240. We analysis the encryption and decryption time of these
different images. For Figure 11a, the encryption and decryption time is 3.1225 s, Figure 11d
is 4.3257 s and Figure 11d is 4.6328 s.
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Figure 11. Encryption and decryption analysis of different images. (a) The EIA of two input images
(240 × 240). (d) The EIA of two input images (360 × 360). (g) The EIA of three input images
(240× 240). (b,e,h) represent encrypted image of (a,d,g) separately. (c,f,i) show decryption results of
(a,d,g) separately.

5. Conclusions

In conclusion, we apply the CII algorithm to achieve multi-image encryption, which
significantly improves the efficiency of image encryption, meanwhile combining the chaos
algorithm to address the outline effect caused by the DNA encryption algorithm. In
the proposed multi-image encryption scheme, the different depth distances of multiple
images can also be used as keys, which can improve the security of the encryption method
significantly. We also analyze the robustness of this scheme against a variety of attacks.
The experiment results confirm the excellent performance of our proposed multi-image
encryption scheme.

Author Contributions: Conceptualization, X.L., C.Y. and J.G.; methodology, X.L. and J.G.; formal
analysis, X.L. and J.G.; writing—original draft preparation, X.L. and J.G.; writing—review and editing,
C.Y. and J.G. All the authors made comments on the final version before the submission. All authors
have read and agreed to the published version of the manuscript.

Funding: Natural Science Foundation of Guangdong Province (2018A0303070009, 2021A1515011091);
Educational Commission of Guangdong Province (2018KTSCX143, 2020ZDZX3056).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, W.; Javidi, B.; Chen, X. Advances in optical security systems. Adv. Opt. Photonics 2014, 6, 120–155. [CrossRef]
2. Wang, X.; Zhu, X.; Wu, X.; Zhang, Y. Image encryption algorithm based on multiple mixed hash functions and cyclic shift. Opt.

Lasers Eng. 2018, 107, 370–379. [CrossRef]

http://doi.org/10.1364/AOP.6.000120
http://dx.doi.org/10.1016/j.optlaseng.2017.06.015


Entropy 2022, 24, 996 14 of 15

3. Shi, Y.; Li, T.; Wang, Y.; Gao, Q.; Zhang, S.; Li, H. Optical image encryption via ptychography. Opt. Lett. 2013 , 38 , 1425–1427.
[CrossRef] [PubMed]

4. Li, X.; Meng, X.; Yang, X., Yin; Y.; Wang, Y.; Peng, X.; Chen, H. Multiple-image encryption based on compressive ghost imaging
and coordinate sampling. IEEE Photonics J. 2016, 8, 1–11.

5. Li, X.; Xiao, D.; Wang, Q.H. Error-free holographic frames encryption with CA pixel-permutation encoding algorithm. Opt. Lasers
Eng. 2018, 100, 200–207. [CrossRef]

6. Zhao, R.; Zhang, Y.; Xiao, X.; Ye, X.; Lan, R. TPE2: Three-pixel exact thumbnail-preserving image encryption. Signal Process. 2021,
183, 108019. [CrossRef]

7. Gong, L.; Qiu, K.; Deng, C.; Zhou, N. An optical image compression and encryption scheme based on compressive sensing and
RSA algorithm. Opt. Lasers Eng. 2019, 121, 169–180. [CrossRef]

8. Qu, G.; Yang, W.; Song, Q.; Liu, Y.; Qiu, C.W.; Han, J.; Xiao, S. Reprogrammable metahologram for optical encryption. Nat.
Commun. 2014, 11, 5484.

9. Pan, A.; Wen, K.; Yao, B. Linear space-variant optical cryptosystem via Fourier ptychography. Opt. Lett. 2019, 44, 2032–2035.
[CrossRef]

10. Chen, W.; Situ, G.; Chen, X. High-flexibility optical encryption via aperture movement. Opt. Express 2013, 21, 24680–24691.
[CrossRef]

11. Liu, Z.; Xu, L.; Lin, C.; Liu, S. Image encryption by encoding with a nonuniform optical beam in gyrator transform domains. Appl.
Opt. 2010, 49, 563–5637. [CrossRef]

12. Yang, B.; Liu, Z.; Wang, B.; Zhang, Y.; Liu, S. Optical stream-cipher-like system for image encryption based on Michelson
interferometer. Opt. Express 2011, 19, 2634–2642. [CrossRef]

13. Refregier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995, 20,
767–769. [CrossRef]

14. Peng, X.; Zhang, P.; Wei, H.; Yu, B. Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett.
2006, 31, 1044–1046. [CrossRef]

15. Unnikrishnan G.; Joseph J.; Singh K. Optical Encryption by Double-random Phase Encoding in the Fractional Fourier Domain
Opt. Lett. 2000, 25, 887–889. [CrossRef]

16. Situ, G.H.; Zhang, J. Double random-phase encoding in the Fresnel domain. Opt. Lett. 2014, 29, 1584–1586. [CrossRef]
17. Liu, Z.J.; Xu, L.; Lin, C. Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Opt.

Lasers Eng. 2011, 49, 542–546. [CrossRef]
18. Kumar, R.; Bhaduri, B. Optical image encryption in Fresnel domain using spiral phase transform. J. Opt. 2017, 19, 095771.

[CrossRef]
19. Sui, L.S.; Xu, M.J.; Tian, A.L. Optical noise-free image encryption based on quick response code and high dimension chaotic

system in gyrator transform domain. Opt. Lasers Eng. 2017, 91, 106–114. [CrossRef]
20. Zhao, D.M.; Li, X.; Chen, L.F. Optical image encryption with redefined fractional Hartley transform. Opt. Commun. 2008, 281,

5326–5329. [CrossRef]
21. Hong, S.H.; Jang, J.S.; Javidi, B. Three-dimensional volumetric object reconstruction using computational integral imaging. Opt.

Express 2004, 12, 483–491. [CrossRef] [PubMed]
22. Shin, D.H.; Yoo, H. Image quality enhancement in 3D computational integral imaging by use of interpolation methods. Opt.

Express 2007, 15, 12039–12049. [CrossRef]
23. Chen, Y.; Wang, X.; Zhang, J.; Yu, S.; Zhang, Q.; Guo, B. Resolution improvement of integral imaging based on time multiplexing

sub-pixel coding method on common display panel. Opt. Express 2014, 22, 17897–17907. [CrossRef]
24. Wang, Y.J.; Shen, X.; Lin, Y.H.; Javidi, B. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an

electrically tunable focal-length liquid-crystal lens. Opt. Lett. 2015, 40, 3564–3567. [CrossRef]
25. Stern, A.; Javidi, B. Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral

imaging. Appl. Opt. 2003, 42, 7036–7042. [CrossRef]
26. Adleman, L.M. Molecular computation of solutions to combinatorial problems. Science 1994, 266, 1021–1024. [CrossRef]
27. Xiao, X.; Javidi, B. Martinez-Corral, M.; Stern, A. Advances in three-dimensional integral imaging: Sensing, display, and

applications. Appl. Opt. 2013, 52, 546–560. [CrossRef]
28. Li, X.; Zhao, M.; Xing, Y.; Zhang, H.L.; Li, L.; Kim, S.T.; Wang, Q.H. Designing optical 3D images encryption and reconstruction

using monospectral synthetic aperture integral imaging. Optics Express 2018, 26, 11084–11099. [CrossRef]
29. Li, X.; Zhao, M.; Xing, Y.; Li, L.; Kim, S.T.; Zhou, X.; Wang, Q.H. Optical encryption via monospectral integral imaging. Opt.

Express 2017, 25, 31516–31527. [CrossRef]
30. Markman, A.; Wang, J.; Javidi, B. Three-dimensional integral imaging displays using a quick-response encoded elemental image

array. Optica 2014, 1, 332–335. [CrossRef]
31. Park, G.; Jung, J.H.; Hong, K.; Kim, Y.; Kim, Y.H.; Min, S.W.; Lee, B. Multi-viewer tracking integral imaging system and its

viewing zone analysis. Opt. Express 2009, 17, 17895–17908. [CrossRef] [PubMed]
32. Xing, S.; Sang, X.; Yu, X.; Duo, C.; Pang, B.; Gao, X.; Wang, K. High-efficient computer-generated integral imaging based on the

backward ray-tracing technique and optical reconstruction. Opt. Express 2017, 25, 330–338. [CrossRef] [PubMed]

http://dx.doi.org/10.1364/OL.38.001425
http://www.ncbi.nlm.nih.gov/pubmed/23632506
http://dx.doi.org/10.1016/j.optlaseng.2017.08.018
http://dx.doi.org/10.1016/j.sigpro.2021.108019
http://dx.doi.org/10.1016/j.optlaseng.2019.03.006
http://dx.doi.org/10.1364/OL.44.002032
http://dx.doi.org/10.1364/OE.21.024680
http://dx.doi.org/10.1364/AO.49.005632
http://dx.doi.org/10.1364/OE.19.002634
http://dx.doi.org/10.1364/OL.20.000767
http://dx.doi.org/10.1364/OL.31.001044
http://dx.doi.org/10.1364/OL.25.000887
http://dx.doi.org/10.1364/OL.29.001584
http://dx.doi.org/10.1016/j.optlaseng.2010.12.005
http://dx.doi.org/10.1088/2040-8986/aa7cb1
http://dx.doi.org/10.1016/j.optlaseng.2016.11.017
http://dx.doi.org/10.1016/j.optcom.2008.07.049
http://dx.doi.org/10.1364/OPEX.12.000483
http://www.ncbi.nlm.nih.gov/pubmed/19474848
http://dx.doi.org/10.1364/OE.15.012039
http://dx.doi.org/10.1364/OE.22.017897
http://dx.doi.org/10.1364/OL.40.003564
http://dx.doi.org/10.1364/AO.42.007036
http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1364/AO.52.000546
http://dx.doi.org/10.1364/OE.26.011084
http://dx.doi.org/10.1364/OE.25.031516
http://dx.doi.org/10.1364/OPTICA.1.000332
http://dx.doi.org/10.1364/OE.17.017895
http://www.ncbi.nlm.nih.gov/pubmed/19907578
http://dx.doi.org/10.1364/OE.25.000330
http://www.ncbi.nlm.nih.gov/pubmed/28085827


Entropy 2022, 24, 996 15 of 15

33. Wang, Y.; Ren, Z.; Zhang, L.; Li, D.,; Li, X. 3D image hiding using deep demosaicking and computational integral imaging. Opt.
Lasers Eng. 2022, 148, 106772. [CrossRef]

34. Watson, J. D.; Crick, F.H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738.
[CrossRef]

35. Sun, S. A novel hyperchaotic image encryption scheme based on DNA encoding, pixel-level scrambling and bit-level scrambling.
IEEE Photonics J. 2018, 10, 1–14. [CrossRef]

36. Liu, H.; Wang, X. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 2012, 12, 1457–1466.
[CrossRef]

37. Guesmi, R.; Farah, M.A.B.; Kachouri, A.; Samet, M. A novel chaos-based image encryption using DNA sequence operation and
Secure Hash Algorithm SHA-2. Nonlinear Dyn. 2016, 83, 1123–1136. [CrossRef]

38. Fu, X.Q.; Liu, B.C.; Xie, Y.Y.; Li, W.; Liu, Y. Image encryption-then-transmission using DNA encryption algorithm and the double
chaos. IEEE Photonics J. 2018, 10, 1–15. [CrossRef]

39. Wang, Y.; Li, X. W.; Wang, Q.H. Integral imaging based optical image encryption using CA-DNA algorithm. IEEE Photonics J.
2021, 13, 1–12. [CrossRef]

40. Zhang, Y.Q.; Wang, X.Y.; Liu, J.; Chi, Z.L. An image encryption scheme based on the MLNCML system using DNA sequences.
Adv. Opt. Photonics 2016, 82, 95–103. [CrossRef]

41. Zhang, Y.; Wang, P.; Huang, H.; Zhu, Y.; Xiao, D.; Xiang, Y. Privacy-assured FogCS: Chaotic compressive sensing for secure
industrial big image data processing in fog computing. IEEE Trans. Ind. Inform. 2020, 17, 3401–3411. [CrossRef]

42. Head, T.; Rozenberg, G.; Bladergroen, R.S.; Breek, C.K.D.; Lommerse, P.H.M.; Spaink, H.P. Computing with DNA by operating on
plasmids. BioSystems 2000, 57, 87–93. [CrossRef]

43. Zheng, X.; Xu, J.; Li, W. Parallel DNA arithmetic operation based on n-moduli set. Appl. Math. Comput. 2015, 297, 80–94.
[CrossRef]

44. Hayat, U.; Azam, N.A. A novel image encryption scheme based on an elliptic curve. Signal Process. 2019, 155, 391–402. [CrossRef]
45. Azam, N.A.; Ullah, I.; Hayat, U. A fast and secure public-key image encryption scheme based on Mordell elliptic curves. Opt.

Lasers Eng. 2021, 137, 106371. [CrossRef]
46. Jia, N.; Liu, S.; Ding, Q.; Wu, S.; Pan, X. A New Method of Encryption Algorithm Based on Chaos and ECC. J. Inf. Hiding Multim.

Signal Process. 2016, 7, 637–644.
47. Zhang, F.; Zhang, Z.; Guan, P. ECC2: Error correcting code and elliptic curve based cryptosystem. Inf. Sci. 2020, 526, 301–320.

[CrossRef]
48. Hua, Z.Y.; Zhou, Y.C.; Pun, C.M.; Chen, C.L.P. 2D Sine Logistic modulation map for image encryption. Inf. Sci. 2014, 6, 120–155.

[CrossRef]
49. Singh, N.; Sinha, A. Optical image encryption using Hartley transform and logistic map. Opt. Commun. 2009, 282, 1104–1109.

[CrossRef]
50. Niyat, A.Y.; Moattar, M.H.; Torshiz, M.N. Color image encryption based on hybrid hyper-chaotic system and cellular automata.

Opt. Lasers Eng. 2017, 90, 225–237. [CrossRef]
51. Tsai, D.Y.; Lee, Y.; Matsuyama, E. Information entropy measure for evaluation of image quality. J Digit Imaging 2008, 21, 338–347.

[CrossRef] [PubMed]
52. Chai, X.; Gan, Z.; Yuan, K.; Chen, Y.; Liu, X. A novel image encryption scheme based on DNA sequence operations and chaotic

systems. Neural. Comput. Appl. 2019, 31, 219–237. [CrossRef]

http://dx.doi.org/10.1016/j.optlaseng.2021.106772
http://dx.doi.org/10.1038/171737a0
http://dx.doi.org/10.1109/JPHOT.2018.2817550
http://dx.doi.org/10.1016/j.asoc.2012.01.016
http://dx.doi.org/10.1007/s11071-015-2392-7
http://dx.doi.org/10.1109/JPHOT.2018.2827165
http://dx.doi.org/10.1109/JPHOT.2021.3068161
http://dx.doi.org/10.1016/j.optlaseng.2016.02.002
http://dx.doi.org/10.1109/TII.2020.3008914
http://dx.doi.org/10.1016/S0303-2647(00)00091-5
http://dx.doi.org/10.1016/j.amc.2009.02.011
http://dx.doi.org/10.1016/j.sigpro.2018.10.011
http://dx.doi.org/10.1016/j.optlaseng.2020.106371
http://dx.doi.org/10.1016/j.ins.2020.03.069
http://dx.doi.org/10.1016/j.ins.2014.11.018
http://dx.doi.org/10.1016/j.optcom.2008.12.001
http://dx.doi.org/10.1016/j.optlaseng.2016.10.019
http://dx.doi.org/10.1007/s10278-007-9044-5
http://www.ncbi.nlm.nih.gov/pubmed/17577596
http://dx.doi.org/10.1007/s00521-017-2993-9

	Introduction
	Previous Theoretical Analysis
	Pickup Original Scene by CII
	DNA Sequence Operations
	Chaos Theory
	CIIR Algorithm
	Entropy Analysis Theory

	Multi-Image Encryption Scheme Based on CII
	Framework of Multi-Image Encryption Scheme 
	Encryption and Decryption Procedure 

	Experiment Results and Performance Analysis 
	Key Security Analysis 
	Statistical Analysis 
	Robustness Analysis 
	Time Analysis 

	Conclusions
	References

