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Abstract: Ecohydrological models vary in their sensitivity to forcing data and use available infor-
mation to different extents. We focus on the impact of forcing precision on ecohydrological model
behavior particularly by quantizing, or binning, time-series forcing variables. We use rate-distortion
theory to quantize time-series forcing variables to different precisions. We evaluate the effect of
different combinations of quantized shortwave radiation, air temperature, vapor pressure deficit, and
wind speed on simulated heat and carbon fluxes for a multi-layer canopy model, which is forced
and validated with eddy covariance flux tower observation data. We find that the model is more
sensitive to radiation than meteorological forcing input, but model responses also vary with seasonal
conditions and different combinations of quantized inputs. While any level of quantization impacts
carbon flux similarly, specific levels of quantization influence heat fluxes to different degrees. This
study introduces a method to optimally simplify forcing time series, often without significantly
decreasing model performance, and could be applied within a sensitivity analysis framework to
better understand how models use available information.

Keywords: sensitivity analysis; quantization; information theory; rate-distortion theory; ecohydro-
logical modeling

1. Introduction

Ecohydrological models predict plant carbon uptake and surface energy partition-
ing that result from the biochemical and ecophysiological functioning of leaves and the
structural components of the canopy. However, multiple model parameters, input forcings,
boundary and initial conditions lead to high complexity and challenges to separate and un-
derstand different aspects of the ecosystem [1]. These features are typically uncertain, and it
is therefore important to take these uncertainties into account. As such, techniques to eval-
uate the impacts of these uncertainties and the role of validation in process-based models
has been extensively recognized [2–8], and a variety of approaches and tools for Sensitivity
Analysis (SA) have been developed. SA is a procedure used to explore uncertainty and
better understand how a complex model responds to varying inputs and parameters [9]. SA
methods consider different individual or multiple working hypotheses which involve input
data sets, parameters sets, model structures, and process equations [10,11]. Specifically, SA
uses the entire allowable ranges of model inputs and evaluates how model uncertainty can
be apportioned to the uncertainties in model inputs [12]. Sensitivity tests are useful experi-
mental tools for hypothesis testing and model evaluation and are employed to improve
and calibrate model predictions [13,14].

Many ecohydrologic modeling studies have focused on model sensitivity to the mod-
eling hypotheses (e.g., parameter specification [15–17] and model structures [11,18]). Here,
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we consider a model that is constant in terms of structure, processes, and parameters such
that the information provided by these modeling hypotheses is conditional on the nature of
the input forcing data and their associated uncertainties [19–21]. It has been hypothesized
that the mean interannual total sensitivity indices of forcing error (or input data error) is
greater than that of the model structure (or process representation) and parameter choice in
a multiphysics snowpack model [22]. In other words, errors in forcing and validation data
are the greatest factors affecting the model performance [23]. For example, Essery et al. [24]
presented a comparison of the forcing error uncertainty to model structure uncertainty
originating from 1701 model structures.They found that even forcing scenarios with mod-
erate precipitation errors have a larger influence on snowpack simulation outputs than
different model structures at one site. Raleigh et al. [25] examined various scenarios of
forcing data errors and their associated uncertainty in snow models. They identified the
relative significance of individual forcing variables on snow model output variance using
a SA framework and found a large impact of forcing biases on snowpack simulations
over different output metrics. While these studies quantify the importance of high quality
forcing variables, they do not address aspects of temporal variability or precision. Here, we
focus on the response of a model’s predictions to changing forcing data precision to better
understand how the model uses information from forcing data, particularly variability
within forcing data. This aspect of forcing data precision in a complex ecohydrological
model is typically dictated by the precision of measurement devices, which may vary
significantly between data types and instruments.

The forcing variables needed to run models are prone to errors, especially when they
are spatially interpolated from nearby climate sites or are provided by satellite-derived
data. In general, the forcing data conditions and shapes the dynamical response of a system.
No matter how well a model is formulated, if the forcing data, as obtained from in situ or
remotely sensed observations, does not reflect existing causal mechanisms from inputs to
observed outputs, the model cannot account for these mechanisms. We hypothesize that
we can optimally minimize the complexity of a forcing dataset, without greatly changing
model predictive performance or behavior. This hypothesis relates to Occam’s razor, which
is a science philosophy that states that the preferred model is the simplest that produces a
given level of predictive performance [26]. Meanwhile, we also expect that a model will
be more sensitive to the precision of some forcing variables relative to others, and models
may have nonlinear responses to changing the precision of multiple forcing variables. We
first demonstrate an analytical method to optimally approximate representations of model
input variables at lower precision and minimize the complexity of a forcing dataset while
retaining its most relevant features. We retain the complexity of the model itself, and focus
purely on the effect of forcing data complexity. Decreasing precision or size of forcing data
results in less memory storage needed and minimizes impacts of instrument noise in the
forcing dataset, which are desirable features. Additionally, manipulating the precision
of forcing data can help identify model sensitivities and potential structural errors to the
extent that a model does not take advantage of the full precision of the available input
datasets. For example, if a decrease in the precision of a forcing variable weakens the
apparent source–target relationship in observed data but does not lead to a similar change
in model behavior, this would indicate the model is not utilizing the level of detail available
in the original forcing data. We address the following relevant questions: How does a model
respond to the precision and variability of forcing data? Specifically, how does decreasing precision
of individual or multiple forcing variables affect model sensitivity? From an ecohydrologic
modeling perspective, specific questions could include: How does a model respond to changes
in combinations of meteorological forcing inputs relative to inputs that are manipulated one at a
time? For a model with multiple land–atmosphere flux outputs, to what extent are some fluxes
responding to forcing precision or utilizing available information differently from others? To answer
these questions, we use rate-distortion theory, a branch of information theory.

Information Theory (IT) [27] provides the theoretical and fundamental limits of
data compression, representation, and transmission. IT methods have been used in
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Earth science studies to construct ecohydrologic process networks that reveal ecosys-
tem behaviors [11,28–34] and analyze models and related hypotheses [13,35–37]. Input
variables are not usually represented as continuous since measurement instruments typi-
cally record data discretely to some degree of precision. Therefore, discrete representation
of continuously varying quantities highlights that no data is infinitely precise [38]. This
makes it useful to define the “goodness” of a representation of data. We use rate-distortion
theory, a branch of IT, to optimally approximate representations of model input variables
at different precisions. Specifically, we quantize input variables to different precisions in a
way that minimizes the distortion at a given precision. This is accomplished by defining
a distortion measure, which is a measure of distance between a random variable and its
representation [39]. We use this method to analyze the sensitivity of an ecohydrological
model to precision in different forcing variables. This paper is organized as follows. In
Section 2, we provide an overview of the model background and characteristics of the
forcing data. Then, we provide background on quantization and introduce our approach to
quantize forcing data and evaluate model results. In Section 3, we discuss results, and in
Section 4, we present discussion and conclusions.

2. Materials and Methods
2.1. Multi-Layer Canopy Model and Forcing Data

We study model sensitivity to input forcing variability using MLCan [40,41] as an
example of a complex ecohydrological model that uses many high-resolution meteorologi-
cal inputs as forcing data. MLCan is a multi-layer canopy–soil–root model that vertically
resolves the canopy radiation, meteorological micro-environment, biochemical process,
and leaf level ecophysiological states at multiple canopy levels to simulate net canopy–
atmosphere fluxes of carbon dioxide (Fc), latent heat flux (LE), and sensible heat flux (SH).
There is a flexibility in the choice of photosynthetic pathway of agricultural crops, soybean
(C3) or maize (C4).

Previous sensitivity studies of MLCan have focused on the resolution of canopy and
soil layers, initial conditions, and parameter uncertainty. Drewry et al. [40] examined
the effects of vertical canopy resolution, or the number of layers used to subdivide the
canopy for maize and soybean crop types, on model estimates of canopy radiation regime,
leaf states, and canopy–atmosphere fluxes. They also analyzed the impact of meteoro-
logical conditions in controlling the flux variation and examined the role of important
environmental drivers (Rg, Ta, VPD, and U) and modeled skills for capturing variability
in canopy-scale exchange of CO2 and latent and sensible heat for maize and soybean.
Recently, Ruddell et al. [11] examined one-at-a-time parameter sensitivity with a focus on
the stomatal slope parameter in the Ball–Berry model [42] which relates the scaling of
the stomatal function to photosynthesis and ambient conditions at the leaf surface to the
model’s three key outputs of carbon and energy fluxes (Fc, LE, and SH).

We ran the model over a 100-day period (DOY 150-250) of the 2018 growing sea-
son using meteorological forcing data from a 25 m flux tower located at Goose Creek,
Central Illinois (https://imlczo.ncsa.illinois.edu (accessed on: 8 June 2022)).This site is
part of the Critical Zone Interface Network (CINet) project, formerly the Intensively Man-
aged Landscape Critical Zone Observatory (IMLCZO). These forcing data include 15 min
shortwave (Rg), canopy-top air temperature (Ta), vapor pressure deficit (VPD), ambient
CO2 concentration (Ca), wind speed (U), air pressure (Pa), and precipitation (PPT). In
addition to filling the flux tower data gaps using REddyProc eddy covariance data process-
ing (https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage
(accessed on: 8 June 2022)), extreme outliers were removed.

The 25 m flux tower observes a mosaic of maize and soybean fields within its shifting
flux footprint. This flux footprint is the contributing area to a given flux measurement and
varies with wind direction, wind speed, surface roughness, and atmospheric conditions [43].
We ran MLCan for both maize and soybean vegetation types and applied a flux footprint
model to represent their flux contributions at each time step. Particularly, the relative
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contribution of each crop type to these measured fluxes within the flux tower footprint
was considered based on a 1D flux footprint model [44] and a USDA land-use map that
distinguishes between maize and soybean fields for a growing season (https://nassgeodata.
gmu.edu/CropScape/ (accessed on: 8 June 2022)).The flux footprint model provides
estimated fractions of momentum flux from each crop, and we estimated the modeled
flux (X, where X is Fc, LE, or SH) as follows: X = fmXm,MLCan + fsXs,MLCan. Here, fm and
fs = 1− fm are contributing fractions of maize and soybean fields, respectively, according
to the flux footprint model, and Xm,MLCan and Xs,MLCan are the MLCan simulated fluxes
for each crop type. In this way, the modeled flux at a given time step is a weighted
average of the modeled flux based on two crop types. While this has implications for the
overall fluxes measured at the tower [45], we find that in terms of variability, since both
maize and soybean simulations are based on the same input data, this averaging has a
minor impact on the links between forcing precision and model outputs. In other words,
changing forcing precision has a similar effect on model output regardless of vegetation
photosynthesis pathway.

Here, we study the impact of the precision of several forcing variables on model
outputs at an agricultural site as follows:

• Air temperature (Ta) affects stomatal conductance of plant and evaporation from
both soil and canopy. The Campbell 083E instrument located at the flux tower has a
precision for measuring Ta of ±0.1 ◦C.

• Wind speed (U) affects canopy evaporation and associated heat flux partitioning. The
precision of the CSAT3 measurement instrument at the tower for U is ±0.1 m/s.

• Vapor pressure deficit (VPD) is the difference between saturation water vapor pressure
(es) and actual water vapor pressure (ea). It is the measure of atmospheric desiccation
strength [46] and indicates the atmospheric demand for water vapor. The ea is determined
by a large number of drivers and is also related to Ta in that it is upper bounded by es.

• Shortwave radiation (Rg) is a principle driver of CO2, vapor, and heat exchange
available in the system which controls photosynthesis and leaf energy balance.

We separate the analysis of the energy balance forcing variable Rg from the meteoro-
logical forcing variables, Ta, U, and VPD, into two case studies. First, Rg is quantized as
an example where decreasing precision alters the energy balance, and we expect resulting
changes in heat fluxes to reflect that in a uniform way. Meanwhile, other meteorological
variables that do not affect the energy balance are used within the model in multiple pro-
cesses, and the effect of changing precision may be more nuanced. We retain all other input
forcing data, including air pressure, carbon concentrations, and vegetation indices, as their
full distributions of values, with reasoning as follows:

• Precipitation (PPT) is often zero at the 15-min resolution considered here, such that
changing the precision of PPT would not have any effect for most time steps.

• Carbon dioxide concentration (Ca) is a model parameter and is constant.
• Air pressure (Pa) varies within a very small range, and the model is relatively un-

responsive to fluctuations in Pa. In other words, quantizing Pa would not lead to
measurable differences in model behavior relative to other inputs.

• Canopy structure is described by leaf area density (LAD) profiles and the total leaf
area index (LAI). In the model, the LAI is independent of all other forcing conditions
and is based on surveys of maize or soybean plants throughout each year. It typically
increases monotonically through the growing season and does not vary on a sub-daily
to daily timescale.

2.2. Information Theory to Manipulate Forcing Precision

Shannon entropy is a measure of the uncertainty of a random time-series variable,
which is computed based on its probability distribution function. It is the expected number
of yes–no questions (the amount of information) in units of “bits” needed to correctly
determine an occurrence of the event. If a continuous variable X is represented as a discrete

https://nassgeodata.gmu.edu/CropScape/
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variable Xd by binning the continuous values into Nd bins centered at the discrete values
{x1, . . . , xNd}, Equation (1) defines the discrete entropy with bin-width D [27]:

H(Xd) = −
Nd

∑
n=1

P(xn) log P(xn), (1)

where n is the bin number, Nd is the number of bins, and P(xn) is the proportion of data
falling into the nth populated bin which is the probability that Xd = xn. Since entropy is
a function of the distribution of X, it does not depend on the actual values taken by the
random variable X but only on the probabilities. Therefore, we can use entropy as a way to
compare the distributions based on different ways to discretize the data and the maximum
possible entropy which corresponds to a uniform probability distribution where every bin
is populated with an equal number of data. According to Equation (1), P(xn) = 1/Nd for
all n where Nd is the total number of bins and this gives: Hmax = log2(Nd).

Discretization occurs when we measure values for continuous variables with some
level of precision, rounding up or down to the nearest finite precision value available to
the measuring instrument. Since exact representation of a random variable requires infinite
precision, we cannot reproduce it exactly using finite information bits. Rate-distortion theory
quantifies the trade-off between the reconstruction quality and the number of bits used for
data representation [39]. In the context of the current work, our flux tower forcing dataset is
already quantized to the extent that the instruments collect data at a certain high precision.

2.2.1. Quantization

Quantization is a data processing technique that takes a large range of values and represents
them by a (much) smaller set of values [47]. Data binning is a form of quantization in which
the variables that fall into a bin are replaced by a value representative of that bin (X̂), often
the central value. In this proposed method, we also need a probability distribution which
is a function that characterizes how a random variable is selected from among the possible
values it may obtain. In this regard, the oldest and most widely used approach of estimating a
distribution is bin counting (or histogram). Suppose that x0 is a given value, and δ is the width of
the bin containing data values. The ith bin of the histogram is defined as [x0 + iδ, x0 + (i + 1)δ],
and a count of points in this range represents the probability that a data value falls within the
ith bin. The estimated distribution f̂ (x) [39] is given by Equation (2):

f̂ (x) =
cxi

nδ
for x ∈ [x0 + ih, x0 + (i + 1)h], i = 1, . . . , Nb (2)

where cxi is the count of the data values that fall into the ith bin, and n is the total number
of data values. The bin width parameter (δ) has a significant effect on the robustness and
accuracy of the estimated distribution. In this study, we estimated the width of our initial
histogram bins using the “normal reference rule” [48] where the optimal width varies with
each input variable based on its variance assuming that the data conform to a normal
distribution (Table 1).

Table 1. Specification of quantized forcing variable. The optimal bin width (D) is derived from
3.5σ

n
1
3

[48], where σ is the standard deviation of the data, and n is the total number of data values.

Input Variable Unit Stdev Opt Bin Width

Ta ◦C 3.7878 0.5
U m s−1 1.7032 0.3

VPD kPa 0.6029 0.1
Rg W/m2 349.02 50

After finding the distribution of input variables, we used the Lloyd [49] algorithm to
quantize input variables to N levels, where N is set to {2, 3, 4, 5} (Figure 1). We quantize



Entropy 2022, 24, 994 6 of 22

the input variable to the lowest precision of N = 2 and increase it to 5 to show the model
responds to different low precisions and variability of forcing data. We assumed that the
full precision of the input datasets is the original forcing dataset. This algorithm begins with
a random initial “guess” of where thresholds should lie (Figure 1b), and the representation
points are defined as the expected value of a point within that threshold (Figure 1c). Then
we find the optimal thresholds points within these thresholds and repeat the iteration for
this new set of threshold points. The expected distortion is decreased at each stage in
the algorithm so the algorithm will converge to a local minimum of the distortion. The
goal of the algorithm is to minimize the distortion, which is a measure of the cost of
representing the variable X by its quantized representation point. We note that there are
various distortion metrics used for different applications, but minimum mean square error
(MMSE) is commonly used for natural data. Moreover, the benefits of rate-distortion theory
go beyond discretizing continuous data to minimize a given distortion metric. In fact, it
has been shown that once the quantization bins are determined, it might benefit the overall
system to induce controlled distortion. For example, adding controlled distortion would
enable the creation of many more data representatives, which is of value in data storage and
communications [50–53]. Therefore, an N-level quantizer Q can be characterized in terms
of a set of N real-valued quantization points. This process is summarized in Figure 1 and
in the following paragraphs along with an example of its application to air temperature, Ta,
in the next subsection.

Figure 1. Flowchart of Lloyd algorithm used for quantization of model forcing variables.

2.2.2. Illustrative Example of Quantization: Air Temperature

We start by finding the probability mass function of the Ta dataset (Figure 1a). Then,
N − 1 random initial threshold guesses for N levels of quantization are set (Figure 1b),
denoted as (T1, . . . , TN−1). These may be any values between the minimum value (T0 =
Xmin) and the maximum value of data (TN = Xmax). Next, based on estimated PMF, the
expected value of the data between each pair of successive thresholds is calculated [39] as
follows (Figure 1c):
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X̂j =

Tj

∑
i=Tj−1

XiPr(Xi|Tj−1 < Xi < Tj), for j = 1, . . . , N (3)

From this, we obtain corresponding representation points (X̂1, X̂2, . . . , X̂N) for each input
variable. For example, for our Ta dataset for N = 2, the randomly selected initial threshold
guess is T1 = 19.15 ◦C, which leads to two representation points of X̂1 = 17.3 ◦C and
X̂2 = 24.2 ◦C.

Based on the representation points that correspond to our initial threshold guesses, we
next update the threshold values as the midpoints between two successive representation
points, with a goal to decrease the distortion, as follows (Figure 1d):

T̂j−1 =
X̂j−1 + X̂j

2
(4)

For example, for Ta, the new threshold is computed as 20.77 ◦C. In the Lloyd algorithm, the
quality of quantization can be measured by the distortion of the resulting representation in
comparison to the original values. The distortion function d(X, X̂) is a measure of the cost
of representing the X by X̂. We use the expected squared-error distortion [39], which is a
commonly used distortion function (Figure 1e):

d(X, X̂) = E(X− X̂)2 (5)

In the Ta dataset, this distortion measure is 1.62 ◦C based on our initial threshold guesses.
The Lloyd algorithm iterates through this process, and distortion decreases at each iteration
until the thresholds converge within a small tolerance, and the final decision threshold and
corresponding representation points are determined (Figure 1f). Decision thresholds are used
to define the intervals for the quantizer, αj = (Tj−1, Tj], for j = 1, 2, . . . , N. For a given data
value as X ∈ αj, that value is quantized into the point X̂j. For the Ta example, for N = 2,
α1 = [T0, T1] = [11.8, 23.6] ◦C and α2 = [T1, T2] = [23.6, 33] ◦C after 7 iterations (Figure 2a).
In other words, the final threshold is T1 = 23.6 ◦C. Therefore, for a given data value as X ∈ α1,
that value is quantized into the representation point T̂a1 = 20.5 ◦C and as X ∈ α2, that
value is quantized into the representation point T̂a2 = 26.7 ◦C. Based on this approach, we
simplified individual forcing time-series data to N = 2 levels of quantization (Figure 3b).

Figure 2. (a–d) Illustration of rate-distortion theory applied to air temperature (Ta) to quantize the
data to different precisions. Red lines indicate the representation points and dashed lines indicate
final decision thresholds for NT = 2, . . . , 5 levels of quantization for Ta in the growing season (DOY
150-250). The blue bars indicate the underlying probability mass function of Ta. Representation points
alternately calculated with the fixed binning method are shown with red dots.
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Therefore, we can find the representation points and final decision thresholds for
NT = 2, . . . , 5 levels of quantization for Ta in the growing season (DOY 150-250) in order to
simplify temperature forcing data to different precisions (Figure 3) such that there are only
{2, 3, 4, 5} representation points. As N increases, the forcing data approaches the initial
input data.

Figure 3. The original Ta forcing data and quantized forcing data for the growing season based
on the Lloyd algorithm: (a) original Ta time-series data, where red lines indicate start and end of
the peak growing season (DOY 150-250); (b) simplified Ta time- series data with NT = 2 levels of
quantization, (c), NT = 3 levels of quantization, (d) NT = 4 levels of quantization, and (e) NT = 5
levels of quantization.

For a comparison, the difference between representation points for different precisions
for Ta is calculated with the fixed binning method and the Lloyd algorithm (Figure 2). In
fixed binning, the input variable range, the difference between maximum and minimum
values, is equally divided to N bins. The center value of each bin is the corresponding
representation point. This example illustrates how the Lloyd algorithm is applied to any
variables and how quantized representation points can vary significantly between it and
fixed binning method.

2.2.3. Quantized Model Cases

We define seven model cases based on individual or joint quantization of the meteo-
rological forcing variables, Ta, U, and VPD, and a single model case in which the energy
balance forcing variable Rg is quantized as an example where quantization alters the energy
balance. Since Rg is nearly zero in the forcing data at nighttime, Rg is only quantized for
daytime points. Each case has a different simplified forcing dataset corresponding to a level
of quantization. Based on how many forcing variables are quantized ( f ∈ [1, 2, 3]), each case
consists of 4 f different simplified forcing datasets. For example, Case 4 [T̂a, Û, VPD] has 16
different simplified forcing data sets, since T̂a and Û values are quantized to 2, . . . , 5 levels
and VPD is not quantized. Meanwhile, in Case 7 [T̂a, Û, V̂PD], all three input variables are
quantized to different levels such that there are 64 total forcing scenarios within this subset
(Figure 4).

We use the simplified input forcing data for each forcing scenario within each case to
estimate net canopy–atmosphere fluxes of carbon dioxide (Fc), latent heat flux (LE), and
sensible heat flux (SH) using MLCan. This results in 124 model runs and quantized model
results for {Ta, U, VPD} and 4 model runs and quantized model results for Rg. We refer
to the model results based on the original forcing data as the “full” model and the model
results running with any combination of quantized forcing data as a “quantized” model.
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Figure 4. Model cases of simplified forcing data formed on different individual or joint quantization
of the input variables (indicated by ˆ symbol) and levels of quantization (N ∈ [2, 3, 4, 5]). T̂a =

quantized air temperature to NT levels, Û = quantized wind speed to NU levels, V̂PD = quantized
vapor pressure deficit to NVPD levels and R̂g = quantized shortwave radiation to NRg levels.

2.3. Sensitivity Analysis

We examine the impact of different precisions of forcing data on the model response
by comparing the behavior of the quantized model results with both the full model results
of Fc, LE, and SH. This comparison indicates the extent to which changing the precision
of input variables alters the model behaviors. We identify the “sensitivity” of the model
(SMt) to input variability by comparing the model response to changing input precisions
individually and jointly. In this regard, we defined Equation (6) to calculate the diurnal root
mean square errors (RMSE) between quantized and full model cases. Since this definition
is the difference between the full and quantized model with an RMSE metric, it does not
indicate an “error” but a “sensitivity”. Equation (6) defines SMt for a given time of day and
variable over the 100-day study window:

SMt =

√
ΣD

d=1(Fmodeld,t −Qmodeld,t)
2

D
, (6)

where D = 100 is the number of the model simulation days, Fmodeld,t is the full model
result at a given 15-min time step (t = 1, . . . , 96) for each model simulation day (d =
1, . . . , D), and Qmodeld,t is the quantized model result at a given time step (t) for each model
simulation day.

We also address how quantization decreases the complexity of forcing data in addition
to altering model outputs to a certain extent. We defined Equation (7) to calculate the
model complexity (Cm) as the entropy of the forcing data for a quantized model (HQ) with
quantization levels NT , NU , and NVPD for the input variables relative to that of the full
model, or non-quantized forcing data, as follows:

Cm =
H(T̂aNT , ÛNU , V̂PDNVPD )

H(Ta, U, VPD)
(7)

Here, we obtain a 3D bin distribution by dividing forcing variables Ta, U, and VPD into NT ,
NU , and NVPD bins each to measure complexity of the model at different forcing precisions.
The number of bits needed for representing forcing data is calculated by entropy, which
increases with more levels of quantization (e.g., Figure 5). If the forcing data have limited
values and are skewed into a few bins (lower precision), the entropy of the dataset is
low. Therefore, quantization decreases the complexity of data relative to the original
distribution. Accordingly, Cm is lower bounded by zero, corresponding to a distribution of
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data with “no” precision. Cm is upper bounded by 1, corresponding to the full model case
(H(Ta, U, VPD) f ull) which is forced by the full distribution of data. The quantized model

cases span the range of model complexities. For example, model case 7 (T̂a, Û, V̂PD) for 2
levels of quantization for each variable leads to the lowest Cm out of all cases.

3. Results
3.1. Effects of Quantizing Individual Forcing Variables
3.1.1. Entropy

To explore the difference between two mentioned quantization methods, the fixed
binning method and the Lloyd algorithm, we calculate the entropies of the four forcing
variables at different levels of quantization. The entropy indicates how much information
the forcing data contain. The difference between entropies for different precisions and
quantization methods depends on forcing variable distribution. We find that the Lloyd al-
gorithm always results in a higher entropy relative to fixed binning for a given quantization
level N and a given variable type (Figure 5). In other words, the Lloyd algorithm results in
a distribution that retains more information at a given quantization level. For reference, we
compare these entropies at each quantization level to the maximum possible entropy (Hmax,
black lines in Figure 5). For forcing variables with a relatively normal distribution, such as
Ta, we find that the entropy using the Lloyd algorithm is close to Hmax, indicating that the
threshold points are similar to quantiles of the data [54] in that there is a similar number of
data points within each pair of threshold values. Meanwhile, the fixed binning entropy for
Ta is also relatively high. For wind speed U, we see that the fixed binning entropies are very
low, particularly for N = 2, indicating a skewed or long-tailed distribution. Rate-distortion
theory leads to a much higher entropy value, indicating that significantly more information
is retained relative to fixed binning for a given N. Finally, VPD and Rg represent cases
in between U and Ta, and there is less difference between fixed binning and the Lloyd
algorithm representations of the data.

Figure 5. Differences between the entropy of the quantized forcing data of Ta (red dots), U (blue
dots), VPD (green dots), and Rg (magenta dots) into N bins using fixed binning (lower points) and
the Lloyd algorithm (higher points). A longer vertical line indicates that the Lloyd algorithm retains
significantly more information relative to fixed binning. Black dots indicates maximum possible
entropy (Hmax) for each level of quantization based on a uniform distribution.

3.1.2. Quantizing Rg Only: Changing Energy Balance Precision

Since the heat fluxes, LE and SH, are constrained by available system energy, we find
that changing radiation precision leads to corresponding changes in LE and SH (Figure 6a).
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Here, we only focus on the N = 2 level of quantization for individual forcing variable, Rg,
as the most extreme example of quantization. The difference between quantized Rg and
the original forcing Rg is larger when Rg is maximum in the central part of the day, which
corresponds to a larger distortion due to the quantization. The dashed line in Figure 6
shows that changes in Rg are typically larger in magnitude than the resulting LE+SH (green
squares). In other words, a distorted Rg due to quantization leads to a slightly smaller joint
distortion of LE and SH relative to the full model results. This distortion corresponds to
changes in simulated ground heat flux (G) and longwave radiation that we do not consider
here. In other words, a distorted Rg forcing input leads to a shift in all energy balance
components. Otherwise, we see that differences between quantized and full model heat
fluxes maintain a near-linear increase through the entire range of Rg variation, with some
differences between LE and SH. Particularly, we find greater partitioning of energy to SH at
the highest Rg distortion levels (Figure 6a). For example, if the N = 2 level of quantization
leads about Rg-RgQ = 100 W/m2 for a given time point, this effect is not equally split
between LE and SH. This difference in partitioning of energy is due in part to the effect of
saturating net leaf carbon dioxide uptake (An) on stomatal conductance (gs) (Figure 6a) [42],
which would impose an upper limit to LE and cause SH to increase to maintain the energy
balance. We previously noted that due to the small amount of observed Rg in the forcing
data during the night, Rg is not quantized at night.

Figure 6. Quantized diurnal flux variation: (a) LE (blue circles), SH (red stars), and LE+SH (green
squares); and (b) Fc (black diamonds) with quantized shortwave radiation Rg for N = 2 level of
quantization. X-axis indicates the difference between quantized shortwave radiation Rg and original
forcing variable Rg. Y-axis indicates the difference between quantized model results and the full
model results. The dashed line shows that the change in Rg is typically larger than LE+SH.
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The mean response of Fc to the quantized Rg for N = 2 levels of quantization
(Figure 6b) has different effects depending on whether quantization leads to an over-
or under-estimation of Rg. When Rg-RgQ is negative, we see larger changes in Fc, as Fc-FcQ.
This larger change means that when quantization leads to overestimating radiation input
during the day (RgQ > Rg), the resulting carbon flux is lower (positive Fc-FcQ). However,
since daytime carbon fluxes are generally negative, this indicates that FcQ is actually larger
in magnitude, and more photosynthesis is occurring. Similarly, when quantization leads to
underestimating Rg input (Rg > RgQ), we see that daytime Fc-FcQ is negative, indicating
that FcQ decreases in magnitude relative to the regular model but to a lesser extent. This
behavior relates to soil carbon respiration and vegetation photosynthesis in the model.
A change in radiation alters both soil respiration and photosynthesis, but this effect is
nonlinear and depends on whether radiation is increased or decreased.

3.1.3. Quantizing Ta Only: Temporally Varying Responses to Quantization

Next we focus on the effects of quantization of air temperature in Case 1 (T̂a, U, VPD)
of our seven cases that involve combinations of quantized air temperature, vapor pressure
deficit, and wind speed. Case 1 has four different model input scenarios in which Ta is
quantized for N = 2, . . . , 5 levels.

To illustrate how quantization effects model behaviors under different environmental
and wetness conditions, we analyzed quantized model results for five 20-day windows
during the 2018 growing season. Figure 7 shows the quantized model diurnal cycle
sensitivity (SMt, Equation (6)) within each time window for LE. First, we note that the
model response to levels of quantization is nonlinear. For example, during all time windows,
NT = 2 levels of quantization leads to the most changes in the model, and the difference
between NT = 2 and NT = 3 is usually greater than that between NT = 4 and NT = 5. This
shows that quantization to a very few levels makes a larger difference relative to changing
precision more slightly.

Figure 7. Quantized model sensitivity (SMt) for Case 1 (T̂a, U, VPD) of LE (W/m2) within five 20-day
time windows through the growing season: (a) for DOY 150-170; (b) for DOY 171-190; (c) for DOY
191-210; (d) for DOY 211-230; (e) for DOY 231-250; (f) the total PPT (mm) and the averaged Ta (◦C)
within given time window.

The first time window (DOY 150-170) is during the end of May until mid-June, which
is earlier in the growing season, and water availability is higher than other time windows
(more total precipitation, PPT). For this window (Figure 7a), the SMt for the quantized cases
are lower than for later times, which means the quantized and full models are more similar.
The largest SMt occurs in the last window (DOY 231-250) for NT = 2 levels of quantization.
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This time window, late in the growing season, is during mid-August until early-September
which is relatively dry and warm and more water-limited relative to other time windows.
During this time window, vegetation is very mature (highest LAI) which results in a large
potential to uptake and release water. This large water potential causes a larger temperature
dependency, such that the same quantization of Ta leads to a larger response in LE relative
to earlier in the growing season, as Ta influences atmospheric demand for water and the
ability to photosynthesize. In other words, when water is limited and there is high demand,
the precision of Ta can have a large effect on heat fluxes. The largest SMt occurs in the last
window for NT = 2 levels of quantization. This largest difference between the quantized
model and the full model occurs at midday (Figure 7e) when Ta is maximum. This is the
time when the quantized Ta time series essentially switches from its “low” value at night to
its “high” value during the day.

While the SMt follows the diurnal cycle in that it increases with flux magnitudes,
Figure 7 shows that nighttime values are also impacted by quantization, particularly for
NT = 2 levels of quantization. For example, the ratios of nighttime to daytime SMt value
of LE (about 1:2) are a lot larger than the ratio of nighttime to daytime actual value of
LE (about 1:10), meaning that nighttime values are actually affected disproportionately.
This variability based on times of day and over different time windows through the
growing season indicates that model sensitivity varies along with different thresholds and
system states.

3.2. Model Sensitivity to Combinations of Forcing Precisions

Next we explore the range of cases for which individual forcing variables and combi-
nations of forcing variables are quantized to different extents. Specifically, we explore how
quantizations of meteorological input combinations influence LE, SH, and Fc differently at
different times of day (Figure 8a–c). First, we note a transition early in the morning where
the quantized models switch from low to high sensitivity relative to the full model. SMt
is higher during the day for all fluxes, which is associated with higher flux magnitudes
during the day. We previously noted that the effect on LE due to quantization of Ta is
actually disproportionately higher at night when flux magnitude is taken into account. This
effect of higher flux magnitude is also true for the effect of U on LE, but not for VPD on LE
or for the effect of both (U and VPD) on SH (Figure 8a,b, Case 2 and Case 3). Otherwise,
the effect of quantization varies over inputs and times of day for each model case. For LE
and SH (Figure 8a,b), we see that the cases for which Rg and Ta are quantized (Case Rg,
Case 1, and portions of Cases 4, 5, and 7) particularly lead to more sensitivity to quanti-
zation. Meanwhile, quantizing Ta influences SH more than LE (Figure 8a,b, Case 1). SH
results show a less smooth pattern relative to LE over the diurnal cycle. LE is constrained
by stomatal conductance and water availability in addition to temperature, and we see
changes in Ta have an effect where the diurnal cycle dominates. However, since SH is more
directly associated with Ta and Rg changes, we see quantization has a more varied effect
with levels of quantization and times of day.

LE is responsive to small fluctuations in wind speed (U) relative to SH, as shown by
the pattern in Case 2 with increasing levels of quantization (Figure 8a,b). In the model,
U drives leaf and soil evaporation, and we find that LE is more sensitive to all levels of
precision changes in wind speed, while SH has an increasing level of sensitivity as U is
quantized from two to five levels. In other words, LE is more responsive to any changes
in U precision during the day, while SH is less responsive unless U is quantized to very
low precision. We can see the same pattern in other cases where U is one of the quantizing
variables (Case 4, Case 6, Case 7). Meanwhile for Case 3 where VPD is quantized, the
model is not highly sensitive to quantization, and LE and SH have similar responses for all
levels of quantization.
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Figure 8. Diurnal quantized model sensitivity (SMt) for: (a) LE (W/m2); (b) SH (W/m2); and (c) Fc
(µmol/m2s) for all cases (Equation (6)). Red colors indicate high sensitivities to quantization.

For Fc, we see that all quantized model cases are nearly identical for combinations of
Ta, U, and VPD (Figure 8c). All quantized forcing cases lead to a clear diurnal pattern in Fc,
indicating that any quantization of inputs has an influence that varies by time of day. Since
the net leaf carbon dioxide uptake (An) is a strong function of PAR (photosynthetically active
radiation) and PAR is computed based on Rg, Fc is most strongly affected by quantizing Rg,
and we see a clear pattern in which the effect decreases for more levels of Rg quantization.
For other forcing variables, the lack of change with different N levels indicates that Fc is
sensitive to the smallest variations in forcing data that are omitted through the quantization
process, regardless of whether a forcing variable is quantized into N = 2 or N = 5
categories. Since leaf photosynthesis depends on effects of PAR, leaf temperature, and
CO2 concentration in the intercellular air space, Fc is sensitive to other variables more
indirectly. In general, the forcing data get filtered through an iterative process to calculate
stomatal conductance, leaf carbon, and leaf temperature [40,41], and we see a minimal level
of sensitivity to any change in weather conditions.

In this analysis, we find that each estimated flux responds differently to the same
changes in precision of input variables, indicating various levels of sensitivity due to the
different mechanisms that relate model inputs to outputs. Model changes due to quantizing
Rg tend to always be larger than other quantized cases, which indicates that the energy
balance has a large influence relative to other meteorological forcing variables (Ta, U, and
VPD) in the MLCan model even when those variables are quantized in combinations.

3.3. Forcing Complexity and Model Behaviors

Here we compare quantized model sensitivity relative to the full model (SMt, Equation (6))
with forcing complexity (Cm, Equation (7). We first consider Cm and 3-h averaged modeled
diurnal cycle sensitivity for all seven quantized cases between 12:00–15:00 (Figure 9). In
general, decreasing forcing data complexity for all quantized cases leads to larger differ-
ences between the quantized and the full model. For example, from Figure 9 we see that a
50% change in Cm leads to about a 20–30 W/m2 change in SMt. Quantization of any input
variable to N = 5 levels or fewer will result in at least 15 W/m2 of change in the modeled
LE (blank area in lower right corner of Figure 9). We also detect general behaviors related
to each individual input variable as follows:
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Figure 9. Comparison between the model and all quantized cases for (N ∈ [2, 3, 4, 5]) based on their
forcing data complexity, Cm, and 3-h averaged modeled diurnal sensitivity, SMt, at 12:00–15:00 for
LE. The cyan star indicates the full model case (Cm = 1 and SMt = 0). Asterisks indicate individual
quantized variables (Case 1–3, 4 model runs for each case), circles indicate jointly quantized variables
(Cases 4–6, 16 model runs for each case), and black squares indicate Case 7 where all three variables
are quantized and there are 64 individual model runs.

• Quantized VPD (yellow asterisks in Figure 9) shows a horizontal pattern in the (Cm,
SMt) space, which means quantization decreases forcing data complexity, but different
levels of quantization (between N = 2 and 5) do not affect model output for LE.
This indicates that the modeled LE is somewhat responsive to a change away from
the instrument precision of VPD but does not vary further as the precision VPD
is decreased even more. In general, this forcing variable can be greatly simplified
without changes in model sensitivity. Moreover, quantizing VPD leads to the lowest
SMt indicating the lowest sensitivity at this time of day of Cases 1-3, for which a single
variable is quantized.

• Quantized Ta (blue asterisks in Figure 9) similarly decreases forcing data complexity
but results in different model behavior based on each level of quantization. For
example, the N = 2 scenario of Case 1 has the largest LE sensitivity among other
individually quantized forcing variables at this time of day. This also translates to
other quantized cases where Ta is quantized to N = 2 levels (Case 4, 5, 7) that lead to
higher model sensitivity.

• Finally, quantizing U (red asterisks in Figure 9) also influences both model behavior
and forcing complexity. Quantization decreases forcing data complexity similarly, but
model sensitivity is less than when Ta is quantized.

Cases 4-7 for which two or three forcing variables are quantized (circles and squares
in Figure 9) represent different combinations of quantized variables and show different
and more variable patterns. As expected, Cm decreases as more variables are quantized,
and the lowest Cm is a subset of Case 7 for which all three inputs are quantized to N = 2.
In Case 4, there is a wide range of differences in SMt in which Ta and U are quantized
(purple circles in Figure 9). In Case 5, for which Ta and VPD are quantized (green circles
in Figure 9), the tightly clustered subsets along the Cm axis are associated with quantized
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VPD, and the differences in SMt are mainly attributable to different quantization levels for
Ta. This follows the previous finding that quantizing VPD on its own (Case 3) does not lead
to changes in model behavior. In Case 6, in which U and VPD are quantized (orange circles
in Figure 9), while there is a similar horizontal pattern for changes in VPD quantization
levels, smaller differences in SMt and Cm between groupings are due to quantizing U.

Case 7 (T̂a, Û, V̂PD) illustrates that quantizing different forcing variables simultane-
ously can have a nonlinear impact in terms of both joint entropy of the forcing data and
model performance measures. For this case (black squares in Figure 9), there are clusters
of models with similar SMt and differences in Cm in each cluster. This indicates that there
are groupings of model inputs for which the forcing complexity can be greatly decreased
without changing model sensitivity, but behavior depends on which forcing variable is
altered. Namely, for LE the differences between clusters are associated with changing the
precision of Ta as determined from the other cases.

Quantized model behavior varies for different model output variables and different
time points. This is evident when we compare between LE, SH, and Fc for three time ranges,
at 3:00–6:00, 9:00–12:00, and 18:00–21:00 (Figure 10). Here, we only show one quantized
model run for each case and choose the N = 2 quantization which corresponds to the
lowest Cm within a given case. For example, the Case 7 point corresponds to the model
forcing where all three input variables are quantized to N = 2. In these examples, Case 7
(T̂a, Û, V̂PD) is the case that most minimizes the complexity of the forcing dataset. This is a
subset of the full suite of model forcing complexity but shows the most extreme changes in
both forcing complexity and model behaviors. We found that there is a linear relationship
between Cm and SMt during the day for the heat fluxes (Figure 9b,e), where the lowest
precision cases lead to a large reduction in complexity and tend to have the most impact
on modeled fluxes. In other words, there is an approximate line that relates Cm to SMt
during the day (middle panels) even though Cm reflects a different combination of forcing
variables that are manipulated. Meanwhile for early morning and evening time ranges, the
relationship between forcing complexity and model behavior is more related to whether air
temperature (Ta) is quantized or not.

Figure 10. Comparison between full model and quantized cases (NT = 2, NU = 2 and NVPD = 2
levels) based on their forcing data complexity and 3-h averaged model diurnal SMt for LE (a–c), SH
(d–f), and Fc (g–i) for three times of day. Left panels (a,d,g) indicate all 7 quantized model behaviors
at 3:00–6:00 am. Middle panels (b,e,h) indicate all 7 quantized model behaviors at 9:00–12:00. Right
panels (c,f,i) indicate model behaviors at 18:00–21:00.
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We also find that quantization to N = 2 levels results in different thresholds in terms
of the minimum difference between an original and quantized model result. For example,
for Figure 9, the gap between full model and quantized model results is about 15 W/m2 for
LE at 12:00–15:00. However, in Figure 10, it is much smaller for 3:00–6:00 and 18:00–21:00.
Particularly Case 3 (the yellow asterisk in Figure 10c) has very low sensitivity to VPD at
that time of day relative to other combinations of cases that have large effects up to 10
W/m2 even during the nighttime. Here we could draw two separate “best fit” lines, one
for “Ta is quantized” and one for “Ta is not quantized”, since the model sensitivity to any
other input is relatively low. We see cases where U and VPD quantized individually or
jointly have the lowest SMt during the nighttimes, indicating the model is particularly
unresponsive to the precision of those variables. This can be explained in that U and VPD
are typically low and relatively stable during the night, so quantizing has less effect on
model results. Finally, for Fc, the gap from the model to the quantized cases is always the
same (Figure 10g–i). This indicates that Fc has a response to quantization with a different
threshold than the other fluxes. For example, Fc may show a more variable response for
quantization to many higher levels which are not considered here.

4. Discussion and Conclusions

Forcing uncertainty is an important aspect in model development, and this study il-
lustrates a variety of effects of forcing precision, which can be determined by measurement
devices or data storage, on model behaviors. Particularly, quantization of forcing data
makes it possible to isolate model sensitivity to different ranges of variability of forcing
variables, and the Lloyd algorithm enables us to optimally quantize variables to retain max-
imum information relative to the original distribution. We performed several quantization
experiments using MLCan, a complex ecohydrological model with multiple high-resolution
forcing variables and many simulated processes ranging from the canopy radiation regime
to heat and carbon fluxes from soil and canopy subsystems. While quantizing incoming
solar radiation had a large and relatively predictable effect as a control on the model energy
balance, quantizing meteorological variables caused more nuanced model responses. We
summarize these experiments in the context of specific MLCan results as follows:

• Energy balance constraints: When incoming solar radiation is quantized, sensible
and latent heat fluxes shift to meet the energy balance with some gaps that can be
attributed to other energy fluxes that are not analyzed here, specifically ground heat
flux and longwave radiation. Canopy carbon fluxes respond more nonlinearly and
depend on whether the quantization increases or decreases the apparent radiation.

• Temporal variability and dependence on system states: We next explored model
effects of air temperature quantization for different growing season time windows.
This highlighted the connection between model sensitivity to forcing precision and
system states, such as wetness or vegetation conditions. For example, quantized
air temperature most influences latent heat fluxes during a relatively hot and dry
period at the end of the growing season. This connects to previous findings based on
observed data that causal interactions in ecohydrologic systems vary seasonally and
with wetness conditions [55].

• Joint effects of multiple forcing precisions: Finally, we quantized combinations of
air temperature, vapor pressure deficit, and wind speed to different extents, and
plotted model responses along a forcing complexity axis, where forcing complexity
indicated the extent to which the joint entropy of the forcing variables was reduced.
From this, we can determine which combinations of variables are “most compressible”
in terms of their ability to reduce model forcing complexity and which lead to large
changes in model behavior. For example, a quantization that leads to vary forcing
complexity with a very small change in model behavior would indicate that the model
is not sensitive to a particular input or combinations of inputs, and the model forcing
or use of that input could be simplified in some way. On the other hand, this could
also indicate that the model is not utilizing the full extent of available information
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in the forcing and could motivate other changes to the model structure. We saw a
general trend in which simulated heat fluxes diverge more from the original model
case as multiple variables were increasingly quantized, but there was a wide range of
forcing complexities that led to the same model sensitivity. This illustrates that the
effect of forcing precision varies depending on the degree of quantization (N) and
the combination of variables involved. In other words, it is possible to determine
a set of forcing variables that can be maximally simplified with minimal change in
model behavior.

Overall, MLCan heat and carbon fluxes were relatively insensitive to model meteo-
rological forcing precision in those results of quantized inputs for air temperature, vapor
pressure deficit, and wind speed. This insensitivity indicates that the quantization of those
forcing variables cannot greatly improve or worsen modeled fluxes. This lack of sensitivity
is due to both the complexity of the MLCan model, since there are many inputs, processes,
and parameters that contribute to model behavior [11,40] and the quantization algorithm
that is set up to act as an optimal representation of the original data. Overall, our results
indicate that MLCan relies on representations of the general magnitudes of meteorological
forcing data, and the model structure does not take advantage of information contained in
the variability of individual variables.

While the results presented here are specific to a particular model and study site, we
expect they likely reflect a variety of process-based ecohydrologic modeling frameworks
that use similar process sub-models and numerical schemes. Meanwhile, the method of
forcing quantization could be used in conjunction with other individual or multiple working
hypothesis (parameters sets, model structure, and process equations) to complement a
wider sensitivity analysis and to better diagnose complex model uncertainty. For example,
numerical solver methods and multiple representation models of hydrologic processes (e.g.,
Structure for Unifying Multiple Modeling Alternatives (SUMMA) [56]) could be compared
in terms of their sensitivity to forcing precision. Similarly, we could compare different
modeling frameworks, such as the Joint UK Land Environment Simulator (JULES) and
the Noah-MP models, which support different options for a range of biophysical and
hydrologic processes [57,58]. Further extensions of this work could address how model
complexity, in terms of the number of input variables, parameters, or other aspects, leads
to different sensitivities to forcing. For example, we would expect a very simple model
with few input variables to be more highly sensitive to changes in those input variables.
For these types of models, methods such as the Lloyd algorithm for rate-distortion theory
could have a larger impact in that it is more important to obtain an optimal representation
of forcing data.

The methods presented here could be used in tandem with global sensitivity analysis
(GSA) methods that seek to determine how ranges of parameters have a joint effect on
model output [59]. For example, the impact of forcing precision could be compared with
global sensitivity to a given forcing variable [19], detected interactions between model input
variables [60], or correlated input factors based on Latin hypercube sampling (rLHS) [61].
It has previously been found that different GSA methods can provide different rankings
of parameters, and no single GSA method can be said to comprehensively identify the
most important or relevant features of models [62]. With this, the integration of forcing
temporal variability and precision as a component of model sensitivity analysis could lead
to further understanding of how model parameters and forcing data interact. For example,
a parameter may become more or less important in a model in which time-series input data
is available at a low precision. As an extreme example, if a forcing variable was estimated
as a constant (N = 1 levels of quantization), it essentially becomes an input parameter,
which may alter the dynamics of relevant processes.

Another application of the method proposed here is to determine the necessity for
certain field or satellite measurements, given a particular model structure. For example,
Raleigh [63] analyzed the effect of lacking certain forcing inputs into snowpack models that
are typically unavailable at automatic weather stations and instead are often empirically
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estimated based on other variables or sub-models. An analysis of forcing precision could
similarly be used to compare the need for certain data types or data at a certain temporal or
spatial resolution. In the study presented here, a low sensitivity to meteorological forcing
precision could indicate that weather data from a nearby site or satellite-derived data
would be sufficient when flux tower weather station forcing is not available. In other words,
additional weather stations or advanced sensors have marginal value if the model does
not utilize the forcing data beyond what can be estimated from other sources at a lower
precision. The range of forcing complexities explored here also illustrates the potential to
greatly decrease the storage size for forcing data in certain model cases.

As models become more complex and prolific, it is important to understand detailed
aspects of how different model inputs, including time-series forcing, are used within
different model frameworks and for a given model under different system states. This is
also relevant in the comparison of machine learning models with physically based models
in that the modeling framework may dictate the extent to which a model can “recognize”
the detail provided in a given forcing variable. The methods presented here could also
be applied broadly beyond an ecohydrological process-based scope to better understand
model behavior and the importance of obtaining input data at a given level of precision.
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