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Abstract: In this paper, on the basis of the Carleman matrix, we explicitly construct a regularized
solution of the Cauchy problem for the matrix factorization of Helmholtz’s equation in an unbounded
two-dimensional domain. The focus of this paper is on regularization formulas for solutions to the
Cauchy problem. The question of the existence of a solution to the problem is not considered—it is
assumed a priori. At the same time, it should be noted that any regularization formula leads to an
approximate solution of the Cauchy problem for all data, even if there is no solution in the usual
classical sense. Moreover, for explicit regularization formulas, one can indicate in what sense the
approximate solution turns out to be optimal.

Keywords: integral formula; regularization of the Cauchy problem; approximate solution; Carleman
matrix; family of vector functions; Bessel and Hankel functions
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1. Introduction

Most of actively developing modern area of scientific knowledge is the theory of
correctly and incorrectly posed problems, most of which have practical value and require
decision making in uncertain or contradictory conditions. The development and justi-
fication of methods for solving such a complex problems as ill-posed ones is intensely
investigated of the present time. The results regarding ill-posed problems are a scien-
tific research apparatus for many scientific areas, such as differentiation of approximately
given functions, solving inverse boundary value problems, solving problems of linear
programming and control systems, solving systems of linear equations, degenerate or
ill-conditioned, etc.

The concept of a “well-posed problem” was first introduced by the French math-
ematician J. Hadamard in 1923 when he considered for partial differential equations of
mathematical physics the extension of boundary value problems. The concept of correctness
of problems was the basis for the classification of boundary value problems. In this case,
the correctness of the problem statement was ensured by the fulfillment of two conditions:
the existence of a solution and its uniqueness. The requirement of stability of the solution
was subsequently attached to the first two by other mathematicians already during a more
in-depth study of this class of problems. Problems in which any of the three conditions for
the correct formulation of the problem (stability, existence or uniqueness) is not fulfilled
belong to the class of ill-posed problems. The need to solve unstable problems like the one
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above requires a more precise definition of the solution to the problem (example Hadamard,
see, for instance [1], p. 39).

We will say that the problem is correctly posed according to Tikhonov (See [2]) if:

(1) the solution of the problem exists in some class;
(2) the solution is unique in this class;
(3) the solution of the problem depends continuously on the input data.

The Cauchy problem for systems of elliptic equations with constant coefficients be-
longs to the family of ill-posed problems: the solution of the problem is unique, but unstable.
For more details on this subject can be consulted [2–10]. The paper studies the construction
of exact and approximate solutions to the ill-posed Cauchy problem for matrix factoriza-
tions of the Helmholtz equation. Such problems naturally arise in mathematical physics
and in various fields of natural science (for example, in electro-geological exploration, in
cardiology, in electrodynamics, etc.). In general, the theory of ill-posed problems for elliptic
systems of equations has been sufficiently developed thanks to the works of A.N. Tikhonov,
V.K. Ivanov, M.M. Lavrent’ev, N.N. Tarkhanov and others famous mathematicians. Among
them, the most important for applications are the so-called conditionally well-posed prob-
lems, characterized by stability in the presence of additional information about the nature
of the problem data. One of the most effective ways to study such problems is to con-
struct regularizing operators. For example, this can be the Carleman-type formulas (as in
complex analysis) or iterative processes (the Kozlov-Maz’ya-Fomin algorithm, etc.) [10].
Boundary problems, as well as numerical solutions of some problems, are considered in
works [11–32].

We construct, in this paper, an explicit Carleman matrix, regarding the Cauchy problem
for Helmholtz’s equation, based on works [7–10]. Using this, a regularized solution of the
Cauchy problem for the matrix factorization of the Helmholtz equation is given. Some
formulas of Carleman type for certain equations and systems of elliptic type are given
in [7–10,33–39]. In work [33] it was considered the Cauchy problem for the Helmholtz
equation in an arbitrary bounded plane domain with Cauchy data, known only on the
region boundary. In [40], the Cauchy problem for the Helmholtz equation in a bounded
domain was considered. In the present study, we have constructed an approximate solution
of the Cauchy problem for matrix factorizations of the Helmholtz equation in a two-
dimensional unbounded domain.

In many well-posed problems it is not easy to compute the values of the function on
the whole boundary. Thus, one of the important problems in the theory of differential
equations is the reconstructing of the solution of systems of equations of first order elliptic
type, factorizing the Helmholtz operator (see, for instance [34–39]).

The Cauchy problem for elliptic equations was investigated in [6,7,40] and subse-
quently developed in [9,10,33,35–39].

Next we establish the notations used in the paper.
Let x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2. We consider in R2 an unbounded domain,

simply-connected, Ω ⊂ R2. We suppose that its border ∂Ω is piece wise smooth and is
composed of the plane T: y2 = 0 and a smooth curve Σ lying in the half-space y2 > 0, that
is, ∂Ω = Σ

⋃
T.

Let:
r = |y− x|, α = |y1 − x1|, z = i

√
a2 + α2 + y2, a ≥ 0,

∂x = (∂x1 , ∂x2)
T , ∂x → ξT , ξT =

(
ξ1
ξ2

)
transposed vector ξ,

V(x) = (V1(x), . . . , Vn(x))T , v0 = (1, . . . , 1) ∈ Rn, n = 2m, m = 2,
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E(w) =

∥∥∥∥∥∥∥∥∥
w1 0 · · · 0
0 w2 · · · 0

· · · · · · . . . · · ·
0 0 0 wn

∥∥∥∥∥∥∥∥∥− diagonal matrix, w = (w1, . . . , wn) ∈ Rn.

We consider a (n× n)−dimensional matrix D(ξT) such that

D∗(ξT)D(ξT) = E((|ξ|2 + λ2)v0),

where D∗(ξT) is the Hermitian conjugate matrix D(ξT , ) λ ∈ R and the elements of D(ξT)
are linear functions with constant coefficients of the complex plane.

We also consider the system of differential equations:

D(∂x)V(x) = 0, x ∈ Ω, (1)

D(∂x) being the matrix of first-order differential operators.
Let

A(Ω) =
{

V : Ω −→ Rn | V is continuous on Ω = Ω ∪ ∂Ω and V satisfies the system (1)
}

.

2. Statement of the Cauchy Problem

Let f ∈ C(Σ,Rn). We formulate the following Cauchy problem for the system (1):
Let V(y) ∈ A(Ω) such that

V(y)|Σ = f (y), y ∈ Σ. (2)

We specify that V(y) is defined on Ω, knowing f (y), y ∈ Σ.
If V(y) ∈ A(Ω), then

V(x) =
∫

∂Ω

L(y, x; λ)V(y)dsy, x ∈ Ω, (3)

L(y, x; λ) =
(

E
(

ϕ2(λr)v0
)

D∗(∂x)
)

D(tT),

where t = (t1, t2) means the unit exterior normal at a point y ∈ ∂Ω and ϕ2(λr) represents
the fundamental solution of the Helmholtz equation in R2, that is

ϕ2(λr) = − i
4

H(1)
0 (λr), (4)

H(1)
0 (λr) being the the Hankel function of the first kind [41].

An entire function K(z) is introduced, taking real values for real part of z, (z = a + ib,
a, b ∈ R) and such that:

K(z) 6= 0, sup
b≥1

∣∣∣bpK(p)(z)
∣∣∣ = B(a, p) < ∞,

−∞ < a < ∞, p ∈ {0, 1, 2}.

(5)

Let

Ψ(y, x; λ) = − 1
2πK(x2)

∞∫
0

Im
[

K(z)
z− x2

]
a I0(λa)√

a2 + α2
da, for y 6= x, (6)

where I0(λa) = J0(iλa) is the zero order Bessel function of the first kind [4].
We remark that (3) holds if we consider
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Ψ(y, x; λ) = ϕ2(λr) + g(y, x; λ), (7)

instead ϕ2(λr), g(y, x) being the regular solution of the Helmholtz equation with respect
to the variable y, including the case y = x.

Hence (3) becomes:

V(x) =
∫

∂Ω

L(y, x; λ)V(y)dsy, x ∈ Ω, (8)

L(y, x; λ) =
(

E
(

Ψ(y, x; λ)v0
)

D∗(∂x)
)

D(tT).

Formula (8) can be generalized for the case when Ω is unbounded.
Suppose Ω lies inside a strip of the smallest width defined by:

0 < y2 < h, h =
π

ρ
, ρ > 0,

and ∂Ω extends to infinity.
So next we consider an unbounded domain Ω ⊂ R2 finitely connected, having a

piecewise smooth boundary ∂Ω (∂Ω−extends to infinity).
Let ΩR be the part of Ω situated inside a circle centered at zero, having radius R:

ΩR = {y : y ∈ Ω, |y| < R}, Ω∞
R = Ω\ΩR, R > 0.

Theorem 1. Consider V(y) ∈ A(Ω). If ∀x ∈ Ω, x fixed, we have

lim
R→∞

∫
Ω∞

R

L(y, x; λ)V(y)dsy = 0, (9)

then the Formula (8) is true.

Proof. For x ∈ Ω (|x| < R), x fixed, using (8) into account, we get∫
∂Ω

L(y, x; λ)V(y)dsy =
∫

∂ΩR

L(y, x; λ)V(y)dsy

+
∫

∂Ω∞
R

L(y, x; λ)V(y)dsy = V(x) +
∫

∂Ω∞
R

L(y, x; λ)V(y)dsy, x ∈ ΩR.

Taking into account condition (9), for R→ ∞, we obtain (8).
We also suppose ∫

∂Ω

exp[−d0ρ0|y1|]dsy < ∞, 0 < ρ0 < ρ, (10)

for some d0 > 0, and

|V(y)| ≤ exp[exp ρ2|y1|], ρ2 < ρ, y ∈ Ω. (11)

In (6) we put

K(z) = exp
[
−d iρ1

(
z− h

2

)
− d1 iρ0

(
d− h

2

)]
,

K(x2) = exp
[

d cos ρ1

(
x2 −

h
2

)
+ d1 cos iρ0

(
x2 −

h
2

)]
,

0 < ρ1 < ρ, 0 < x2 < h,

(12)
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where
d = 2ceρ1|x1|, d1 >

d0

cos
(

ρ0
h
2

) , c ≥ 0, d > 0.

Hence (8) holds.
Consider x ∈ Ω be fixed and y → ∞. In the following we estimate the function

Ψ(y, x; λ) and also its derivatives
∂Ψ(y, x; λ)

∂yj
, j ∈ {1, 2}. For the estimation

∂Ψ(y, x; λ)

∂yj
we

use equalities

−2πK(x2)
∂Ψ(y, x; λ)

∂y1
=

(y1 − x1)ReK(z0)− sign(y1 − x1)(y2 − x2)ImK(z0)

r2 −

−(y1 − x1)λ

∞∫
0

√
a2 + α2ReK(w)− (y2 − x2)ImK(z)

a2 + r2 · I1(λa)da√
a2 + α2

,

y 6= x, z0 = i|y1 − x1|+ y2, I1(λa) = I
′
0(λa)

(13)

and

−2πK(x2)
∂Ψ(y, x; λ)

∂y2
=

(y2 − x2)ReK(z0)− (y1 − x1)ImK(z0)

r2 −

−λ

∞∫
0

(y2 − x2)ReK(z)−
√

a2 + α2ImK(z)
a2 + r2 I1(λa)du, y1 6= x1,

(14)

which are obtained from (6).
Really, ∣∣∣∣exp

[
−d iρ1

(
z− h

2

)
− d1iρ0

(
z− h

2

)]∣∣∣∣
= exp Re

[
−d iρ1

(
z− h

2

)
− d1iρ0

(
z− h

2

)]

= exp
[
−d ρ1

√
a2 + α2 cos ρ1

(
y2 −

h
2

)
− d1ρ0

√
a2 + α2 cos ρ0

(
y2 −

h
2

)]
.

As
−π

2
≤ −ρ1

ρ
· π

2
≤ ρ1

ρ
· π

2
<

π

2
,

−π

2
≤ −ρ1

ρ
· π

2
≤ ρ0

(
y2 −

h
2

)
≤ ρ1

ρ
· π

2
<

π

2
.

Consequently,

cos ρ

(
y2 −

h
2

)
> 0, cos ρ0

(
y2 −

h
2

)
≥ cos

hρ0

2
> δ0 > 0,

It does not vanish in the region Ω and

|Ψ(y, x; λ)| = O[exp(−ερ1|y1|)], ε > 0, y→ ∞, y ∈ Ω
⋃

∂Ω,∣∣∣∣∣∂Ψ(y, x; λ)

∂yj

∣∣∣∣∣ = O[exp(−ερ1|y1|)], ε > 0, y→ ∞, y ∈ Ω
⋃

∂Ω, j ∈ {1, 2}.
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We now choose ρ1 with the condition ρ2 < ρ1 < ρ. Then condition (10) is fulfilled and
the integral formula (8) is true. Theorem 1 is proved.

Condition (12) may be weakened.
Consider

Aρ(Ω) = {V(y) ∈ A(Ω), |V(y)| ≤ exp[O(exp ρ|y1|)], y→ ∞, y ∈ Ω}. (15)

Theorem 2. If V(y) ∈ Aρ(Ω) satisfies the growth condition

|V(y)| ≤ C exp
[

c cos ρ1

(
y2 −

h
2

)
exp(ρ1|y1|)

]
,

c ≥ 0, 0 < ρ1 < ρ, y ∈ ∂Ω,

(16)

C constant, then (8) is true.

Proof. Divide Ω by a line y2 =
h
2

into the following two domains:

Ω1 =

{
y : 0 < y2 <

h
2

}
and Ω2 =

{
y :

h
2
< y2 < h

}
.

Consider first the domain Ω1. We put K1(z) in (6),

K1(z) = K(z) exp
[
−δ iτ

(
z− h

2

)
− δ1iρ

(
z− h

2

)]
,

ρ < τ < 2ρ, δ > 0, δ1 > o,

(17)

K(z) being given by (12). With this notation, (10) is true.
Really, ∣∣∣∣exp

[
−iτ

(
z− h

4

)
− δ1iρ

(
z− h

4

)]∣∣∣∣
= exp

[
−δτ

√
a2 + α2 cos τ

(
y2 −

h
4

)]

= exp
[
−δτ

√
a2 + α2

]
≤ exp[−δ exp τ|y1|],

−π

2
≤ −τ

π

4
≤ τ

(
y2 −

h
4

)
≤ τ

π

2
<

h
2

and cos τ

(
y2 −

h
4

)
≥ cos τ

h
4
≥ δ0 > 0.

Let denote by Ψ+(y, x; λ) the corresponding function Ψ(y, x; λ). As

cos τ

(
y2 −

h
4

)
≥ δ0, y ∈ Ω1

⋃
∂Ω1,

then for fixed x ∈ Ω1, y ∈ Ω1
⋃

∂Ω1,

|Ψ+(y, x; λ)| = O[exp(−δ0 exp(τ|y1|)], y→ ∞, ρ < τ < 2ρ,∣∣∣∣∣∂Ψ+(y, x; λ)

∂yj

∣∣∣∣∣ = O[exp(−δ0 exp(τ|y1|)], y→ ∞, ρ < τ < 2ρ, j ∈ {1, 2}.

Suppose that V(y) ∈ Aρ(Ω1) satisfies:

|V(y)| ≤ C exp[exp(2ρ− ε)|y1|], ε > 0, ∀y ∈ Ω1. (18)
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We consider τ such that 2ρ− ε < τ < 2ρ in (17).
Hence (17) is satisfied for the region Ω1, so

V(x) =
∫

∂Ω1

L(y, x; λ)V(y)dsy, x ∈ Ω1, (19)

L(y, x; λ) =
(

E
(

Ψ+(y, x; λ)v0
)

D∗(∂x)
)

D(tT).

If V(y) ∈ Aρ(Ω2) satisfies the growth condition (16) in Ω2, and 2ρ− ε < τ < 2ρ, then

V(x) =
∫

∂Ω2

L(y, x; λ)V(y)dsy, x ∈ Ω2, (20)

L(y, x; λ) =
(

E
(

Ψ−(y, x; λ)v0
)

D∗(∂x)
)

D(tT).

Here Ψ−(y, x; λ) it is defined by the formula (6), in which K(z) it is replaced by the
function K2(z) :

K2(z) = K(z) exp
[
−δ iτ(z− h1)− δ1iρ

(
z− h

2

)]
(21)

where
h1 =

h
2
+

h
4

,
h
2
< y2 < h,

h
2
< x2 < h1, δ > 0, δ1 > 0.

In the formulas obtained with this formula, the integrals (according to (11)) converge
uniformly for δ ≥ 0, when V(y) ∈ Aρ(Ω). In these formulas we put δ = 0, hence

V(x) =
∫

∂Ω

L(y, x; λ)V(y)dsy, x ∈ Ω, x2 6=
h
2

, (22)

L(y, x; λ) =
(

E
(

Ψ̃(y, x; λ)v0
)

D∗(∂x)
)

D(tT).

(integrals over the cross section y2 =
h
2

are mutually destroyed)

Ψ̃(y, x; λ) = (Ψ+(y, x; λ))δ=0 = (Ψ−(y, x; λ))δ=0.

Ψ̃(y, x; λ) is obtained here by (6), K(z) being given by (17), where δ = 0 is considered.
Using now the continuation principle, (22) holds, ∀x ∈ Ω. Under condition (18) and (22)
holds, ∀δ1 ≥ 0. Considering δ1 = 0, Theorem 2 is proved.

Choosing

K(z) =
1

z− x2 + 2h
exp(σz),

K(x2) =
1

2h
exp(σx2), 0 < x2 < h, h =

π

ρ
,

(23)

in (6), we get

Φσ(y, x) = − e−σx2

π(h)−1

∞∫
0

Im
exp(σz)

(z− x2 + 2h)(z− x2)

a I0(λa)√
a2 + α2

da. (24)

Hence (8) becomes:

V(x) =
∫

∂Ω

Lσ(y, x; λ)V(y)dsy, x ∈ Ω, (25)

Lσ(y, x; λ) =
(

E
(

Ψσ(y, x; λ)v0
)

D∗(∂x)
)

D(tT).
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3. Regularized Solution of the Cauchy Problem

Theorem 3. Let V(y) ∈ Aρ(Ω) satisfying

|V(y)| ≤ M, y ∈ T. (26)

If

Vσ(x) =
∫
Σ

Lσ(y, x; λ)V(y)dsy, x ∈ Ω, (27)

then:
|V(x)−Vσ(x)| ≤ Kρ(λ, x)σMe−σx2 , x ∈ Ω, (28)∣∣∣∣∣∂V(x)

∂xj
− ∂Vσ(x)

∂xj

∣∣∣∣∣ ≤ Kρ(λ, x)σMe−σx2 , σ > 1, x ∈ Ω, j ∈ {1, 2}, (29)

where Kρ(λ, x) are bounded functions on compact subsets of the domain Ω.

Proof. We prove first (28). Using (25) and (27), we have

V(x) =
∫
Σ

Lσ(y, x; λ)U(y)dsy +
∫
T

Lσ(y, x; λ)V(y)dsy

=Lσ(x) +
∫
T

Lσ(y, x; λ)V(y)dsy, x ∈ Ω.

Using now (26), we obtain

|V(x)−Vσ(x)| ≤

∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤
≤
∫
T

|Lσ(y, x; λ)||V(y)|dsy ≤ M
∫
T

|Lσ(y, x; λ)|dsy, x ∈ Ω.

(30)

We estimate now
∫
T

|Ψσ(y, x; λ)|dsy and
∫
T

∣∣∣∣∣∂Ψσ(y, x; λ)

∂yj

∣∣∣∣∣dsy, j ∈ {1, 2}.

Using (24), we have

Ψσ(y, x) =
eσ(y2−x2)

π(h)−1

 ∞∫
0

(
(β + β1) cos σα1(
α2

1 + β2
1
)(

α2
1 + β2

)
+

(
−α2

1 + β1β
)(

α2
1 + β2

1
)(

α2
1 + β2

) sin σα1

α1

)
a I0(λa)da

]
,

(31)

where
α2

1 = a2 + α2, β = y2 − x2, β1 = y2 − x2 + 2h.

Given (31) and the inequality

I0(λa) ≤
√

2
λπa

, (32)

we have ∫
T

|Ψσ(y, x; λ)|dsy ≤ Kρ(λ, x)σe−σx2 , σ > 1, x ∈ Ω. (33)
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Using now

∂Ψσ(y, x; λ)

∂yj
=

∂Ψσ(y, x; λ)

∂s
∂s
∂yj

= 2(yj − xj)
∂Ψσ(y, x; λ)

∂s
,

s = α2, j ∈ {1, 2},

(34)

according to (31) and (32) we get∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂y1

∣∣∣∣dsy ≤ Kρ(λ, x)σe−σx2 , σ > 1, x ∈ Ω, (35)

According to (31) and (32), we have∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂y2

∣∣∣∣dsy ≤ Kρ(λ, x)σe−σx2 , σ > 1, x ∈ Ω, (36)

Using the inequalities (33), (35), (36) and (30), we get the estimate (28).
We prove now (29). From (25) and (27) we get:

∂V(x)
∂xj

=
∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy +

∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy,

∂Vσ(x)
∂xj

=
∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy, x ∈ Ω, j ∈ {1, 2}.

(37)

According to (37) and (26), we have∣∣∣∣∣∂V(x)
∂xj

− ∂σV(x)
∂xj

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣
≤
∫
T

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣|V(y)|dsy ≤ M
∫
T

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣dsy,

x ∈ Ω, j ∈ {1, 2}.

(38)

We estimate now
∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂x1

∣∣∣∣dsy and
∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂x2

∣∣∣∣dsy on the part T of the

plane y2 = 0.

We use

∂Ψσ(y, x; λ)

∂x1
=

∂Ψσ(y, x; λ)

∂s
∂s

∂x1
= −2(y1 − x1)

∂Ψσ(y, x; λ)

∂s
,

s = α2,

(39)

for the estimation of the first integral.
From (31), (32) and (39), we have∫

T

∣∣∣∣∂Ψσ(y, x; λ)

∂x1

∣∣∣∣dsy ≤ Kρ(λ, x)σe−σx2 , σ > 1, x ∈ Ω. (40)

According to (31) and (32), we have
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∫
T

∣∣∣∣∂Ψσ(y, x; λ)

∂x2

∣∣∣∣dsy ≤ Kρ(λ, x)σe−σx2 , σ > 1, x ∈ Ω. (41)

From inequalities (40), (41) and (38), we get (29).

Corollary 1. We have

lim
σ→∞

Vσ(x) = V(x), lim
σ→∞

∂Vσ(x)
∂xj

=
∂V(x)

∂xj
, j ∈ {1, 2}, ∀x ∈ Ω.

Let

Ωε =

{
(x1, x2) ∈ Ω, q > x2 ≥ ε, q = max

T
ψ(x1), 0 < ε < q

}
,

ψ(x1) being a curve and Ωε ⊂ Ω a compact set.

Corollary 2. If x ∈ Ωε, then the families of functions {Vσ(x)} and

{
∂Vσ(x)

∂xj

}
converge uni-

formly for σ→ ∞, i.e.,

Vσ(x) ⇒ V(x),
∂Vσ(x)

∂xj
⇒

∂V(x)
∂xj

, j ∈ {1, 2}.

We specify that the set Eε = Ω\Ωε is as a layer boundary for this problem.
Consider now the boundary of the domain Ω being composed of a hyper plane y2 = 0

and a smooth curve Σ extending to infinity and lying in the strip

0 < y2 < h, h =
π

ρ
, ρ > 0.

We consider Σ given
y2 = ψ(y1), −∞ < y1 < ∞,

where ψ(y1) satisfies the condition∣∣ψ′(y1)
∣∣ ≤ P < ∞, P = const.

We consider
q = max

T
ψ(y1), l = max

T

√
1 + ψ′2(y1).

Theorem 4. If V(y) ∈ Aρ(Ω) satisfies (26), and on a smooth curve Σ satisfies

|V(y)| ≤ δ, 0 < δ < 1, (42)

then
|V(x)| ≤ Kρ(λ, x)σM1− x2

q δ
x2
q , σ > 1, x ∈ Ω. (43)∣∣∣∣∣∂V(x)

∂xj

∣∣∣∣∣ ≤ Kρ(λ, x)σM1− x2
q δ

x2
q , σ > 1, x ∈ Ω,

j ∈ {1, 2}.
(44)

Proof. We prove first (43). From (25), we obtain

V(x) =
∫
Σ

Lσ(y, x; λ)V(y)dsy +
∫
T

Lσ(y, x; λ))V(y)dsy, x ∈ Ω, (45)
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and hence

|V(x)| ≤

∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣, x ∈ Ω. (46)

From (42), we have∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(y, x; λ)||V(y)|dsy

≤ δ
∫
Σ

|Lσ(y, x; λ)|dsy, x ∈ Ω.

(47)

We estimate now
∫
Σ

|Ψσ(y, x; λ)|dsy,
∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂y1

∣∣∣∣dsy and
∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂y2

∣∣∣∣dsy on Σ.

Given equality (31) and (32), we have∫
Σ

|Ψσ(y, x; λ)|dsy ≤ Kρ(λ, x)σeσ(q−x2), σ > 1, x ∈ Ω. (48)

Using now (31), (32) and (34), we get∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂y1

∣∣∣∣dsy ≤ Kρ(λ, x)σeσ(q−x2), σ > 1, x ∈ Ω. (49)

From (31) and (32), we have∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂y2

∣∣∣∣dsy ≤ Kρ(λ, x)σeσ(q−x2), σ > 1, x ∈ Ω. (50)

From (48)–(50) and applying (49), we get∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤ Kρ(λ, x)σδ eσ(q−x2), σ > 1, x ∈ Ω. (51)

We know that∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤ Kρ(λ, x)σMe−σx2 , σ > 1, x ∈ Ω. (52)

According to (51), (52) and (46), we obtain

|V(x)| ≤
Kρ(λ, x)σ

2
(δ eσq + M)e−σx2 , σ > 1, x ∈ Ω. (53)

Considering

σ =
1
q

ln
M
δ

, (54)

we get (43).
We prove now (44). From (25) we get:
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∂V(x)
∂xj

=
∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy +

∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy

=
∂Vσ(x)

∂xj
+
∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy, x ∈ Ω, j ∈ {1, 2},

(55)

where
∂Vσ(x)

∂xj
=
∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy. (56)

We get ∣∣∣∣∣∂V(x)
∂xj

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣ ≤
∣∣∣∣∣∂Vσ(x)

∂xj

∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣, x ∈ Ω, j ∈ {1, 2}.

(57)

From (42), we have:∣∣∣∣∣∣
∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣|V(y)|dsy

≤ δ
∫
Σ

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣dsy, x ∈ Ω, j ∈ {1, 2}.

(58)

Now we deal with
∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂x1

∣∣∣∣dsy, and
∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂x2

∣∣∣∣dsy on Σ.

From (31), (32) and (39), we have∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂x1

∣∣∣∣dsy ≤ Kρ(λ, x)σeσ(q−x2), σ > 1, x ∈ Ω, (59)

From (31) and (32), it follows:∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂x2

∣∣∣∣dsy ≤ Kρ(λ, x)σeσ(q−x2), σ > 1, x ∈ Ω, (60)

From (59) and (60), bearing in mind (58), we have∣∣∣∣∣∣
∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣ ≤ Kρ(λ, x)σδeσ(q−x2), σ > 1, x ∈ Ω,

j ∈ {1, 2}.

(61)

We known that∣∣∣∣∣∣
∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣ ≤ Kρ(λ, x)σMe−σx2 , σ > 1, x ∈ Ω,

j ∈ {1, 2}.

(62)
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According to (61), (62) and (57), we obtain∣∣∣∣∣∂V(x)
∂xj

∣∣∣∣∣ ≤ Kρ(λ, x)σ
2

(δ eσq + M)e−σx2 , σ > 1, x ∈ Ω,

j ∈ {1, 2}.
(63)

Considering σ as in (54) we obtain (44).

Assume that V(y) ∈ A(Ω) and instead of V(y) on Σ its continuous approximations
fδ(y) are given, with error 0 < δ < 1. We have

max
Σ
|V(y)− fδ(y)| ≤ δ. (64)

We put

Vσ(δ)(x) =
∫
Σ

Nσ(y, x; λ) fδ(y)dsy, x ∈ Ω. (65)

Theorem 5. If V(y) ∈ A(Ω) satisfies (26) on the plane y2 = 0, then∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ ≤ Kρ(λ, x)σM1− x2

q δ
x2
q , σ > 1, x ∈ Ω, (66)∣∣∣∣∣∂V(x)

∂xj
−

∂Vσ(δ)(x)
∂xj

∣∣∣∣∣ ≤ Kρ(λ, x)σM1− x2
q δ

x2
q , σ > 1, x ∈ Ω.

j ∈ {1, 2}.
(67)

Proof. From (25) and (65), we get

V(x)−Vσ(δ)(x) =
∫

∂Ω

Lσ(y, x; λ)L(y)dsy

−
∫
Σ

Lσ(y, x; λ) fδ(y)dsy =
∫
Σ

Lσ(y, x; λ)V(y)dsy

+
∫
T

Lσ(y, x; λ)V(y)dsy −
∫
Σ

Lσ(y, x; λ) fδ(y)dsy

=
∫
Σ

Lσ(y, x; λ){V(y)− fδ(y)}dsy +
∫
T

Lσ(y, x; λ)L(y)dsy.

and
∂V(x)

∂xj
−

∂Vσ(δ)(x)
∂xj

=
∫

∂Ω

∂Lσ(y, x; λ)

∂xj
V(y)dsy

−
∫
Σ

∂Lσ(y, x; λ)

∂xj
fδ(y)dsy =

∫
Σ

∂Lσ(y, x; λ)

∂xj
V(y)dsy

+
∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy −

∫
Σ

∂Lσ(y, x; λ)

∂xj
fδ(y)dsy

=
∫
Σ

∂Lσ(y, x; λ)

∂xj
{V(y)− fδ(y)}dsy +

∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy,

j ∈ {1, 2}.

From (26) and (64), we obtain:
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∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ =

∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ){V(y)− fδ(y)}dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(y, x; λ)||{V(y)− fδ(y)}|dsy

+
∫
T

|Lσ(y, x; λ)||V(y)|dsy ≤ δ
∫
Σ

|Lσ(y, x; λ)|dsy

+M
∫
T

|Lσ(y, x; λ)|dsy.

and ∣∣∣∣∣∂V(x)
∂xj

−
∂Vσ(δ)(x)

∂xj

∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Σ

∂Lσ(y, x; λ)

∂xj
{V(y)− fδ(y)}dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

∂Lσ(y, x; λ)

∂xj
V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣|{U(y)− fδ(y)}|dsy

+
∫
T

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣|V(y)|dsy ≤ δ
∫
Σ

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣dsy

+M
∫
T

∣∣∣∣∣∂Lσ(y, x; λ)

∂xj

∣∣∣∣∣dsy, j ∈ {1, 2}.

Analog as in Theorems 3 and 4, we can prove that∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ ≤ Kρ(λ, x)σ

2
(δ eσq + M)e−σx2 ,∣∣∣∣∣∂V(x)

∂xj
−

Vσ(δ)(x)
∂xj

∣∣∣∣∣ ≤ Kρ(λ, x)σ
2

(δ eσq + M)e−σx2 , j ∈ {1, 2}.

Considering σ as in (54), we get (66) and (67).

Corollary 3. We have

lim
δ→0

Vσ(δ)(x) = V(x), lim
δ→0

∂Vσ(δ)(x)
∂xj

=
∂V(x)

∂xj
, j ∈ {1, 2}, ∀x ∈ Ω.

Corollary 4. If x ∈ Ωε, then the families of functions
{

Vσ(δ)(x)
}

and

{
∂Vσ(δ)(x)

∂xj

}
are conver-

gent uniformly, for δ→ 0, i.e.,

Vσ(δ)(x) ⇒ V(x),
∂Vσ(δ)(x)

∂xj
⇒

∂V(x)
∂xj

, j ∈ {1, 2}.

The following example illustrates the possibility of incorrect formulation of the classi-
cal Cauchy problem for system (1).
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Example 1. Prove that the Cauchy problem for the following systems of linear partial differential
equations is ill-posed: 

∂x1 V1 − ∂x2 V2 = 0,

∂x2 V1 + ∂x1 V2 = 0,

−∂x1 V3 + ∂x2 V4 = 0,

∂x2 V3 + ∂x1 V4 = 0.

Solutions to this system will be sought in the form

V1 = U1ei(λx1+µx2), V2 = U2ei(λx1+µx2),

V3 = U3ei(λx1+µx2), V4 = U4ei(λx1+µx2).

Substituting these into the system, we obtain

λ2 + µ2 = 0, U1 =
λ

µ
U2,

λ2 + µ2 = 0, U3 =
λ

µ
U4.

We choose the following µ = n, λ = −in. Then

V1n = U1nenx1−inx2 , V2n = −iU1nenx1−inx2 ,

V3n = U3nei(λx1+µx2), V4n = −iU3nenx1−inx2 .
.

Separating the real part, we find the solutions

V1n = U1nenx1 cos nx2, V2n = U1nenx1 sin nx2,

V3n = U3nenx1 cos nx2, V4n = U3nenx1 sin nx2.

The constants U1n and U3n are given by the formula U1n = U3n = e−
√

n.
Hence

V1n = e−
√

nenx1 cos nx2, V2n = e−
√

nenx1 sin nx2,

V3n = e−
√

nenx1 cos nx2, V4n = e−
√

nenx1 sin nx2.

The solutions (V1n, V2n), (V3n, V4n) satisfy at x1 = 0 the following initial data:

V1n(0, x2) = ϕ1n(x) = e−
√

n cos nx2, V2n(0, x2) = ϕ2n(x) = e−
√

n sin nx2,

V3n(0, x2) = ϕ3n(x) = e−
√

n cos nx2, V4n(0, x2) = ϕ4n(x) = e−
√

n sin nx2.

At n → ∞, these initial data tend to zero. Moreover, their derivatives ϕ
(k)
1n (x), ϕ

(k)
2n (x),

ϕ
(k)
3n (x), ϕ

(k)
4n (x) of orders k = 1, 2, . . . , p tend to zero as n → ∞ (here, p− is an arbitrary fixed

natural number). Indeed,

ϕ1n(x) = ±nke−
√

n cos nx2

ϕ2n(x) = ±nke−
√

n sin nx2

}
, if k− is even,

ϕ1n(x) = ±nke−
√

n sin nx2

ϕ2n(x) = ±nke−
√

n cos nx2

}
, if k− is odd,
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ϕ3n(x) = ±nke−
√

n cos nx2

ϕ4n(x) = ±nke−
√

n sin nx2

}
, if k− is even,

ϕ3n(x) = ±nke−
√

n sin nx2

ϕ4n(x) = ±nke−
√

n cos nx2

}
, if k− is odd.

On the other hand, V1n(x1, x2), V2n(x1, x2), V3n(x1, x2), V4n(x1, x2) is unbounded for any x1.
We see that no matter what norm we choose to estimate the value of the initial data, we will not

be able to assert that the smallness of this norm implies the smallness of the solution (the solution is
estimated here by the maximum of its modulus). As admissible norms for the initial data, we here
admit the following norms:

‖ϕ1(x)‖p = max
0≤k≤p

sup
x2

∣∣∣ϕ(k)
1 (x)

∣∣∣,
‖ϕ2(x)‖p = max

0≤k≤p
sup

x2

∣∣∣ϕ(k)
2 (x)

∣∣∣,
‖ϕ3(x)‖p = max

0≤k≤p
sup

x2

∣∣∣ϕ(k)
3 (x)

∣∣∣,
‖ϕ4(x)‖p = max

0≤k≤p
sup

x2

∣∣∣ϕ(k)
4 (x)

∣∣∣.
That is, there is no continuous dependence on the initial data and, therefore, the problem is

set incorrectly. Thus, this problem does not have stability properties and, therefore, is ill-posed. We have
seen that the solution of the Cauchy problem for this system is unstable. If we narrow the class of
solutions under consideration to a compact set, then the problem becomes conditionally well-posed.
To estimate the conditional stability, we can apply the results of the above theorems.

Example 2. Let a system of partial differential equations of first order of the form

∂V1

∂x1
− ∂V2

∂x2
+ iV4 = 0,

∂V1

∂x2
+

∂V2

∂x1
+ iV3 = 0,

−∂V3

∂x1
+

∂V4

∂x2
− iV2 = 0,

∂V3

∂x2
+

∂V4

∂x1
+ iV1 = 0.

Check that the following relation holds:

D∗(ξT)D(ξT) = E((|ξ|2 + λ2)v0), v0 = (1, . . . , 1) ∈ Rn. (68)

Assuming
∂

∂x1
→ ξ1 and

∂

∂x2
→ ξ2, compose the following matrices

D(ξT) =


ξ1 ξ2 0 i
−ξ2 ξ1 − i 0

0 i − ξ1 ξ2
i 0 ξ2 ξ1

, D∗(ξT) =


ξ1 − ξ2 0 − i
ξ2 ξ1 − i 0
0 i − ξ1 ξ2
−i 0 ξ2 ξ1

.

The relation (68) is easily checked.
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4. Conclusions

We have explicitly determined a regularized solution of the Cauchy problem for the
matrix factorization Helmholtz’s equation in an unbounded two-dimensional domain.

We specify that the approximate values of V(x) and
∂V(x)

∂xj
, x ∈ Ω, j ∈ {1, 2} must be

determined, for solving applicable problems.

We have built a vector-functions family V(x, fδ) = Vσ(δ)(x) and
∂V(x, fδ)

∂xj
=

∂Vσ(δ)(x)
∂xj

,

(j ∈ {1, 2}) depending on σ (which is a parameter) and we have proved that for certain

choices of σ = σ(δ), δ→ 0, and under certain conditions, the family Vσ(δ)(x) and
∂Vσ(δ)(x)

∂xj

converges to V(x) and respectively to
∂V(x)

∂xj
, x ∈ Ω. Hence, Vσ(δ)(x) and

∂Vσ(δ)(x)
∂xj

determine the regularization of the solution of problems (1) and (2).
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