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Abstract: Gradient Learning (GL), aiming to estimate the gradient of target function, has attracted
much attention in variable selection problems due to its mild structure requirements and wide
applicability. Despite rapid progress, the majority of the existing GL works are based on the empirical
risk minimization (ERM) principle, which may face the degraded performance under complex data
environment, e.g., non-Gaussian noise. To alleviate this sensitiveness, we propose a new GL model
with the help of the tilted ERM criterion, and establish its theoretical support from the function
approximation viewpoint. Specifically, the operator approximation technique plays the crucial role in
our analysis. To solve the proposed learning objective, a gradient descent method is proposed, and the
convergence analysis is provided. Finally, simulated experimental results validate the effectiveness
of our approach when the input variables are correlated.

Keywords: gradient learning; operator approximation; reproducing kernel Hilbert spaces; tilted
empirical risk minimization

1. Introduction

Data-driven variable selection aims to select informative features related with the
response in high-dimensional statistics and plays a critical role in many areas. For example,
if the milk production of dairy cows can be predicted by the blood biochemical indexes, then
the doctors are eager to know which indexes can drive the milk production because each of
them is independently measured with additional burden. Therefore, an explainable and
interpretable system to select the effective variables is critical to convince domain experts.
Currently, the methodologies on variable selection methods can be roughly divided into
three categories including linear models [1–3], nonlinear additive models [4–6], and partial
linear models [7–9]. Although achieving promising performance in some applications,
these methods mentioned above still suffer from two main limitations. Firstly, the target
function of these methods is restricted on the assumption of specific structures. Secondly,
these methods cannot revive how the coordinates vary with respect to each other. As an
alternative, Mukherjee and Zhou [10] proposed the gradient learning (GL) model, which
aims to learn the gradient functions and enjoys the model-free property.

Despite the empirical success [11–13], there are still some limitations of the GL model,
such as high computational cost, lacking the sparsity in high-dimensional data and lacking
the robustness to complex noises. To this end, several variants of the GL model have
been devoted to developing alternatives for individual purposes. For example, Dong and
Zhou [14] proposed a stochastic gradient descent algorithm for learning the gradient and
demonstrated that the gradient estimated by the algorithm converges to the true gradi-
ent. Mukherjee et al. [15] provided an algorithm to reduce dimension on manifolds for
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high-dimensional data with few observations. They obtained generalization error bounds
of the gradient estimates and revealed that the convergence rate depends on the intrinsic
dimension of the manifold. Borkar et al. [16] combined ideas from Spall’s Simultaneous
Perturbation Stochastic Approximation with compressive sensing and proposed to learn
the gradient with few function evaluations. Ye et al. [17] originally proposed a sparse
GL model to further address the sparsity for high-dimensional variable selection of the
estimated sparse gradients. He et al. [18] developed a three-step sparse GL method which
allows for efficient computation, admits general predictor effects, and attains desirable asymp-
totic sparsistency. Following the research direction of robustness, Guinney et al. [19] provided
a multi-task model which are efficient and robust for high-dimensional data. In addition,
Feng et al. [20] provided a robust gradient learning (RGL) framework by introducing a robust
regression loss function. Meanwhile, a simple computational algorithm based on gradient
descent was provided, and the convergence of the proposed method is also analyzed.

Despite rapid progress, the GL model and its extensions mentioned above are es-
tablished under the framework of empirical risk minimization (ERM). While enjoying
the nice statistical properties, ERM usually performs poorly in situations where average
performance is not an appropriate surrogate for the problem of interest [21]. Recently,
a novel framework, named tilted empirical risk minimization (TERM), is proposed to
flexibly address the deficiencies in ERM [21]. By using a new loss named t-tilted loss, it has
been shown that TERM (1) can increase or decrease the influence of outliers, respectively,
to enable fairness or robustness; (2) has variance reduction properties that can benefit gen-
eralization; and (3) can be viewed as a smooth approximation to a superquantile method.
Considering these strength, we propose to investigate the GL under the framework of
TERM. The main contributions of this paper can be summarized as follows:

• New learning objective. We propose to learn the gradient function under the frame-
work of TERM. Specifically, the t-tilted loss is embedded into the GL model. To the
best of our knowledge, it may be the first endeavor in this topic.

• Theoretical guarantees. For the new learning objective, we estimate the generalization
bound by error decomposition and operator approximation technique, and further
provide the theoretical consistency and the convergence rate. To be specific, the con-
vergence rate can recover the result of traditional GL as t tends 0 [10].

• Efficient computation. A gradient descent method is provided to solve the proposed
learning objective. By showing the smoothness and strongly convex of the learning
objective, the convergence to the optimal solution is proved.

The rest of this paper is organized as follows: Section 2 proposes the GL with t-tilted
loss (TGL) and states the main theoretical results on the asymptotic estimation. Section 3
provides the computational algorithm and its convergence analysis. Numerical experiments
on synthetic data sets will be implemented in Section 4. Finally, Section 5 closes this paper
with some conclusions.

2. Learning Objective

In this section, we introduce TGL and provide the main theoretical results on the
asymptotic estimation.

2.1. Gradient Learning with t-Tilted Loss

Let X be a compact subset of Rn and Y ∈ R. Assume that ρ is a probability measure
on Z := X×Y. It induces the marginal distribution ρX on X and conditional distributions
ρ(·|x) at x ∈ X. Denote L2

ρX
as the L2 space with the metric ‖ f ‖ρ = (

∫
X | f (x)|2dρX)

1/2. In
addition, the regression function fρ : X → Y associated with ρ is defined as

fρ(x) =
∫

Y
ydρ(y|x), x ∈ X.
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For x = (x1, x2, . . . , xn)T ∈ X, the gradient of fρ is the vector of functions (if the partial
derivatives exist)

∇ fρ =

(
∂ fρ

∂x1 ,
∂ fρ

∂x2 , . . . ,
∂ fρ

∂xn

)T

.

The relevance between the l-th coordinate and fρ can be evaluated via the norm of its

partial derivative ‖ ∂ fρ

∂xl ‖, where a large value implies a large change in the function fρ with
respect to a sensitive change in the l-th coordinate. This fact gives an intuitive motivation
for the GL. In terms of Taylor series expansion, the following equation holds:

fρ(x) ≈ fρ(x̃) +∇ fρ(x̃) · (x− x̃), (1)

for x ≈ x̃ and x, x̃ ∈ X. Inspired by (1), we denote the weighted square loss of ~f as

V(~f , z, z̃) = ω(x, x̃)
(
ỹ− y + ~f (x̃)T(x− x̃)

)2, ~f ∈ (L2
ρX
)n, z, z̃ ∈ Z, (2)

where the restriction x ≈ x̃ will be enforced by weights ω(x, x̃) given by 1
sn+2 e−|x−x̃|2/2s2

with a constant 0 < s ≤ 1, see, e.g., [10,11,19]. Then, the expected risk of ~f can be given by

E(~f ) =
∫

Z

∫
Z

V(~f , z, z̃)dρ(z)dρ(z̃). (3)

As mentioned in [21], the ~f defined in (3) usually performs poorly in situations where
average performance is not an appropriate surrogate. Inspired from [21], for t ∈ R\0, we
address the deficiencies by introducing the t-tilted loss and define the expected risk of ~f
with t-tilted loss as

E(~f , t) =
1
t

log
∫

Z

∫
Z

etV(~f ,z,z̃)dρ(z)dρ(z̃). (4)

Remark 1. Note that t ∈ R\0 is a real-valued hyperparameter, and it can encompass a family of
objectives which can address the fairness (t > 0) or robustness (t < 0) by different choices. In
particular, it recovers the expected risk (3) as t→ 0.

On this basis, the GL with t-tilted loss is formulated as the following regularization scheme:

~fλ,t = arg min
~f∈Hn

K

{E(~f , t) + λ‖~f ‖2
K}, (5)

where λ > 0 is a regularization parameter. Here, K : X× X → R is a Mercer kernel that is
continuous, symmetric, and positive semidefinite [22,23] andHK induced by K be an RKHS
defined as the closure of the linear span of the set of functions {Kx := K(x, ·) : x ∈ X} with
the inner product 〈·, ·〉K satisfying 〈Kx, Kx̃〉K = K(x, x̃). The reproducing property takes
the form 〈Kx, f 〉K = f (x), ∀x ∈ X, ∀ f ∈ HK. Then, we denoteHn

K as an n-fold RKHS with
the inner product

〈~f ,~h〉K =
n

∑
l=1
〈 f l , hl〉K, ~f = ( f 1, f 2, . . . , f n)T, ~h = (h1, h2, . . . , hn)T ∈ Hn

K,

and norm ‖~f ‖2
K = 〈~f , ~f 〉K.

2.2. Main Results

This subsection states our main theoretical results on the asymptotic estimation of
‖~fλ,t −∇ fρ‖ρ on the space (L2

ρX
)n with norm ‖~f ‖ρ = (∑n

l=1 ‖ f l‖2
ρ)

1/2. Before proceeding,
we provide some necessary assumptions which have been used extensively in machine
learning literature, e.g., [24,25].
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Assumption 1. Supposing that ∇ fρ ∈ Hn
K and the kernel K is C3, there exists a constant cυ > 0

such that
| fρ(x)− fρ(x̃)−∇ fρ(x̃)T(x− x̃)| ≤ cυ|x− x̃|2, ∀x, x̃ ∈ X. (6)

Assumption 2. Assume |y| ≤ M, |x| ≤ MX almost surely. Suppose that, for some ς ∈ (0, 2
3 ),

cl , ch > 0, the marginal distribution ρX satisfies

ρX({x ∈ X : inf
x̃∈Rn\X

|x− x̃| ≤ s}) ≤ c2
hs4ς, ∀s > 0, (7)

and the density p(z) of dρ(z) exists and satisfies

cl ≤ p(z) ≤ ch, |p(z)− p(z̃)| ≤ ch|z− z̃|ς, ∀z, z̃ ∈ Z. (8)

Taking the functional derivatives of (5), we know that ~fλ,t can be expressed in terms of
the following integral operator on the space (L2

ρX
)n.

Definition 1. Let integral operator LK,s : (L2
ρX
)n → (L2

ρX
)n be defined by

LK,s~f =
∫

Z

∫
Z

φ(z, z̃)ω(x, x̃)
(
~f (x̃)T(x− x̃)

)
Kx̃(x− x̃)dρ(z̃)dρ(z), (9)

where
φ(z, z̃) =

( ∫
Z

∫
Z

etV(~fλ,t ,u,v)dρ(u)dρ(v)
)−1

etV(~fλ,t ,z,z̃).

The operator LK,s has its range inHn
K. It can also be regarded as a positive operator on

Hn
K. We shall use the same notion for the operators on these two different domains. Given

the definition of integral operator LK,s, we can write ~fλ,t in the following equation.

Theorem 1. Given the integral operator LK,s, we have the following relationship:

~fλ,t = (LK,s + λI)−1~fρ,s, (10)

where ~fρ,s =
∫

Z

∫
Z φ(z, z̃)ω(x, x̃)

(
fρ(x) − fρ(x̃)

)
Kx̃(x − x̃)dρ(z̃)dρ(z), and I is the

identity operator.

Proof of Theorem 1. To solve the scheme (5), we take the functional derivative with respect
to ~f , apply it to an element δ~f ofHn

K and set it equal to 0. We obtain∫
Z

∫
Z

φ(z, z̃)ω(x, x̃)
(
ỹ− y + ~fλ,t(x̃)T(x− x̃)

)
δ~f (x̃)T(x− x̃)dρ(z̃)dρ(z) + λ〈~fλ,t, δ~f 〉K = 0.

Since it holds for any δ~f ∈ Hn
K, it is trivial to obtain∫

Z

∫
Z

φ(z, z̃)ω(x, x̃)
(
ỹ− y + ~fλ,t(x̃)T(x− x̃)

)
Kx̃(x− x̃)dρ(z̃)dρ(z) + λ~fλ,t = 0

and
λ~fλ,t + LK,s~fλ,t = ~fρ,s.

The desired result follows by shifting items.

On this basis, we propose to bound the error ‖~fλ,t −∇ fρ‖ρ by a functional analysis
approach and present the error decomposition as following proposition. The proof is
straightforward and omitted for brevity.
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Proposition 1. For the ~fλ,t defined in (5), it holds that

‖~fλ,t −∇ fρ‖ρ ≤ ‖~fλ,t −∇ fρ + λ(LK,s + λI)−1∇ fρ‖ρ + ‖λ(LK,s + λI)−1∇ fρ‖ρ. (11)

In the sequel, we focus on bounding ‖~fλ,t−∇ fρ + λ(LK,s + λI)−1∇ fρ‖ρ and ‖λ(LK,s +
λI)−1∇ fρ‖ρ, respectively. Before we embark on the proof, we single out a important
property regarding φ(z, z̃) that will be useful in later proofs.

Lemma 1. Under the Assumptions 1 and 2, there exists Bt and At dependent on t satisfying

Bt = e−8|t|(M2+CK MX) ≤ φ(z, z̃) ≤ At = e8|t|(M2+CK MX). (12)

Proof of Lemma 1. Since the kernel K is C3 and ~fλ,t ∈ Hn
K, we know from Zhou [26] that

f l
λ,t is C1 for each l. There exists a constant CK satisfying |~fλ,t(x)|2 ≤ CK, ∀x ∈ X. Hence,

using Cauchy inequality, we have

V(~fλ,t, z, z̃) = ω(x̃, x)
(
ỹ− y + ~fλ,t(x̃)T(x− x̃)

)2

≤ 2(4M2 + |~fλ,t(x̃)|2|x− x̃|2)
≤ 8(M2 + CK MX).

By a direct computation, we obtain

e−8|t|(M2+CK MX) ≤
( ∫

Z

∫
Z

etV(~fλ,t ,u,v)dρ(u)dρ(v)
)−1

etV(~fλ,t ,z,z̃) ≤ e8|t|(M2+CK MX).

The desired result follows.

Denote κ = supx∈X K(x, x) and the moments of the Gaussian as Jp =
∫
Rn e−

|x|2
2 |x|pdx,

p = 1, 2, 3, · · · , we establish the following Lemma.

Lemma 2. Under Assumptions 1 and 2, we have

‖~fλ,t −∇ fρ + λ(LK,s + λI)−1∇ fρ‖K ≤ 2M
s
λ

κcυch J3 At. (13)

Proof of Lemma 2. Taking notice of (10), it follows that

~fλ,t −∇ fρ + λ(LK,s + λI)−1∇ fρ = (LK,s + λI)−1(~fρ,s − LK,s∇ fρ).

Then, we have

‖~fλ,t −∇ fρ + λ(LK,s + λI)−1∇ fρ‖K ≤‖(LK,s + λI)−1‖K‖~fρ,s − LK,s∇ fρ‖K

≤ 1
λ
‖~fρ,s − LK,s∇ fρ‖K.

We note that

Jpsp−2 =
∫
Rn

ω(x, x̃)|x− x̃|pdx̃ =
∫
Rn

1
sn+2 e

−|x−x̃|2
2s2 |x− x̃|pdx̃, p = 2, 3, · · · .

From Assumptions 1 and 2, we have

‖~fρ,s − LK,s∇ fρ‖K ≤
∫

Z

∫
Z

ω(x, x̃)|x− x̃|3φ(z, z̃)‖Kx̃‖Kcυdρ(z)dρ(z̃) ≤ 2Msκcυch J3 At.

The desired result follows.
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As for ‖λ(LK,s + λI)−1∇ fρ‖ρ, the multivariate mean value theorem ensures that there
exists Rt(z̃) = φ

(
z̃, ηz

)
, ηz ∈ Rn ×Y, such that

∫
Z

∫
Rn×Y

e−
|x−x̃|2

2s2
|x− x̃|2

s2+n φ(z, z̃)Kx̃~f (x̃)p(z̃)dzdρ(z̃)

=
∫

Z

∫
Rn×Y

e−
|x−x̃|2

2s2
|x− x̃|2

s2+n Rt(z̃)Kx̃~f (x̃)p(z̃)dzdρ(z̃).
(14)

From (14), we can define the integral operator associated with the Mercer kernel
K which is related to LK,s. Using Lemma 16 and Lemma 18 in [10], we establish the
following Lemma.

Lemma 3. Under the Assumption 2, denote cρ =
(
2MAtκ

2ch(2J2+ς + J4 + ch J2)
) 1

ς and

Vp =
∫

Z(p(z))2Rt(z)dz. For any 0 < s ≤ min{cρλ
1
ς , 1}, we have

‖λ(LK,s + λI)−1∇ fρ‖ρ ≤ 2
√

λ(Vpn(2π)
n
2 M)−

1
2 ‖L−

1
2

K ∇ fρ‖ρ, (15)

where LK is a positive operator on (L2
ρX
)n defined by

LK~f =
∫

Z
Kx~f (x)

p(z)Rt(z)
Vp

dρ(z), ~f ∈ (L2
ρ)

n.

Proof of Lemma 3. To estimate (15), we need to consider the convergence of LK,s as s→ 0.
Denote the stepping stone

~g =
∫

Z

∫
Z

ω(x, x̃)(x− x̃)Rt(z̃)Kx̃(x− x̃)T~f (x̃)p(z̃)dzdρ(z̃),

we deduce that

‖LK,s~f − 2MVpn(2π)
n
2 LK~f ‖K ≤ ‖LK,s~f −~g +~g− 2MVpn(2π)

n
2 LK~f ‖K

≤ ‖LK,s~f −~g‖K + ‖~g− 2MVpn(2π)
n
2 LK~f ‖K.

Using the multivariate mean value theorem, there exists zζ , zσ ∈ Rn ×Y, such that

‖LK,s~f −~g‖K =

∥∥∥∥p(zζ)
∫

Z

∫
Rn×Y

Rt(z̃)ω(x, x̃)
(
~f (x̃)T(x− x̃)

)
Kx̃(x− x̃)dzdρ(z̃)

−
∫

Z

∫
Z

ω(x, x̃)(x− x̃)Rt(z̃)Kx̃(x− x̃)T~f (x̃)p(z̃)dzdρ(z̃)
∥∥∥∥

K

≤
∥∥∥∥p(zζ)

∫
Z

∫
Rn×Y

Rt(z̃)ω(x, x̃)
(
~f (x̃)T(x− x̃)

)
Kx̃(x− x̃)dzdρ(z̃)

−
∫

Z

∫
Rn×Y

Rt(z̃)ω(x, x̃)
(
~f (x̃)T(x− x̃)

)
Kx̃(x− x̃)p(z)dzdρ(z̃)

∥∥∥∥
K

+

∥∥∥∥ ∫Z

∫
Z

Rt(z̃)ω(x, x̃)
(
~f (x̃)T(x− x̃)

)
Kx̃(x− x̃)(p(z)− p(z̃))dzdρ(z̃)

∥∥∥∥
K

≤
∥∥∥∥p(zζ)− p(zσ)

∫
Z

∫
Rn×Y

Rt(z̃)ω(x, x̃)
(
~f (x̃)T(x− x̃)

)
Kx̃(x− x̃)dzdρ(z̃)

∥∥∥∥
K

+

∥∥∥∥ ∫Z

∫
Z

Rt(z̃)ω(x, x̃)
(
~f (x̃)T(x− x̃)

)
Kx̃(x− x̃)(p(z)− p(z̃))dzdρ(z̃)

∥∥∥∥
K

≤4Msςκch J2+ς‖~f ‖ρ At.
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Noticing n(2π)
n
2 = J2, we have

2Vpn(2π)
n
2 MLK~f =

∫
Z

∫
Rn×Y

ω(x, x̃)Rt(z̃)Kx̃~f (x̃)(x− x̃)T(x− x̃)p(z̃)dzdρ(z̃).

Then, by (7), we can obtain the following conclusion from Lemma 16 in [10] when
0 ≤ s ≤ 1,

‖~g− 2MVpn(2π)
n
2 LK~f ‖K ≤

∥∥∥∥ ∫Z

∫
(Rn×Y)\Z ω(x, x̃)Rt(z̃)Kx̃~f (x̃)p(z̃)|x− x̃|2dzdρ(z̃)

∥∥∥∥
K

≤ 2Mcρ At
∫

X

∫
Rn\X ω(x, x̃)Kx̃|~f (x̃)||(x− x̃)|2dxdρX(x̃)

≤ 2Msςκch(J4 + ch J2)‖~f ‖ρ At.

Combining the above two estimates, there holds for any 0 ≤ s ≤ 1,

‖LK,s − 2MVpn(2π)
n
2 LK‖K ≤ 2MAtκ

2chsς(2J2+ς + J4 + ch J2). (16)

Using Lemma 18 in [10] and (16), the desired result follows.

Since the measure dρ̃ =
∫

Y
p(z)Rt(z)

Vp
dρ is probability one on X, we know that the

operator LK can be used to define the reproducing kernel Hilbert space [22]. Let L1/2
K be the

1
2 -th power of the positive operator LK on (L2

ρ̃)
n with norm ‖~f ‖ρ̃ = (∑n

l=1 ‖ f l‖2
ρ̃)

1/2 having

a range inHn
K, where ‖ f l‖ρ̃ = (

∫
X | f

l(x)|2dρ̃)1/2. Then,Hn
K is the range of L1/2

K :

‖~f ‖ρ̃ = ‖L1/2
K

~f ‖K, ~f ∈ (L2
ρ̃)

n. (17)

The assumption we shall use is ‖L−1/2
K ∇ fρ‖ρ̃ < ∞. It means that ∇ fρ lies in the range

of L1/2
K . Finally, we can give the upper bound of the error ‖~fλ,t −∇ fρ‖ρ.

Theorem 2. Under the Assumptions 1 and 2, choose λ = m−
τ

n+2+3τ and s = (κch)
2
ζ m−

1
n+2+3τ .

For any m ≥ (κch)
2(n+2+3τ)/τ , there exists a constant Cρ,K such that we have

‖~fλ,t −∇ fρ‖ρ ≤ Cρ,K
At√
Bt

(
1
m

) ζ
2n+4+6ζ

. (18)

Proof of Theorem 2. Using Cauchy inequality, for ~f = ( f 1, f 2, . . . , f n)T ∈ (L2
ρX
)n, we have

∫
X

(
f l(x)

)2
dρX(x) ≤

( ∫
Z

(
f l(x)

)2 p(z)Rt(z)
Vp

dρ(z)
) 1

2
( ∫

Z

(
f l(x)

)2 Vp

p(z)Rt(z)
dρ(z)

) 1
2

≤

√
Vp

cl Bt

( ∫
Z

(
f l(x)

)2 p(z)Rt(z)
Vp

dρ(z)
) 1

2
( ∫

X

(
f l(x)

)2
dρX(x)

) 1
2
.

It means that

( ∫
X

(
f l(x)

)2
dρX(x)

) 1
2 ≤

√
Vp

cl Bt

( ∫
Z

(
f l(x)

)2 p(z)Rt(z)
Vp

dρ(z)
) 1

2
.

According to the definitions of ‖ f l‖ρ and ‖ f l‖ρ̃, it is trivial to obtain

‖~f ‖ρ ≤

√
Vp

cl Bt
‖~f ‖ρ̃. (19)
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Since s = (κch)
2
ζ λ

1
ζ , λ = ( 1

m )
ζ

n+2+3ζ , we see from the fact J2 > 1 that the restriction

0 < s ≤ min{cρλ
1
ζ , 1} in Lemma 3 is satisfied for m ≥ (κch)

2(n+2+3τ)/τ . Then, combining
Lemma 2, Lemma 3, Equation (17) and inequality (19), we have

‖~fλ,t −∇ fρ‖ρ ≤‖~fλ,t −∇ fρ + λ(LK,s + λI)−1∇ fρ‖ρ + ‖λ(LK,s + λI)−1∇ fρ‖ρ

≤κ‖~fλ,t −∇ fρ + λ(LK,s + λI)−1∇ fρ‖K + ‖λ(LK,s + λI)−1∇ fρ‖ρ

≤2M
s
λ

κ2cυch J3 At + 2

√
Vp

cl Bt

√
λ(MVpn(2π)

n
2 )−

1
2 ‖∇ fρ‖K

≤Cρ,K
At√
Bt

(
1
m

) ζ
2n+4+6ζ

,

where Cρ,K =
(
(2κch)

2
ζ + 2

)
max{Mκ2cυch J3,

√
Vp
cl
(MVpn(2π)

n
2 )−

1
2 CK}.

Remark 2. Theorem 2 shows when m→ +∞, ‖~fλ,t−∇ fρ‖ρ → 0. This means that the scheme (5)
is consistent. In addition, At and Bt tend to 1 as t tends 0, we can see that the convergence rate
of Scheme (5) is − ζ

2n+4+6ζ , which is consistent with previous result in [10]. It means that the
proposed method can be regarded as an extension of traditional GL.

3. Computing Algorithm

In this section, we present the GL model under TERM and propose to use the gradient
descent algorithm to find the minimizer. Finally, the convergence of the proposed algorithm
is also guaranteed.

Given a set of observations z = {zi = (xi, yi)}m
i=1 ∈ Zm independently drawn accord-

ing to ρ and assume that the RKHS are rich that the kernel matrix K = (K(xi, xj))
m
i,j=1 is

strictly positive definite [27]. According to the Representer Theorem of kernel methods [28],
we assert the approximation of ~fλ,t has the following form:
∑m

i=1 ciKxi , ci = (c1
i , . . . , cn

i )
T ∈ Rn. Let c = (cT1 , . . . , cTm)T ∈ Rmn, the empirical version

of (4) is formulated as follows:

cz,λ := arg min
c∈Rmn

{
Ez(c, t) + λ

∥∥ m

∑
i=1

ciKxi

∥∥2
K

}
, (20)

where

Ez(c, t) =
1
t

log

(
1

m2

m

∑
i,j=1

exp
{

tω(xi, xj)
(
yi − yj +

m

∑
p=1

K(xp, xi)x̂ijcp
)2
})

,

with x̂ij = (xj − xi)
T. For simplicity, we denote

Vz(c, zi, zj) = ω(xi, xj)
(
yi − yj +

m

∑
p=1

K(xp, xi)x̂ijcp
)2

and
φz(c, zi, zj) = exp

{
t
(
Vz(c, zi, zj)− Ez(c, t)

)}
.

The gradients of Ez(c, t) and ‖∑m
i=1 ciKxi‖2

K at c are given by

∇cEz(c, t) =
1

m2

m

∑
i,j=1

φz(c, zi, zj)2ω(xi, xj)
(
yi − yj +

m

∑
p=1

K(xp, xi)x̂ijcp
)
×

(
K(x1, xi)x̂ij, . . . , K(xm, xi)x̂ij

)T,
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and

∇c
∥∥ m

∑
i=1

ciKxi

∥∥2
K = 2

m

∑
i=1

(
K(xi, x1)cTi , . . . , K(xi, xm)cTi

)T.

Correspondingly, scheme (20) can be solved via the following gradient method:

ck = ck−1 − α

(
∇cEz(ck−1, t) + λ∇c

∥∥ m

∑
i=1

ci,k−1Kxi

∥∥2
K

)
, (21)

where ck = (cT1,k, . . . , cTm,k)
T ∈ Rmn is the calculated solution at iteration k, and α is the

step-size. The detailed gradient descent scheme is stated in Algorithm 1. To prove the
convergence, we introduce the following lemma derived from Theorem 1 in [29].

Lemma 4. When h(c) has an γ-Lipschitz continuous gradient (γ-smoothness) and is µ-strongly
convex, for the basic unconstrained optimization problem c∗ = arg min h(c), the gradient descent
algorithm ck = ck−1 − 1

γ∇h(ck−1) with a step-size of 1/γ has a global linear convergence rate

h(ck)− h(c∗) ≤
(
1− µ

γ

)k(h(c0)− h(c∗)
)
.

Algorithm 1 Gradient descent for the Gradient Learning under TERM

Input : data {(xi, yi)}m
i=1, regularization parameter λ > 0, initial guess

c0 = (0, 0, · · · , 0)T, ε > 0, step-size α, t, weight matrix (ω(xi, xj))
m
i,j=1,

kernel matrix (K(xi, xj))
m
i,j=1.

Output : the learned gradient coefficients ck.

while the stopping criterion |ck − ck−1| ≤ ε is not satisfied do
• Compute the loss for i, j = 1, . . . , m

Vz(ck, zi, zj) = ω(xi, xj)
(
yi − yj +

m

∑
p=1

K(xp, xi)x̂ijck
p
)2.

• Compute the gradient of the loss for i, j = 1, . . . , m

∇cVz(ck, zi, zj) = 2ω(xi, xj)
(
yi − yj + ∑m

p=1 K(xp, xi)x̂ijck
p
)
×(

K(x1, xi)x̂ij, . . . , K(xm, xi)x̂ij
)T.

• Compute the gradient of the ‖∑m
i=1 ck

i Kxi‖2
K

∇c
∥∥ m

∑
i=1

ck
i Kxi

∥∥2
K = 2

m

∑
i=1

(
K(xi, x1)ck

i
T

, . . . , K(xi, xm)ck
i
T)T.

• Compute the descent step:

ck+1 ← ck − α(
1

m2

m

∑
i,j=1

φz

(
ck, zi, zj)∇cVz(ck, zi, zj) + λ∇c

∥∥ m

∑
i=1

ck
i Kxi

∥∥2
K

)
,

and set k = k + 1.

end

From Lemma 4, we obtain the following conclusion which states that the proposed
algorithm converges to (20) by choosing a suitable step size α.

Theorem 3. Denote L(c, t) = Ez(c, t) + λ‖∑m
i=1 ciKxi‖2

K, βmax, βmin are the maximum and
minimum eigenvalues of kernel matrix K, respectively. There exist µ ∈ R+ and γ ∈ R+ dependent
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on t such that L(ck, t) is γ-smoothness and µ-strongly convex for any t > (−nλβmin/64(M2 +
CK MX)M2

Xmκ4). In addition, let the minimizer cz,λ defined in scheme (20) and {ck} be the
sequence generated by Algorithm 1 with α = 1/γ, we have

L(ck, t)− L(cz,λ, t) ≤
(
1− µ

γ

)k(L(c0, t)− L(cz,λ, t)
)
. (22)

Proof of Theorem 3. Note that the strong convexity and the smoothness are related to the
Hessian Matrix, and we provide the proof by dividing the Hessian Matrix into three parts:

∇2
ccT L(c, t) =

t
m2

m

∑
i,j=1

φz(c, zi, zj)
(
∇cVz(c, zi, zj)−∇cEz(c, t)

)
∇cVz(c, zi, zj)

T

︸ ︷︷ ︸
E1

+
1

m2

m

∑
i,j=1

φz(c, zi, zj)∇2
ccTVz(c, zi, zj)︸ ︷︷ ︸

E2

+ λ∇2
ccT‖

m

∑
i=1

ciKxi‖
2
K︸ ︷︷ ︸

E3

.
(23)

(1) Estimation on E1: Note that m2∇cEz(c, t) = ∑m
i,j=1 φz(c, zi, zj)∇cVz(c, zi, zj) and

∑m
i,j=1 φz(c, zi, zj) = m2. It follows that

m

∑
i,j=1

φz(c, zi, zj)(∇cVz(c, zi, zj)−∇cEz(c, t))∇T
c Ez(c, t) = 0.

Hence, we can get the following equation:

E1 =
t

m2

m

∑
i,j=1

φz(c, zi, zj)(∇cVz(c, zi, zj)−∇cEz(c, t))(∇cVz(c, zi, zj)−∇cEz(c, t))T. (24)

Similar to the proof of Lemma 1, for i, j = 1, . . . , m, it directly follows that

ω(xi, xj)
(
yi − yj +

m

∑
p=1

K(xp, xi)x̂ijcp
)
≤ 2

√
2(M2 + CK MX).

Note that, for i, j = 1, . . . , m, ∇cVz(c, zi, zj)∇cVz(c, zi, zj)
T has a sole eigenvalue,

it means
∇cVz(c, zi, zj)∇cVz(c, zi, zj)

T �32(M2 + CK MX)M2
Xmκ4 Imn, (25)

and we have

(∇cVz(c, zi, zj)−∇cEz(c, t))T(∇cVz(c, zi, zj)−∇cEz(c, t)) ≤ 128(M2 + CK MX)M2
Xmκ4.

It means that the maximum eigenvalue of E1 is 128t(M2 + CK MX)M2
Xmκ4. Then, the

following inequations are satisfied{
0mn � E1 � 128t(M2 + CK MX)M2

Xmκ4 Imn, t > 0;
128t(M2 + CK MX)M2

Xmκ4 Imn � E1 � 0mn, t < 0,
(26)

where 0mn is the mn×mn matrix with all elements zero.
(2) Estimation on E2: Note that ∇2

ccTVz(c, zi, zj) can be rewritten as

2ω(xi, xj)
(
K(x1, xi)x̂ij, . . . , K(xm, xi)x̂ij

)(
K(x1, xi)x̂ij, . . . , K(xm, xi)x̂ij

)T.
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Similar to (25), we have ∇2
ccTVz(c, zi, zj) � 2κ4M2

x Imn. It follows

0mn � E2 � 2κ4M2
x Imn. (27)

(3) Estimation on E3: By a direct computation, we have

E3 = 2λ


InK(x1, x1) InK(x1, x2) . . . InK(x1, xm)
InK(x2, x1) InK(x2, x2) . . . InK(x2, xm)

...
...

. . .
...

InK(xm, x1) InK(xm, x2) . . . InK(xm, xm)

.

Setting Q = (q11, q21, . . . , qn1, . . . , q1m, q2m, . . . , qnm)T ∈ Rmn, we deduce that

QTE3Q = 2λ
n

∑
l=1

m

∑
i=1

m

∑
j=1

K(xi, xj)qliql j.

Note that the matrix of quadratic form ∑m
i=1 ∑m

j=1 K(xi, xj)qliql j is K, then we can obtain

2λnβmin Imn � E3 � 2λnβmax Imn. (28)

Combining (26), (27) and (28), there exist two constants

µ = min{2nλβmin + 128t(M2 + CK MX)M2
Xmκ4, 2nλβmin}

and
γ = max{128t(M2 + CK MX)M2

Xmκ4 + 2nλβmax, 2κ4M2
x + 2nλβmax}

satisfying that
µImn � ∇2

ccT L(c, t) � γImn.

Note µ > 0 as t > −nλβmin/64(M2 + CK MX)M2
Xmκ4, and it means that L(c, t) is

γ-smoothness and µ-strongly convex. The desired result follows by Lemma 4.

4. Simulation Experiments

In this section, we carry out simulation studies with the TGL model (t < 0 for ro-
bust) on a synthetic data set in the robust variable selection problem. Let the observa-
tion data set z = {zi = (xi, yi)}m

i=1 with xi = (x1
i , · · · , xn

i ) be generated by the following
linear equations:

yi = xi · w + ε,

where ε represents the outliers or noises. To be specific, three different noises are used:
Cauchy noise with the location parameter a = 2 and scale parameter b = 4, Chi-square
noise with 5 DOF scaled by 0.01 and Gaussian noise N (0, 0.3). Three different proportions
of outliers including 0%, 20%, or 40% are drawn from the Gaussian noise N (0, 100).
Meanwhile, we consider two different cases with (m, n) = (50, 50), (30, 80) corresponding
to m = n and m < n, respectively. The weighted vector w = (w1, · · · , wn) over different
dimensions is constructed as follows:

wl = 2 + 0.5 sin( 2πl
10 ), for l = 1, . . . , Nn and 0, otherwise.

Here, Nn = 30 means the number of effective variables. Two situations including un-
correlated variables x ∼ N (0n, In) and correlated variables x ∼ N (0n, Σn) are implemented
for x, where the covariance matrix Σn is given with the (l, p)th entry 0.5|l−p|.
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For the variable selection algorithms, we perform the TGL with t = 6× 10−6,−1,−10
and compare the traditional GL model [10] and RGL model [20]. For the GL and TGL
models, Nn variables are selected by ranking

rl =
‖ f l

z,λ‖2
K

∑n
p=1 ‖ f p

z,λ‖2
K

, l = 1, · · · , n.

For the RGL model, Nn variables are selected by ranking

rl =
∑m

i=1(c
l
i)

2

∑n
q=1 ∑m

i=1(c
q
i )

2
, l = 1, · · · , n.

A model selecting more effective variables (≤ Nn) means a better algorithm.
We repeat experiments for 30 times with the observation set z generated in each

circumstance. The average selected effective variables for different circumstances are
reported in Table 1, and the optimal results are marked in bold. Several useful conclusions
can be drawn from Table 1.

Table 1. Variable selection results for different circumstances.

Methods Uncorrelated Variables Correlated Variables
0% 20% 40% 0% 20% 40%

Cauchy noise GL 28.70 24.27 19.03 20.27 17.53 16.53
(m, n) = (50, 50) RGL 29.00 26.57 27.7 20.80 15.40 14.16

TGLt=6×10−6 29.63 24.06 18.04 20.67 17.00 16.23
TGLt=−1 29.53 26.07 26.00 21.07 17.6 17.13
TGLt=−10 29.53 24.23 24.03 16.93 15.78 15.67

Chi-square noise GL 29.40 24.73 20.37 18.40 17.93 16.03
(m, n) = (50, 50) RGL 29.63 26.90 27.60 19.90 16.10 14.67

TGLt=6×10−6 29.84 24.4 20.90 18.20 17.30 17.20
TGLt=−1 29.14 24.56 25.18 21.10 18.77 17.93
TGLt=−10 25.13 24.10 24.93 20.83 17.10 16.60

Gaussian noise GL 28.83 25.16 20.13 18.04 16.70 15.93
(m, n) = (50, 50) RGL 29.40 26.70 27.20 19.87 16.40 14.36

TGLt=6×10−6 29.23 25.23 20.20 18.37 17.76 16.3
TGLt=−1 27.63 26.20 25.90 21.06 18.40 17.90
TGLt=−10 22.9 25.23 25.06 21.43 17.13 16.23

Cauchy noise GL 29.60 11.33 12.30 11.93 11.57 10.97
(m, n) = (30, 80) RGL 29.87 29.97 29.93 16.50 16.97 15.20

TGLt=6×10−6 28.47 10.67 10.49 11.13 11.03 10.93
TGLt=−1 27.06 20.67 11.3 17.08 14.4 11.56
TGLt=−10 16.66 16.23 15.12 13.97 13.92 13.54

Chi-square noise GL 29.83 11.47 12.57 12.57 11.67 11.33
(m, n) = (30, 80) RGL 29.93 29.93 29.71 19.87 18.80 17.50

TGLt=6×10−6 29.03 11.10 12.90 12.50 10.87 11.43
TGLt=−1 29.37 23.60 23.53 16.08 14.4 11.40
TGLt=−10 28.17 23.33 23.23 13.97 13.92 13.54

Gaussian noise GL 29.77 11.83 12.27 12.92 12.44 11.54
(m, n) = (30, 80) RGL 29.70 29.93 29.93 19.73 13.67 9.83

TGLt=6×10−6 28.47 10.67 10.49 13.06 9.79 8.73
TGLt=−1 27.06 20.67 11.3 16.08 14.4 11.90
TGLt=−10 16.66 16.23 15.12 13.97 13.92 13.54

(1) When the input variables are uncorrelated, the three models have similar perfor-
mance under different noise conditions and can provide satisfactory variable selection
results (approaching Nn) without outliers. However, the performance degrades severely for
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GL and a little for TGL (t < 0 for robust) with the increasing proportions of outliers, espe-
cially in case (m, n) = (30, 80). In contrast, RGL can always provide satisfying performance.
This is consistent with the previous phenomenon [20].

(2) When the input variables are correlated, the three models also have similar per-
formance under different noise conditions but only can select partial effective variables
ranging from Nn/3 to 2Nn/3. In general, they degrade slowly with the increasing pro-
portions of outliers and perform better in case (m, n) = (50, 50) than in (m, n) = (30, 80).
Specifically, the TGL model with t = −1 gives slightly better selection results than GL and
RGL in case (m, n) = (50, 50). It supports the superiority of TGL to some extent.

(3) It is worth noting that the TGL model with t = 6× 10−6 has similar performance
to GL. This phenomenon supports the theoretical conclusion that TGL recovers the GL as
t → 0 and the algorithmic effectiveness that the proposed gradient descent method can
converge to the minimizer.

(4) Noting that the TGL model with different parameters t has great differences in the
variable selection results, we further conduct some simulation studies to investigate the
influence. Figure 1 shows the variable selection results of different parameters t ranging
from −100 to −0.1. We can see that the satisfying performance can be achieved when the
parameter t is near −1. It does not turn out well when |t| is too large. This coincides with
our previous discussion that L(c, t) is strongly convex with limited t.

(a) (m, n) = (50, 50) (b) (m, n) = (30, 80)

Figure 1. The influence of different t on the variable selection results.

5. Conclusions

In this paper, we have proposed a new learning objective TGL by embedding the t-tilted
loss into the GL model. On the theoretical side, we have established its consistency and
provided the convergence rate with the help of error decomposition and operator approximation
technique. On the practical side, we have proposed a gradient descent method to solve the
learning objective and provided the convergence analysis. Simulated experiments have verified
the theoretical conclusion that TGL recovers the GL as t→ 0 and the algorithmic effectiveness
that the proposed gradient descent method can converge to the minimizer. In addition, they also
demonstrated the superiority of TGL when the input variables are correlated. Along the line
of the present work, several open problems deserve further research—for example, using
the random feature approximation to scale up the kernel methods [30] and learning with
data-dependent hypothesis space to achieve a tighter error bound [31]. These problems are
under our research.
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