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Abstract: With the expansion of the scale and complexity of multimedia software, the detection of
software defects has become a research hotspot. Because of the large scale of the existing software
code, the efficiency and accuracy of the existing software defect detection algorithms are relatively low.
We propose an intelligent memory leak detection scheme MLD based on defect modes in software.
Based on the analysis of existing memory leak defect modes, we summarize memory operation
behaviors (allocation, release and transfer) and present a state machine model. We employ a fuzzy
matching algorithm based on regular expression to determine the memory operation behaviors and
then analyze the change in the state machine to assess the vulnerability in the source code. To improve
the efficiency of detection and solve the problem of repeated detection at the function call point, we
propose a function summary method for memory operation behaviors. The experimental results
demonstrate that the method we proposed has high detection speed and accuracy. The algorithm
we proposed can identify the defects of the software, reduce the risk of being attacked to ensure
safe operation.

Keywords: software defect detection; memory leak detection algorithm; software detection;
defect modes

1. Introduction

With the widespread use of computer technology in software security and processing,
the scale of software is growing rapidly. Therefore, defects in the software are inevitable,
some of which are fatal and will endanger the safety of the data [1]. The detection algorithm
can reduce the bug of software, which can reduce the risk of being maliciously attacked. The
sustained occurrence of memory leaks will cause a sharp decrease in the available memory,
which will affect the system capability and even cause server downtime. Therefore, memory
leak detection algorithms are urgently needed to detect defects. Compared with dynamic
detection, static memory leak detection has some advantages: it can detect defects in the
early stage of program development and reduce the cost of maintenance in subsequent
stages. It can detect defects in the software before it is started. Test cases do not need to be
artificially designed, which solves the software testing limitation caused by incomplete test
cases. However, this method also has the disadvantages of slow detection speed and severe
false positives [2]. Therefore, reducing the False Positive Rate of memory leak detection to
improve the detection efficiency is the focus of this paper.

The contributions of this paper are described as follows:

(1) We summarize and analyze the common memory leak defect modes in C/C++ and
design a fuzzy matching algorithm based on regular expression. We analyze the
summarized defect modes by simple lexical analysis, and then we classify the lexical
units into variables, keywords and numbers to form a series of defect strings in form
of regular expressions to be matched. We employ auxiliary methods such as path
sensitivity analysis, interval arithmetic and alias analysis to improve the accuracy of
memory leak detection and reduce the False Positive and False Negative Rates.
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(2) We summarize memory operation behaviors and classify them into three types based
on the memory leak defect modes: allocation, deallocation and transfer. We design the
state machine to detect the possible memory operation behaviors in the program using
the fuzzy matching algorithm based on regular expression. We detect the memory
leak defect by controlling the state change of the state machine model-based memory
operation behavior.

(3) To improve the efficiency of detection and reduce the scan times of program functions,
we propose a function summary method for memory operation behaviors to achieve
a brief description of memory operation behaviors in functions. Static detection
methods based on a state machine are divided into a general method and a special
method. General memory leak detection is combined with a function summary and
a Control Flow Graph (CFG) based on the State Machine to achieve memory leak
detection. The special detection is static detection based on rules.

The paper is organized as follows: Section 2 presents related work. In Section 3, we
discuss the system model and definitions. Section 4 discusses our proposed MLD scheme.
In Section 5, we present experiments and performance analysis. In Section 6, we analyze
the prospects for industrial application of the proposed method. Finally, Section 7 discusses
the conclusion and future work.

2. Related Work

For memory leak detection, dynamic detection [3–6] involves executing test cases
and identifying potential memory leak defects in the program to be detected, such as
LeakPoint [3], valgrind [4], Purify [5] and Maebe [7]. Their disadvantages include an overly
high False Negative Rate and excessive dependence on the inputted use cases, which can
not be used in continuously running software. In the past few years, machine learning
algorithms are employed in memory leak detection. The process is to first obtain datasets
through experiments and then to compute feature vectors and train a model based on
data, such as GenCount [8], LBRCPD+PrecogMF [9] and DEF-LEAK [10]. Their main
disadvantage is the huge cost in size of parameters and time of training [11].

The static detection of a memory leak utilizes static analysis technology (symbolic exe-
cution, context sensitivity analysis, and function summary generation) to detect potential
memory leak defects in a program without executing the program. Therefore, it is suitable
for defect detection of large-scale software that requires continuous operation.

Fan Gang and Wu et al. [12] proposed a memory detection model for C/C++ based on
a staged analysis of use-flow graph and path feasibility: SMOKE. Similarly, an automated
approach proposed by Bhavana, Veena and Sahu [13], has two-staged detection of memory
leaks based on time threshold analysis. Yu Lei and Ding et al. [14,15] designed a memory
leak detection tool based on value-flow analysis: SABER. MEMLOCK [16] proposed by
Wen Cheng and Wang Haijun et al, is an enhanced grey-box technique that is implemented
according to both coverage and memory consumption information. Xu [17] proposed the
Memory State Transition Graph (MSTG) and implemented the tool Melton. However, the
above solutions are not sufficient in terms of detection accuracy, and are difficult to adapt
to large-scale software defect detection tasks.

3. System Model and Definitions

We propose an intelligent memory leak detection scheme MLD based on defect modes
in software, which belongs to static memory leak detection method. We propose matching
algorithm to obtain potential defect statements in the source code. In addition, we combine
relevant auxiliary techniques to control state changes in the defect modes state machine.
We find potential defects by analyzing the current state information and get the defets
reports, as shown in Figure 1. The core idea is detailed as follows:

(1) Defect Modes Matching: Using a matching algorithm to obtain the defect points
(memory operation behavior) that can be used to control the state change of the state
machine from the program to be detected.
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(2) Defect Modes State Machine: Using the matched defect points to control the state
change in the defect modes state machine to obtain potential defects in the program.

(3) Auxiliary Techniques: This part employs related techniques with state machine to the
detection of the defects, which primarily includes the function summary and CFG.

Figure 1. Static detection architecture diagram based on defect mode.

3.1. Memory Leak Defect Modes Analysis

The software defect modes [18] are summaries of certain types of defects or errors that
often occur in a program, including the forms of the defects and the conditions of their
generation. We analyze common memory leaks to better match software memory defects.
Common memory leak defect modes include missing release memory leak, pointer memory
leak, memory leak of mismatched request and release, and class member memory leak. For
memory leak detection based on defect patterns, first, we need to preprocess the program
through lexical analysis, and then generate a double-linked list of lexical units. Secondly,
we create the symbol table of the entire file through interval division, and combine the
attributes of the lexical unit node with its scope to establish the symbol table in the scope.

The lexical unit [19] is the smallest description of a single keyword in the source code,
which record the attribute information of a single lexical unit. The structure of the doubly
linked list is shown in Figure 2.

Figure 2. Doubly linked list for lexical units.

We use a symbol table [20,21] to record the program scope and related information
within the scope, which is a supplement to the lexical unit attributes. The structure design
of the symbol table is shown in Figure 3.
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Figure 3. Structure of the symbol table.

The programs are different due to the different structures of different programs.
Matching the general defect patterns with the special programs is a problem that needs
to be solved in the defect pattern matching process. We use a summary of C/C++ to
statistically analyze the keyword categories in the program, including variables, numbers,
and operators. A summary of the keywords in the defect modes is provided in Table 1.

Table 1. Explanation of abstraction of defect pattern.

Symbol Meaning

%any%
Any form of keywords, which can be any
lexical units, such as variables, types, and

operators.

%name% A variable name or type. For example, “int a”
can be expressed as “%name% %name%”.

%type% A variable type. For example, “int a” can be
expressed as “%type% %name%”.

%num% A number, such as “23”.
%bool% A Boolean value, “true” or “false”

%comp% A comparison operator, such as “>”, “==”, etc.
%str% A string.
%var% A variable.

%varid% A variable ID.
%or% “|”

%oror% “||”
%op% An operator, such as “=”.

3.2. Memory Operation Behaviors Analysis

The analysis of the memory operation behaviors is helpful for establishing a state
machine based on memory operation behaviors. Then, we can analyze state transition of
the state machine in the program to determine whether a memory leak defect exists. The
memory operation behaviors include the following three types:

3.2.1. Allocate

We use the defect pattern matching algorithm to determine whether the memory
allocation exist. If the answer is yes, the state machine that belongs to this memory is
established, and then the state of the state machine is analyzed to detect any memory leaks.
An abstract description of the allocating memory behavior is expressed as

Alloced(p) = (v1(v), w1), (v2(v), w2), (v3(v), w3), . . . , (vn(v), wn). (1)
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where Alloced(p) represents a collection of memory allocation behaviors that occur within
the program. (vi(v), wi) represents a memory allocation, in which vi(v) represents a
collection of variables that have the ownership of the memory space. If vi(v) is empty, the
memory may have been released or a memory leak defect has occurred. wi indicates the
function for this memory allocation.

3.2.2. Free

Free refers to the process of memory release by the functions ( f ree, delete, delete[])
provided by C/C++. An abstract description of the memory release is expressed as

Free(p) = (v1(v), f1, record ), (v2(v), f2, record ), . . . , (vn(v), fn, record ). (2)

where Free(p) represents a collection of memory release behaviors that occur within the
program. (vi(v), fi, record) represents the memory release. fi represents the function for
memory release, where fi ∈ { f ree, delete, delete[]}. A match check will be performed for fi
and wi to check the correctness. The parameter record indicates whether the memory space
has been released.

3.2.3. Transfer

Transfer refers to the change in the variable that has access to the memory space. This
change can be addition, reduction, and transfer. The behaviors of variable assignments,
function returns, pointer calculations will cause vi(v) to change. Memory transfer occurs in
the following situations: (1) Scope change: The scope of the local variable ends. For example,
a variable is returned as a function return value. (2) Variable assignment. (3) Pointer
calculation: When a pointer with the ownership of the memory space is calculated (such
as “++”, “–”), the relevant variables are removed from vi(v). (4) Function call. Memory
operations exist in the function. A specific analysis of the function summary is needed.

When vi(v) is empty, additional operations in the memory space cannot be performed,
which indicates that the memory cannot be released, that is, a memory leak defect exists.

4. Our Proposed MLD Scheme

We will describe the detection method in this section. Based on the previous memory
leak defect modes, we establish the corresponding state machine. Using the defect pattern
matching algorithm, we can detect the memory operation behavior in the program. We
control the state change of the state machine to discover the memory leak. To address
the function call problem that occurs during the detection process, we propose a function
summary generation algorithm for memory operation behavior.

4.1. Defect Pattern Matching

This matching involves matching the abstracted defect pattern with the lexical unit
doubly linked list to identify suspicious defect points. We designed a fuzzy matching
algorithm based on regular expressions. As shown in Algorithm 1.

The abstraction of a single lexical unit is shown in Table 1. The time complexity of
Algorithm 1 is O(d ∗ n), where n represents the length of the doubly linked list after the
program is preprocessed; it is primarily determined by the size of the program. d represents
the product of the number num of the matching string units and the longest length len of
the units.
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Algorithm 1 Match(TokenList, Pattern)

Input: TokenList, Pattern
Output: f irstP: Record the location when the match was successful. If the match was not successful,

it is null.
endP: Record the next position of the end point when the match is successful, which is also the
starting point of the next match.

1: f irstP = null, endP = null, set = null
2: while token in TokenList do
3: while each subP in Pattern do
4: curPattern = getCurPattern(subP)
5: if curPattern is Single Selection Unit then
6: addSet(set, curPattern)
7: else if curPattern == Multiple Selections Unit then
8: if expressions(a) : “[abc]” then
9: multiPattern1(set, curPattern)

10: else if expressions(b) or expressions(c) then
11: multiPattern1(set, curPattern)
12: end if
13: end if
14: if compare(token, set) then
15: if f irstP == null then
16: f irstP = token
17: end if
18: token = getNextToken(TokenList)
19: end if
20: subP = getNextPattern(Pattern)
21: set = null
22: if (token == null&&subP == null)||(token! = null&&subP = null) then
23: endP = token
24: check( f irstP, endP)
25: else if token == null&&subP! = null then
26: contine;
27: end if
28: subP = getFirst(Pattern)
29: f irstP = null
30: end while
31: end while
32: return f irstP, endP

4.2. State Machine Construction

We establish a state machine based on the memory operation behavior. We use the
proposed matching algorithm to identify the memory operation behavior in the code and
analyze any related defects according to the state transition of the state machine. The
memory operation behavior state machine is shown in Figure 4.

Figure 4. Memory operation behavior state machine.
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4.3. Function Summary Generation
4.3.1. Function Summary Definition

The memory operation behaviors may occur in multiple functions. For example,
memory allocation is in function a, and the memory is freed in function b. Therefore,
the memory operation behaviors across functions must be analyzed during the detection
process, which may cause a repeated scan of functions and it is an extremely inefficient
method. To solve this problem, we introduce a function summary technique to memory
leak detection. The function summary describes the memory operation behaviors within
the function. When a function call statement is detected, the corresponding function
summary can be directly employed to obtain the memory operation behaviors to improve
the detection efficiency.

The function summary for the memory operation behaviors is an abstract description
of the memory operation behaviors within a function. This summary is generally expressed
as a triple < vi(v), PathC, B >, where vi(v) represents the set of variables that have owner-
ship of the memory space; PathC indicates the external conditions of the behavior; and B
represents the memory operation behaviors in this function. The abstract description of the
memory operation behavior is <behavior, supplementary description of this behavior>.

4.3.2. Function Summary Generation

To obtain the corresponding summary information, we generate and check a Function
Call Graph (FCG) of the source code to determine whether a ring exists. The existence of
the ring is essentially an incorrect call relationship, which indicates the possibility of an
infinite loop in the code, and the defect may be reported. We adopt a bottom-up traversal
strategy for the FCG to collect the leaf nodes in the graph and generate a CFG. We perform
the data flow analysis on the nodes on the CFG, and abstract the nodes information with
the memory operation behaviors to obtain the function summary. The function summary
generation algorithm is designed as Algorithm 2.

Algorithm 2 SummaryGeneration (CFG)

Input: CFG
Output: summaryFunc

1: for each curNode in CFG do
2: preNodes = getPreSet(curNode)
3: nr = null
4: while preN in preNodes do
5: nr = join(preN, nr)
6: end while
7: np = trans(nr, curNode)
8: if memory operation on np then
9: oper = getMemoryOper(np)

10: update(summaryFunc)
11: end if
12: end for
13: return summaryFunc

The time complexity of Algorithm 2 is O(n ∗ count), where n denotes the number of
nodes on the CFG, and count denotes the maximum number of precursor nodes.

4.3.3. Function Summary Update

Algorithm 2 pertains to the case without a function call. To obtain summary infor-
mation about all functions in the program to be detected, we should obtain the summary
information of the bottom nodes on the FCG, and then perform a bottom-up update of the
summary layer by layer are necessary. The error is handled when the FCG has rings. The
function summary update algorithm (Algorithm 3) addresses the case in which no rings
exist on the FCG.
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Algorithm 3 SummaryUpdate (FCG)

Input: FCG
Output: allSummaryFunc

1: genList = getLea f Node(FCG)
2: while !(genList.isempty()) do
3: genFunc = getFunc(genList)
4: if isUpdateSubFunc(genFunc) then
5: summaryFunc = getSummaryFunc(genFunc)
6: allSummaryFunc.add(summaryFunc)
7: else
8: genList.add(genFunc)
9: end if

10: for function f calls genFunc on FCG do
11: if f is not in genList then
12: genList.add( f )
13: end if
14: end for
15: end while
16: return summaryFunc

The time complexity of Algorithm 3 is divided into two parts: a summary generation
algorithm for a single function O(n ∗ count) and the number countFunc of functions on the
FCG, where n represents the maximum number of precursor nodes of the CFG. Thus, the
time complexity of Algorithm 3 is O(n ∗ count ∗ countFunc).

4.4. Memory Leak Detection
4.4.1. General Memory Leak Detection

General memory leak detection consists of memory leak detection in a function with
no call relationships or multiple call relationships. The core idea is establishing a state
machine based on memory operation behaviors and control of the changes of the state
machine. The state machine is established by obtaining the memory allocation statement
and is directly changed from the initial “Start” to “Alloced”. We combined the fuzzy
matching algorithm with the function summary information to analyze the subsequent
statements to control the state machine. For a function statement analysis, we handle
statements in functions that may have memory operations, such as assignments, memory
allocation, memory free, returns, function calls, and if-else branches. The general memory
leak detection algorithm is described as Algorithm 4.

The time complexity of Algorithm 4 is O(n3 ∗ countFunc), where countFunc represents
the number of functions on the FCG and n represents the maximum number of precursor
nodes of the CFG.

4.4.2. Special Memory Leak Detection

Special memory leak detection is a special rule detection for C++ [22], which is the
memory leak detection of class members summarized in the memory leak defect modes.

If the memory leak is caused by the inconsistency of the constructor and the destructor;
first, we need to obtain all class definitions. For each class, we check the constructor
for the memory allocation behaviors of the class members. If it exists, we generate an
abstract description of the corresponding memory allocation behavior. Second, we check
the destructor for the memory release behaviors of the class members; if it exists, we
generate an abstract description of the corresponding memory release behavior. Last,
we match the abstract description of the memory release behavior against the abstract
description of the memory allocation behavior, and the reporte mismatch.
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Algorithm 4 GeneralCheck (program)
Input: program
Output: memoryLeakReport

1: genSummary(program)
2: for each f unc in program do
3: if Visit( f unc) then
4: continue
5: end if
6: nodeCFG = genCFG( f unc)
7: BFS(nodeCFG)
8: end for
9: return memoryLeakReport

BFS(nodeCFG)
Input: nodeCFG
Output: memoryLeakReport

2: while each node in CFG is not null do
if node is operation about memory then

4: update(StateMachine)
if StateMachine is “ERROR” then

6: memoryLeakReport.add()
end if

8: else if node is function call then
getSummary( f unc)

10: update(StateMachine)
if StateMachine is “ERROR” then

12: memoryLeakReport.add()
end if

14: else if node is conditional branch then
for each nodeBranch in conditionalbranch do

16: BFS(nodeBranch)
end for

18: end if
end while

20: return memoryLeakReport

If the destructor of the parent class with the subclass is not virtual. First, we need to
obtain the parent-child relationship of all classes in the detection program. Second, we
check the destructor of each parent class, if it does not exist or it is not virtual, we reporte
an error.

If the copy constructor or assignment overloaded function is not properly defined.
First, we need to obtain all class definitions in the test program. Second, we need to
determine whether a class member variable points to the memory space in the class and
whether the class has a custom copy constructor or assignment overload function. Last, we
have to check whether an improper object copy modes (shallow copy) is used to construct
the object.

A special memory leak detection algorithm is described as Algorithm 5.The time
complexity of Algorithm 5 is O(num ∗ n), where num represents the number of classes
defined in the program, and n represents the detection time for a single class.
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Algorithm 5 SpecialCheck (program)
Input: program
Output: memoryLeakReport

1: classIn f o = getClassIn f ormation(program)
2: relationMap = getRelation(classIn f o)
3: for parentClass in relationMap do
4: if !checkVirtual(parentClass) then
5: memoryLeakReport.add()
6: end if
7: end for
8: for each class in classIn f o do
9: allocIn f o = getAlloc(class)

10: f reeIn f o = getFree(class)
11: if !match(allocIn f o, f reeIn f o) then
12: memoryLeakReport.add()
13: end if
14: cpIn f o = checkCopyorAssignment(class)
15: if (cpIn f o is error) || (cpIn f o == NULL && default copy constructor or assignment function)

then
16: memoryLeakReport.add()
17: end if
18: end for
19: return summaryFunc

5. Performance Analysis

Based on the designed memory leak detection method, we implement a static detection
system named ZkCheck. The experimental environment of this paper is shown in Table 2.

The dataset we use contains codes of some mainstream frameworks or algorithms
written in C/C++ language, all of which are open source software. (all website accessed on
4 July 2022 ) Gcc (http://www.gnu.org/software/bash/) is written as the compiler for the
GNU operating system. Ammp (https://github.com/rob-n3ikc/ammp) is a simulation
software for molecular dynamics research. Bash (https://gcc.gnu.org/gcc-12/) is the GNU
Project’s shell—the Bourne Again SHell. It is written as a command processor. Mesa (https:
//www.mesa3d.org/) is an open source software implementation of OpenGL,Vulkan, and
other graphics API specifications. Cluster (https://github.com/pthimon/clustering) is a
tiny c++ project which can automatically fidn the ideal number of clusters of an affinity
matrix. OpenCV (Open Source Computer Vision Library) (https://opencv.org/releases/)
is an open source computer vision and machine learning software library. Bitcoin (https:
//github.com/bitcoin/bitcoin) is a software written in C++ language that fully validate
blocks and transactions.

Table 2. Experimental enviroment.

OS ubuntu14.04, windows
memory 4G

cpu X64 (i5)
Comparison Method (memory leak detection

tool) Clang Static Analyzer, Sparrow, Clouseau

Dataset (open source C\C++ project) gcc, ammp, bash, mesa, cluster, openCV,
bitcoin

5.1. Evaluation Indicators

To evaluate the detection efficiency of static detection tools, we employ the False
Positive Rate, False Negative Rate and detection time as evaluation indicators. We represent
the total number of defects detected by static detection as C; the program should have the
total number of defects, which is denoted as act−C; and the number of false positives is FC.

http://www.gnu.org/software/bash/
https://github.com/rob-n3ikc/ammp
https://gcc.gnu.org/gcc-12/
https://www.mesa3d.org/
https://www.mesa3d.org/
https://github.com/pthimon/clustering
https://opencv.org/releases/
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
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The definitions of False Positive Rate (FPR) and False Negative Rate (FNR) are expressed
as follows:

FNR =
|act−C− C|

act−C
. (3)

The calculation formula of FPR is expressed as follows:

FPR =
FC
C

. (4)

Since obtaining the actual number of defects in the source program to be detected
act−C is difficult, the False Positive Rate is the main focus of the experimental results in
this paper. The False Negative is overlooked in this experiment.

5.2. Experiments and Result Analysis
5.2.1. Validation Experiment

The experimental steps are described as follows. First, we obtain seven open source
mainstream software and their codes. We perform statistics on size and bugs. Then, we take
the code of each software as input and analyze the results using our proposed algorithm
ZkCheck. Finally, we evaluate our algorithm based on the experimental results.

Due to the lack of multimedia software, and we cannot get the actual number of
defects in those softwares (gcc, ammp, bash, mesa, cluster, openCV and bitcoin). We use
the proposed algorithm to detect the open source projects in Table 2, and test the defects to
obtain the number of False Positives. We use manual verification methods to ensure the
accuracy of the above data. The people checking the code are graduate students in school
of computer who are familiar with C/C++ language. The experimental results are shown
in Table 3.

Table 3. Results of validation experiment.

Program Size (Kloc) Times (s) Bug Count False Count

gcc 230.4 213.1 36 6
ammp 13.4 10.4 23 5
bash 100.0 90.1 16 3
mesa 61.3 48.6 9 8

cluster 10.7 9.5 12 4
openCV 794.6 756.8 74 11
bitcoin 94.4 78.7 22 7
Total 1304.8 1257.9 192 44

The experimental results show that the detection speed is approximately 1.1 Kloc/s,
and the False Positive Rate is approximately 23.8%. By the analysis of the experimental
results, we further verify the feasibility of the static memory leak detection method based
on the defect modes.

As shown in Figures 5 and 6, we observe the relation between the code quantity and
the detection time is approximately a straight line, which means a positive correlation
between the number of code lines in the open source project and the required detection
time. The larger is the code of open source project, the longer is the time required to detect
the code.
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Figure 5. Comparison of code quantity and detection time.

Figure 6. Relation between code quantity and detection time.

Figure 7 indicates that there is no correlation between the code quantity and the
number of reported defects or the number of false positives. As the amount of code
increases, the number of reported defects may increase or decrease, which is primarily
determined by the project source code. Comparing the open source project ammp with
mesa, ammp has substantially less code but a larger number of reported errors than mesa.

Figure 7. Comparison of code quantity with the number of reported defects and the number of false
positives.
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5.2.2. Contrast Experiment

The compared detection tools, the detection time and the number of reported defects
and false reports are shown in Table 4.

Table 4. Results of experiment 2.

Leak Detector Speed (loc/s) Bug Count False Positive Rate
(%)

Clang Static Analyzer
(CSA) 400 81 27

Sparrow 720 69 19
Clouseau 500 92 41
ZkCheck 1137 102 24

Figures 8 and 9 show the comparison results of the detection tools for detection time
and False Negative Rate, respectively. An analysis of the experimental results reveals that
our method has the fast and stable detection speed, which is superior to Clouseau, CSA,
Sparrow and other tools. In terms of the False Negatives Rate, our method is lower than
Clouseau, similar to CSA, and higher than Sparrow. In terms of the number of reported
defects, our method is superior to CSA and Sparrow.

The result shows that the function summary to reduce the repeated spread detection
problems in the function call points improves the detection speed and reduces the detection
time. The results of Experiment 2 show that ZkCheck has a relatively satisfactory compre-
hensive efficiency compared with other detection tools and improves its detection speed
based on ensuring a certain low False Positive Rate.

Figure 8. Comparison of detection tools for detection time.

5.2.3. Comprehensive Analysis

The above experiment show that ZkCheck has a relatively satisfactory comprehensive
efficiency compared with other detection tools and improves its detection speed based on
ensuring a certain low False Positive Rate. The dateset of codes are mainstream software
of image processing, IoT and industrial modeling. Therefore, the memory leak detection
algorithm we proposed is cpmpatible and can be widely used in the detection of major
actual software and other industrial software fields.
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Figure 9. Comparison of detection tools for false positive rate.

6. Industrial Applications

With the increasing popularity of smart devices and 5G networks in our daily life,
multimedia data acquisition, storage and processing on the Internet have become increas-
ingly convenient. In the operation of large-scale real-time software such as multimedia
software, memory leaks are very common in memory defects, usually caused by improper
management of dynamic memory in program implementation [23]. When the dynamically
allocated memory in the program is not released in time, there will be leakage, which will
cause the memory space to be consumed and cannot be recycled and reused. it can result
in a reduction in memory leakage resources, and ultimately reduce program performance,
resulting in the overall software system collapse. At the same time, memory leak has
a certain degree of concealment, it is easy to be ignored. Especially for the language of
C/C++, the expansion of the expansion scale and the programmer’s irregular programming
are more common.

Our detection algorithm ZkCheck is a static detection algorithm, which can detect
errors in the software before it runs. At the same time, experiments show that our algo-
rithm performs better than other detection algorithms in terms of detection speed and
accuracy. This advantage shows that in the industrial field with strict standards, ZkCheck
can predict abnormality before the machine starts, therefore reducing risks and ensuring
engineering safety.

7. Conclusions and Future Work

In this paper, we present a static method for memory leak detection based on a defect
modes. This method statically detects leaks in C/C++ programs. We preprocess the source
code, perform lexical analysis, and convert it into a two-way linked list with language
keywords as the unit. We add corresponding symbol table information to the two-way
linked list. By matching the two-way linked list with the corresponding defect modes to
control the change in the defect state machine, we realize memory leak defect detection.
By comparing the existing detection tools, our experimental results show that the static
detection method of memory leak based on the defect modes has a good perform in
discovering potential memory leak defects in program source code, which can effectively
improve the correctness of developed software. The memory leak detection algorithm we
proposed can be widely used in the detection of major actual software. The method also
has some limitations. When the code quantity of software is small, the rate of false positives
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might increase drastically. When the software scale reaches a higher level, a further increase
in speed is required.

For the future work, we will explore the following aspects:

(1) Provide corresponding solutions for the defects detected by the algorithm.
(2) Path-sensitive processing. Path explosions may occur due to excessive conditional

statements, loop statements and function recursions in the encoding. Therefore,
effective analysis of the convergence of the path nodes based on ensuring efficiency is
the focus of future research.

(3) Improve the accuracy of detection. For static detection, the inaccuracy of interval
arithmetic in the detection process may cause a large number of False Negatives or
False Positives.
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