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Abstract: Group sparse coding (GSC) uses the non-local similarity of images as constraints, which can
fully exploit the structure and group sparse features of images. However, it only imposes the sparsity
on the group coefficients, which limits the effectiveness of reconstructing real images. Low-rank
regularized group sparse coding (LR-GSC) reduces this gap by imposing low-rankness on the group
sparse coefficients. However, due to the use of non-local similarity, the edges and details of the images
are over-smoothed, resulting in the blocking artifact of the images. In this paper, we propose a low-
rank matrix restoration model based on sparse coding and dual weighting. In addition, total variation
(TV) regularization is integrated into the proposed model to maintain local structure smoothness and
edge features. Finally, to solve the problem of the proposed optimization, an optimization method
is developed based on the alternating direction method. Extensive experimental results show that
the proposed SDWLR-GSC algorithm outperforms state-of-the-art algorithms for image restoration
when the images have large and sparse noise, such as salt and pepper noise.

Keywords: group sparse coding; low-rank regularized group sparse coding; TV norm; dual-weighted;
image restoration

1. Introduction

Sparse representation theory [1–3] has always been a very interesting research field
due to its good performance in the fields of computer vision and image processing. It can
be well used to represent or extract the main features of images. Among existing works,
the image denoising methods based on patch sparse coding [4] divide the image into each
patch equally, and use the patch’s structure to encode the image into a combination of
dictionary and sparse coefficient. By constraining the L0 norm of coding coefficients, the real
coding can be approximately estimated on the noisy image, so as to remove the noise.

On this topic, the dictionary is very important for the performance of these methods
and should be learned firstly. Thus, the popular technologies such as PCA [5], K-SVD [6],
and S-KSVD [7] are used to train dictionaries, to achieve higher expressive ability. However,
they are all large-scale and highly non-convex problems, which often have high compu-
tational complexity. On the other hand, patches are units of sparse representation. Each
patch is usually considered independently in dictionary learning and sparse coding, which
leads to its focus on the local structure of the image and essentially ignores the relationship
between similar patches—that is, the non-local self similarity (NSS) of the image [8–11].

For these non-local image denoising approaches, they provide a new research theory
and direction for image denoising. Group sparse coding (GSC) [12], which uses groups
instead of a single patch as the basic unit of sparse coding, combines the advantages of
local sparsity and NSS of images, and shows great potential in various image processing
tasks [13,14]. Similar to the sparse representation based on patches, each image patch group
can also be accurately fitted by the sparse linear combination of dictionary atoms. In order
to make full use of the similarity between groups, Zha et al. proposed low-rank regulated
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group sparse coding (LR GSC) [15], which imposed a low-rank constraint on the sparse
coefficients of each group. It is the first time that the low-rank property of group sparsity in
GSC has been used to ensure that the dictionary domain coefficients are not only sparse but
also low-rank. Although the above methods have achieved good results, they are mainly
aimed at the removal of Gaussian white noise, and cannot be used to remove the outlier
noise effectively. In addition, when the density of noise is large, the acquisition of similar
patches will be affected since each image patch also contains these noisy pixels. Figure 1
shows the effect of the LR-GSC model on image restoration from Gaussian noise and outlier
noise, respectively. It can be seen that the LR-GSC model is more suitable for removing
Gaussian noise than outlier noise.

(a) (b)

(c) (d)

Figure 1. (a) The Lena image corrupted by Gaussian noise. (b) Restoration result of (a) based on
LR-GSC. (c) The Lena image corrupted by outlier noise. (d) Restoration result of (c) based on LR-GSC.

Because of the two-dimensional structure of a matrix, it can effectively protect the
original details and structure information of the images. It is also more robust to data
with outliers—for example, salt and pepper noise. Wright et al. [16] proposed the problem
of low-rank restoration, which decomposes the original data as the sum of the low-rank
matrix and sparse noise matrix. Candes et al. [17] accurately removed large low-rank
matrices containing noise samples through kernel norm minimization. Using this theory to
denoise the image, the original image structure with low-rank characteristics is separated
from the observed noisy image, which has good performance on the removal of impulse
and outlier noise.

When the rank or sparsity exceeds the threshold limit, the convex approximation
model will not be able to accurately estimate the low-rank solution and sparse solution.
For this reason, Candes et al. [18] proposed a weighted L1 norm method to allocate smaller
weights to larger matrix elements, restrain the overshrinkage of the L1 norm, and improve
the accuracy of the sparse solution. Gu et al. [19] proposed the weighted nuclear norm
minimization (WNNM) model and the WNNM-based RPCA model (WNNM-RPCA) [20].
The model uses the weighted nuclear norm to relax the rank function. Considering the
importance of different rank components, they assign weights according to the size of
singular values to control the penalization of different rank components, so as to retain more
important rank components and improve the accuracy of low-rank solutions. Peng et al. [21]
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proposed a double-weighted model, which simultaneously weighted the sparse and low-
rank terms in the RPCA model, and was combined with the reweighted method to allocate
weights in the iterative algorithm. The model can improve the accuracy of the sparse
solution and low-rank solution at the same time. Although the low-rank theory performs
well in removing impulse or outlier noise, it is mainly based on local similarity—that is,
only the overall low-rank structure is considered.

Therefore, in order to overcome the above shortcomings, we propose a smoothing
dual-weighted low-rank group sparse coding (SDWLR-GSC) algorithm to remove impulse
or outlier noise. The main contributions are as follows:

(1) In addition to using the non-local self-similarity prior to the image, as with LR-GSC,
to maintain the low rank of similar patch coefficients when constructing similar patches,
we also impose a low-rank constraint on the reconstructed similar patches as a whole. We
not only consider the low-rank property between similar patches, but also consider local
structural smoothness. Based on this, we combine the model with the TV norm to further
strengthen the local structural smoothness of the matrix. Figure 2 shows an example of
image recovery from dense noise based on using and not using the TV norm.

(a) (b)

(c) (d)

Figure 2. Comparison of the denoising results with TV norm and without; 30% of pixels of Barbara
image are corrupted by large and sparse noise. (a) The corrupted image. (b) PSNR values for Barbara
image corrupted by large and sparse noise with different density. (c) Restored by the model of
dual-weighted low-rank group sparse coding without TV norm. PSNR = 30.34 dB. (d) Restored by
the model of dual-weighted low-rank group sparse coding with TV norm. PSNR = 31.08 dB.

(2) Because the low rank of the coefficients of similar patches and the global low rank
of the reconstruction matrix of similar patches are both considered in the objective function,
the optimization problem becomes a challenging non-convex optimization problem. In or-
der to solve this problem effectively, we develop a new numerical solution based on the
inexact augmented Lagrange multiplier (IALM) and non-uniform singular value threshold
(NSVT). The experimental results show that the proposed method can improve the quality
of the restored image significantly.

The remainder of this paper is organized as follows. Section 2 reviews the related
work on low-rank regularized group sparse coding (LR-GSC). Section 3 presents our
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proposed SDWLR-GSC model, and Section 4 shows the solution of our proposed method.
The experimental results are presented in Section 5. Finally, Section 6 summarizes this paper.

2. Related Work

In this section, we will review the work related to our proposed method.

2.1. Low-Rank Regularized Group Sparse Coding

In GSC [13,14], the method is mainly divided into two steps: grouping similar patches,
and then sparsely representing the grouped patches, which can be formulated as the
following problem,

Âi = arg min
Ai

(
1
2
‖Xi − Di Ai‖2

F + λ‖Ai‖1) ∀i (1)

where Xi ∈ Rb×m is a group composed of patches with similar structure, and Di is the
dictionary learned from each group of Xi. ‖·‖F and ‖·‖1 denote the Frobenius norm and L1
norm, respectively. Thus, the optimal Âi is the sparse codes of Xi with λ ≥ 0.

Zha et al. [15] proposed LR-GSC, which combines the low-rank characteristics of group
coefficients in GSC, to further utilize the similarity between groups; the dictionary domain
coefficients of each group are constrained as not only sparse but also low-rank. Taking
the sparsity penalty and low-rank penalty as dual regularizers, the following problem
is obtained:

{Âi, B̂i} = arg minAi ,Bi
1
2‖Xi − Di Ai‖2

F + λ‖Ai‖1

+ 1
η ‖Ai − Bi‖2

F + τ‖Bi‖∗ ∀i,
(2)

where ‖·‖1 is applied for the sparsity penalty, and the nuclear norm ‖·‖∗ is applied
for the low-rank penalty. τ is a non-negative constant, and η is a balancing factor in
making (2) more feasible. A low-rank approximation Bi is jointly estimated for each group
sparse matrix Ai. Similar to GSC, the optimal sparse codes {Âi}n

i=1 are used to restore the
latent image.

2.2. Dual-Weighted Low-Rank Matrix Recovery

The authors in [22] proved that the RPCA model can be transformed into solving
the following convex optimization problem by minimizing the combined decomposition
matrix of the L1 norm and nuclear norm, i.e.,

minX,S ‖X‖∗ + λ‖S‖1,
s.t. X + S = Y,

(3)

where Y ∈ Mm×n is the observed matrix. ‖X‖∗ is the nuclear norm of matrix X, which is

defined as the sum of matrix singular values, i.e., ‖X‖∗ =
r
∑

i=1
σi(X), r = min(m, n), σi(X) is

the i-th singular value of matrix X. ‖S‖1 is the L1 norm of matrix S, which is defined as the

sum of matrix absolute elements—that is, ‖S‖1 =
m
∑

i=1

n
∑

j=1
|si,j|, si,j represents the elements in

matrix S. λ > 0 is the regularization parameter.
In the process of solving, the model can easily lead to overshrinkage, which affects the

accuracy of the solution. In [21], the sparse term and low-rank term in the RPCA model are
weighted at the same time, and a double-weighted model is proposed, i.e.,

minX,S ‖X‖Ω,∗ + λ‖W � S‖1,
s.t. X + S = Y,

(4)

where ‖X‖Ω,∗ =
r
∑

i=1
wiσi(X), ‖W � S‖1 =

m
∑

i=1

n
∑

j=1
wi,j|si,j|, si,j represents the elements in

matrix S, W ∈ Rm×n is the weight matrix. The weight of si,j is defined as wi,j = 1/(|si,j|+ ε).
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3. Formulation of the Proposed Method

Low-rank regularized group sparse coding (LR-GSC) [15] ensures that the dictionary
domain coefficients of each group are not only sparse but also low-rank. However, when
the density of outlier noise becomes higher, the method cannot recover the image well.
In this section, inspired by the low-rank matrix restoration algorithm in [21,23], we propose
a new group sparse coding model, called SDWLR-GSC, which introduces total variation
(TV) regularization into low-rank group sparse coding to realize image structure smoothing.
At the same time, the dual-weighted model is used to recover the clean image better from
the large and sparse noise. Our new method can be formulated as follows:

minXi ,Si ,Ai

q
∑

j=1
wXi ,j · σ̃j + θ‖WSi � Si‖1 + β‖Xi‖TV

+ 1
2ρ

n
∑

i=1
‖Yi − Di Ai‖2

F + λ
n
∑

i=1
‖Ai‖1 + τ

n
∑

i=1
‖Ai‖∗

s.t. Xi ∈ Bl,u ≡ {xi,j, l ≤ xi,j ≤ u},
Ŷi = Xi + Si.

(5)

where Yi ∈ Rb×m represents the matrix constructed by the batches of similar patches for each
basic patch yi. Ŷi is calculated by multiplying D̂i and Âi. D̂i and Âi are the dictionary learned
from each group Yi and the sparse representation of each group Xi under a given dictionary,
respectively. WXi = {wXi ,j} and WSi ∈ Rm×n are weights of {σ̃j} and Si. {σ̃j} are singular
values of matrix Xi. The constraint Bl,u states that pixel values are bounded—for example,
[0, 255]. ‖·‖TV denotes the TV norm. In [24], total variation is proposed as a penalty term to
deal with image restoration. The advantage of TV regularization is that it can well restore
the edge and eliminate the noise.

Apparently, the proposed SDWLR-GSC, based on LR-GSC, exploits the sparsity and
low-rankness of the dictionary domain coefficients of each group at the same time. For the
image patches reconstructed by the given dictionary and the sparse coding, we further
introduce the dual-weighted model to weight low-rank terms and sparse terms, and we add
the TV norm to maintain the smoothing structure of images. Therefore, the proposed model
can better separate the clean image from the sparse noise and achieve better reconstruction
results. Figure 3 shows the flowchart of the proposed SDWLR-GSC by taking the simple
image denoising as an example.

Figure 3. Flowchart of the proposed SDWLR-GSC model for image denoising. On the basis of LR-
GSC [15], we applied the dual-weighted model to the reconstructed similar patches, and introduced
the TV norm to maintain the smoothness of the image structure. Finally, the optimal sparse codes are
used to estimate the clean patch groups for constructing the restored image. (Firstly, the corrupted
image is extracted from non-local similar patches through a block matching operator. Secondly,
patches with similar structures are grouped to perform dictionary learning to obtain group coefficients.
At the same time, the group coefficients remain sparse and low-rank concurrently.)
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4. The Proposed Solution

In this section, to solve the proposed SDWLR-GSC problem, we will present our
solution method based on the alternating direction method of multipliers, which separates
the multi-variable optimal problem into several single-variable problems, so that these
variables can be undated one by one in each iteration.

First, to address the problem more easily, we introduce an auxiliary variable as follows:

minHi ,Xi ,Si ,Ai ,Bi

q
∑

j=1
wHi ,j · σj + θ‖WSi � Si‖1 + β‖Xi‖TV

+ 1
2ρ

n
∑

i=1
‖Yi − Di Ai‖2

F + λ
n
∑

i=1
‖Ai‖1 + τ

n
∑

i=1
‖Bi‖∗

s.t. Xi ∈ Bl,u ≡ {xi,j, l ≤ xi,j ≤ u},
Ŷi = Xi + Si, Hi = Xi, Bi = Ai.

(6)

where WHi = {wHi ,j} are weights for {σ̃j}, {σ̃j} are singular values of matrix Hi, and wHi ,j =
wXi ,j, j = 1, . . . , n.

In this way, the augmented Lagrange function of (7) can be obtained as follows:

f (Hi, Xi, Si, Ai, Bi, Y1, Y2)

=
n
∑

j=1
wHi ,j · σj + θ‖WSi � Si‖1 + β‖Xi‖TV

+ 1
2ρ

m
∑

i=1
‖Yi − Di Ai‖2

F + λ
n
∑

i=1
‖Ai‖1

+ 1
2η

m
∑

i=1
‖Ai − Bi‖2

F + τ
n
∑

i=1
‖Bi‖∗

+〈Y1, Yi − Hi − Si〉+ 〈Y2, Xi − Hi〉
+ µ

2

(
‖Yi − Hi − Si‖2

F + ‖Xi − Hi‖2
F

)
s.t. Xi ∈ Bl,u ≡ {xi,j, l ≤ xi,j ≤ u}.

(7)

Then, we use the iterative alternating direction method, which optimizes one variable
and fixes the remaining optimization variables in an iterative way. In this way, the orig-
inal complex multi-variable optimization problem can be simplified to a single-variable
optimization problem, and its solution can be obtained analytically. In our problem, there
are seven sub-problems, i.e., Hi, Xi, Si, Ai, Bi, Y1, Y2 sub-problems. Next, we will give a
detailed implementation for each of them.

4.1. Hi Sub-Problem

If we fix the variables (Xi, Si, Ai, Bi, Y1, Y2), the variable Hi can be solved by minimiz-
ing f (Hi, Xi, Si, Ai, Bi, Y1, Y2). Specifically,

arg minHi f (Hi, Xi, Si, Ai, Bi, Y1, Y2)

= arg minHi

n
∑

j=1
wHi ,j · σj

+〈Y1, Yi − Hi − Si〉+ 〈Y2, Xi − Hi〉
+ µ

2

(
‖Yi − Hi − Si‖2

F + ‖Xi − Hi‖2
F

)
= arg minHi

n
∑

j=1
wHi ,j · σj

+µ‖Hi − 1
2 (Yi + Xi − Si + Y1/µ + Y2/µ)‖2

F

= arg minHi

n
∑

j=1
wHi ,j · σj + µ‖Hi − L‖2

F,

(8)
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where L = 1
2 (Yi + Xi − Si + Y1/µ + Y2/µ). This minimization problem (8) can be solved

by non-uniform singular value thresholding (NSVT) [23] as follows:

H = D(2µ)−1WH
(L). (9)

where Dε(Q) = USε(Σ)VT , UΣVT is the singular value decomposition of matrix Q. Sε(·)
denotes non-uniform soft thresholding operator [25], and its (i, j)-th element is max(|qij| −
ε, 0)sgn(qij), where the parameter ε > 0.

4.2. Xi Sub-Problem

If the variables (Hi, Si, Ai, Bi, Y1, Y2) are fixed, we can optimize Xi by minimizing
f (Hi, Xi, Si, Ai, Bi, Y1, Y2). Specifically,

arg minXi f (Hi, Xi, Si, Ai, Bi, Y1, Y2)
= arg minXi β‖Xi‖TV + 〈Y2, Xi − Hi〉+

µ
2 ‖Xi − Hi‖2

F
= arg minXi β‖Xi‖TV + µ

2 ‖Xi − (Hi −Y2/µ)‖2
F

= arg minXi β‖Xi‖TV + µ
2 ‖Xi − R‖2

F,

(10)

where R = (Hi −Y2/µ), Xi ∈ Bl,u ≡ {xi,j, l ≤ xi,j ≤ u}. Similar to the constrained convex
problem represented by the image denoising problem using the TV norm in [23], if µ and β
are given, γ can be obtained by β/µ. Then, the solution of problem (10) is given by:

Xi = PBl,u(R− γL(p, q)). (11)

where (p, q), L, P are the matrix pairs, linear operator, and orthogonal projection operator,
respectively. In addition, the bounds of the constraint are set to be [l, u] = [0, 255].

4.3. Si Sub-Problem

Similar to other variables, if we fix the variables (Hi, Xi, Ai, Bi, Y1, Y2), the variable Si
can be updated by the optimal solution of minimizing f (Hi, Xi, Si, Ai, Bi, Y1, Y2).

arg minSi f (Hi, Xi, Si, Ai, Bi, Y1, Y2)
= arg minSi θ‖WSi � Si‖1 + 〈Y1, Yi − Hi − Si〉

+ µ
2 ‖Yi − Hi − Si‖2

F
= arg minSi θ‖WSi � Si‖1

+ µ
2 ‖Si − (Yi − Hi + Y2/µ)‖2

F,

(12)

This minimization problem (12) can be solved by non-uniform soft thresholding
(NST) [25] as follows:

S = Sθµ−1WS
(Y− H + Y1/µ). (13)

4.4. Ai Sub-Problem

If we fix the variables (Hi, Si, Xi, Bi, Y1, Y2), the Ai sub-problem can be reduced to the
following optimal problem.

arg minAi f (Hi, Xi, Si, Ai, Bi, Y1, Y2)

= 1
2ρ

n
∑

i=1
‖Yi − Di Ai‖2

F

+ 1
2η

n
∑

i=1
‖Ai − Bi‖2

F + λ
n
∑

i=1
‖Ai‖1

(14)
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We use the principal component analysis (PCA) of each group to learn the grouping
sub-dictionary Di [26]. Since the learned PCA dictionary is singular, Equation (14) is
equivalent to the following problem.

arg minAi f (Hi, Xi, Si, Ai, Bi, Y1, Y2)

= arg minAi
1

2ρ

n
∑

i=1
‖Gi − Ai‖2

F

+ 1
2η

n
∑

i=1
‖Ai − Bi‖2

F + λ
n
∑

i=1
‖Ai‖1

= arg minAi
1
2

n
∑

i=1
‖Pi − Ai‖2

F + v
n
∑

i=1
‖Ai‖1,

(15)

where Yi , DiGi, Pi ,
ηGi+ρBi

η+ρ and v = ρηλ. Then, this minimization problem (15) can be
solved by non-uniform soft thresholding (NST) [25] as follows:

S = Sv(Pi) ∀i. (16)

4.5. Bi Sub-Problem

The same as the above methods, if we want to find the updating formula of Bi,
the variables (Hi, Si, Xi, Ai, Y1, Y2) should also be fixed firstly, and then the solution of the
variable Bi can be obtained by minimizing f (Hi, Xi, Si, Ai, Bi, Y1, Y2). Specifically,

arg minBi f (Hi, Xi, Si, Ai, Bi, Y1, Y2)

= arg minBi
1

2η ‖Ai − Bi‖2
F + τ‖Bi‖∗

(17)

This minimization problem (17) can be solved by non-uniform singular value thresh-
olding (NSVT) [23] as follows:

Bi = Dητ(Ai). (18)

4.6. Y1 and Y2 Sub-Problems

Finally, Y1 and Y2 are Lagrange multiplier matrices of the original optimization prob-
lem. They should be updated after other variables. If Y1 is unknown and other variables
are fixed, Y1 can be updated as follows:

Y1 = Y1 + µ(Y− H − S). (19)

If Y2 is unknown and other variables are fixed, Y2 can be updated as follows:

Y2 = Y2 + µ(X− H). (20)

In Algorithm 1, we summarize the complete algorithm of SDWLR-GSC for im-
age restoration.
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Algorithm 1 Smoothed and Dual-Weighted Low-Rank Group Sparse Coding (SDWLR-GSC).

Require: The degraded image y ∈ Rm×n (assuming m ≥ n);
Output: The final restored image X̂(K);

1: Initialization: x̂(0) = y , A(0)
i = 0, B(0)

i = 0;
2: Set parameters b, m, ρ, η, λ, τ and Max-Iter;
3: for k = 1 to Max-Iter do
4: Iterative regularization y(k) = x̂(k−1) + δ(y− ŷ(k))
5: Divide y(k) into a set of overlapping patches with size b× b
6: for each patch yi in y(k) do
7: Find non-local similar patches to form a group Yi
8: Construct dictionary Di by Yi using PCA
9: Update Ai by computing Ai = DT

i Yi
10: Perform [Ui, ∆i, Vi] = SVD(Ai)

11: Estimate B̂i by computing Equation (18).
12: Estimate Âi by computing Equation (16).
13: Update Ŷi by computing Ŷi = Di Ai
14: Use Algorithm 2 to Ŷi to estimate Xi
15: end for
16: Aggregate Xi to form the clean image X̂(k)

17: end for

Algorithm 2 Smoothed and Dual-Weighted Model for Image Denoising.

Require: non-local similar patched group Yi ∈ Rp×q (assuming p ≥ q);
Output: solutions X(k)

i = X(t+1)
i ;

1: Initialization: W(0)
Xi

= 1 ∈ Rq, W(0)
Si

= 1 · 1T ∈ Rp×q, (X(0)
i , S(0)

i ) ∈ Rp×q, H(0) ∈ Rp×q,

Y(0)
1 ∈ Rp×q, Y(0)

2 ∈ Rp×q;
2: Set parameters µ0 > 0, ξ = 10−7, k = 0, λ, δ and inneriter;
3: while ‖Yi − Xi − Si‖F/‖Yi‖F > ξ and t < inneriter do
4: Let L(t+1) = Yi + X(t)

i − S(t)
i + Y(t)

1 /µ(t), ρ = η/µ(t), H(t+1)
i = D

µ(t)−1
WXi

(L(t+1))

5: Let R(t+1) = H(t+1) −Y(t)
2 using the FGP Algorithm [23] to compute X(t+1)

i =

PBl,u(R(t+1) − ρL(p, q))

6: S(t+1) = S
λµ(t)−1

WSi
(Yi − H(t+1) + Y(t)

1 /µ(t)

7: Y(t+1)
1 = Y(t)

1 + µ(t)(Yi − H(t+1) − S(t+1)
i )

8: Y(t+1)
2 = Y(t)

2 (X(t+1)
i − H(t+1))

9: µ(t+1) = δµ(t), t→ t + 1
10: Update weights [27]: The weights for each i = 1, . . . , p and j = 1, . . . , q are updated

by

w(k+1)
Xi ,j

= 1
σ
(k)
j +εXi

, w(k+1)
Si ,ij

= 1
|Si

(k)
ij |+εSi

.

where εXi and εSi are predetermined positive constants, and the singular value
matrix

Σ(k) = diag
([

σ
(k)
1 , . . . , σ

(k)
n

])
∈ Rn×n

with [U(k), Σ(k), V(k)] = svd(Xi
(k))

11: end while
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5. Results

To verify the performance of the SDWLR-GSC algorithm in image restoration, we
carried out a large number of experiments and compared its performance with the most
novel methods based on the low-rank matrix. We also selected 16 classical images (Lena,
Barbara, Couple, House, Monarch are from the Set12 dataset. Frame, Road, Bridge, Elaine,
Pentagon, Lin are from Google Images. Flower is from the Kodak24 dataset. Monkey,
Tank are from the USC-SIPI image dataset http://sipi.usc.edu/database/ (accessed on 28
March 2022)) with size 512× 512 as the test dataset. The images used in all experiments
are shown in Figure 4. This experiment mainly aimed at outlier noise with high density.
Outlier noise includes two types: salt and pepper noise and random-valued sparse additive
noise. Thus, we introduced two classes of numerical experiments. First, the test image was
only destroyed by different levels of large and sparse additive noise. Second, the test image
was only destroyed by different levels of salt and pepper noise. The peak signal to noise
ratio (PSNR) [28] and structural similarity index metric (SSIM) [27] were used as quality
evaluation indicators to evaluate performance. The larger the value of PSNR and SSIM,
the better the image quality. All experiments were carried out on MATLAB R2020a running
on Windows 10. The CPU was Intel Core i7-2600, the memory was 8 GB, and the frequency
was 3.40 GHz.

Figure 4. Test images in our experiments. First row: Lena, Barbara, Goldhill, Frame, Road, Bridge,
Couple, Monkey. Second row: Boat, Elaine, Flower, House, Lin, Monarch, Pentagon, Tank.

5.1. Parameter Setting

The parameter settings involved in this algorithm are as follows. The size of the input
matrix is m× n. In Algorithm 1, we set A(0)

i = 0, B(0)
i = 0. In Algorithm 2, we set X(0)

i = 0,

S(0)
i = 0, H(0)

i = 0. Following the practice in [29] and our tests, we set the Lagrange

multiplier matrices Y(0)
1 = M/ max (‖M‖, λ−1‖M‖∞), and Y(0)

2 = 0, where ‖M‖ is the
spectral norm of matrix M and ‖M‖∞ is the maximum absolute value of the entries in
matrix M. In addition, the constants εXi and εSi in Algorithm 2 are set to 0.1, the same as
in [21].

In addition, we set θ in (13), which controls the sensitivity of the model to coefficient
errors to be 1.25/

√
max(m, n), and we set β in (11), which controls the sensitivity of the

model to the TV norm to be 10−8/
√

max(m, n). Finally, in Algorithm 2, γ can be computed
by γ = η/β, and µ corresponds to parameter µ(t) in Algorithm 2, and we set δ = 0.1.

The above parameters can be set according to experience. However, in Algorithm 1,
the size of patch b, the number of non-local similar patches m, balancing factors ρ and
η in (15), regularization parameters λ in (15) and τ in (17), and other parameters are
determined by parameter experiments.

In the parameter experiments of patch size b and patch number m, the value range of
b is multiples of 2 from 8 to 64, the value range of m is 100∼180, and the sampling interval
is 20. Figure 5 shows the influence of the values of b and m on the restoration results when
the noise density p = 0.3. Therefore, according to the experiment, when the noise density
is p = 0.3, we set the size of image blocks to 64× 64 and look for 160 similar image patches.
In addition, through experiments, when p = 0.2, p = 0.4, we set patch sizes to 60× 60 and
70× 70, and the number of non-local similar patches selected is 160 and 190.

http://sipi.usc.edu/database/
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(a) b (b) m

Figure 5. The influence of the values of b and m on the restoration results when the noise density
p = 0.3.

It can be seen that when the noise density increases, the size of the image patch also
increases. When the noise density increases, the original similar patches may be different
from each other, so expanding the size of similar patches and increasing the number of
similar patches can improve the accuracy of the algorithm.

In addition, we analyze the parameter experiments of balancing factors ρ and η, and
regularization parameters λ and τ. Figure 6 shows that when the noise density p = 0.3,
the influence of the value of this parameter on the restoration result when other parameters
are fixed is noticeable. We set ρ = 1, η = 0.1, λ = 0.02, τ = 0.5 when the noise density
p = 0.3.

(a) ρ (b) η

(c) λ (d) τ

Figure 6. The influence of the values of ρ, η, λ, and τ on the restoration results when the noise density
p = 0.3.
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In Algorithm 1, the maximum number of iterations maxiter, and in Algorithm 2, the in-
ternal maximum number of iterations inneriter, are parameters related to the convergence
of the algorithm. Because SDWLR-GSC is a non-convex model, it is difficult to prove the
global convergence of the algorithm in theory. Therefore, this paper analyzes the influence
of iteration times on the restoration results through experiments. Through experiments,
maxiter = 2 and inneriter = 100 are selected to avoid unnecessary iterative calculation.

5.2. Large Sparse Additive Noise Removal

We first test the experimental results of the proposed SDWLR-GSC for removing large
and sparse additive noise. We suppose that the ratio of damaged pixels to all pixels in the
image is p, and the values of these noisy pixels are 255, and a noisy observation image is
generated. In this test, we give the denoising results of three noise levels, namely p = 0.2,
p = 0.3, and p = 0.4. There are several other parameters in the algorithm, which are set as
follows. In Algorithm 1, the number of iterations k and the patch size are set according to
the noise level. For higher noise levels, we choose larger patches and run more iterations.
According to experiments, let the ratio of the number of damaged pixels to the number
of all pixels be p, and set patch sizes to 60× 60, 64× 64, and 70× 70 for p = 0.2, p = 0.3,
and p = 0.4, respectively. At these noise levels, the number of non-local similar patches
selected is 160, 160, and 190, respectively.

We compare the proposed SDWLR-GSC with the most advanced existing methods,
including the PCP algorithm [30], reweighted L1 algorithm [31], NSVT method [21], and
SRLRMR algorithm [29]. We also compare it with the LR-GSC algorithm [15]. It can be
seen from Table 1 that under all noise levels, compared with other competitive methods,
the SDWLR-GSC proposed by us achieves higher peak signal-to-noise ratio results. It can
be seen from Table 1 that under all noise levels, compared with other competitive methods,
the SDWLR-GSC proposed by us achieves higher PSNR results. In addition, the LR-GSC is
more suitable for removing Gaussian noise than large and sparse noise.

Table 1. Comparison of different denoising methods under different large sparse noise probabilities
in terms of PSNR.

p Value Image No.

PSNR (dB)

LR-GSC PCP Reweight l1 NSVT SRLRMR SDWLR-GSC
(Ours)

p = 0.2

Lena 12.25 26.75 23.84 32.15 32.47 36.76
Barbara 11.74 24.23 22.33 26.28 26.36 34.56
Goldhill 11.56 28.41 26.75 31.99 33.71 34.48
Frame 9.63 25.90 22.79 28.10 29.64 30.95
Road 10.01 29.77 26.43 34.63 34.88 34.50

Bridge 10.17 29.98 27.96 34.01 33.73 34.69
Couple 12.19 25.71 23.49 28.78 29.31 31.18
Monkey 12.67 21.72 20.43 22.12 23.71 25.48

Boat 12.86 25.22 23.01 27.65 28.35 32.23
Average 11.45 26.41 24.11 29.52 30.24 32.76

p = 0.3

Lena 10.48 21.27 22.17 23.84 30.67 33.31
Barbara 9.97 19.10 20.85 20.77 24.35 31.08
Goldhill 9.80 23.00 25.42 25.56 31.15 31.91
Frame 7.86 22.52 23.04 26.61 27.36 29.31
Road 8.24 25.20 26.69 28.73 33.31 33.18

Bridge 8.41 27.29 26.57 30.57 33.01 33.09
Couple 10.44 20.92 22.01 22.93 27.60 28.18
Monkey 10.91 18.09 19.21 18.12 21.90 22.93

Boat 11.12 21.25 21.62 22.01 27.66 28.74
Average 9.69 22.07 23.06 24.35 28.56 30.19
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Table 1. Cont.

p Value Image No.

PSNR (dB)

LR-GSC PCP Reweight l1 NSVT SRLRMR SDWLR-GSC
(Ours)

p = 0.4

Lena 9.22 13.18 16.53 13.57 20.53 27.44
Barbara 8.71 12.25 15.10 12.50 17.88 24.43
Goldhill 8.54 13.04 19.39 13.80 21.66 27.48
Frame 7.61 12.32 19.61 15.69 22.58 26.26
Road 6.98 11.39 18.65 13.21 20.04 29.87

Bridge 7.14 13.94 24.49 18.04 28.12 32.15
Couple 9.18 13.28 17.24 13.50 20.55 23.60
Monkey 9.65 12.65 15.00 12.06 17.07 18.68

Boat 9.86 13.82 17.03 13.84 19.64 24.01
Average 8.54 12.88 18.12 14.02 20.90 25.99

When p = 0.4 noise probability, on average, the PSNR performance of this method is
13.11 dB higher than that of PCP, 7.87 dB higher than that of specific gravity reweighted
L1, 11.97 dB higher than that of NSVT, and 5.09 dB higher than that of SRLRMR. Figure 7
shows the visual comparison results of an image (Lena) when the noise density is p = 0.2.
It can be observed that the PCP, reweighted L1, and NSVT methods cannot completely
restore the damaged image, while the SRLRMR method can better complete the image
denoising task, but it is slightly lacking in structure and the edge is still blurred. In contrast,
our proposed SDWLR-GSC method not only effectively eliminates noise, but also retains
sharp edges and fine details.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Restoration results comparison of the single image, Lena, of the PCP, reweighted l1, NSVT,
SRLRMR, and our method. Here, 20% image pixels are corrupted by large and sparse noise. (a)
The original Lena image. (b) The large and sparse noise. (c) The corrupted image (12.24 dB). (d)
Restoration result by PCP (26.75 dB). (e) Restoration result by reweighted l1 norm minimization
(23.84 dB). (f) Restoration result by NSVT (32.15 dB). (g) Restoration result by SRLRMR (32.47 dB). (h)
Restoration result by our method (36.76 dB).

5.3. Salt and Pepper Noise Removal

In this subsection, we apply the proposed SDWLR-GSC to remove salt and pepper
noise—that is, we add the noise with a pixel value of 0 on the basis of the noise in the
previous section, and then the ratio of damaged pixels’ total number with pixel values
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of 0 and 255 to all pixels’ number is p. Similarly, in this test, we still give three different
noise levels of p = 0.2, p = 0.3, and p = 0.4. We compare this model with LR-GSC [15],
PCP [30], the WNNM-RPCA model [20], the WSNM-RPCA model [32], WSNM-L1 [33],
and the DWLP model [34].

Table 2 quantitatively compares the denoising results of various methods under
different salt and pepper noise probability p. It can be seen that when p = 0.2, p = 0.3, p = 0.4,
the PSNR of our model is higher than that of LR-GSC, PCP, WNNM-RPCA, WSNM-L1,
and DWLP. Moreover, Figure 8 shows the visual comparison results of an image (House)
when the noise density is p = 0.3.

Through the experiments, we can draw several conclusions: firstly, the strong salt
and pepper noise destroys the sparse prior and low-rank of the image, and the restoration
performance of the PCP model is poor; secondly, the PSNR of our model is higher than
the average level of other models, which shows that using the dual-weighted model in
group sparse coding, processing low-rank components and sparse components at the same
time, and introducing the TV norm to solve the problem of image structure smoothing can
reconstruct the low-rank structure of images more accurately.

Table 2. Comparison of different denoising methods under different salt and pepper probabilities in
terms of PSNR.

p Value Image

PSNR (dB)

LR-GSC PCP WNNM-RPCA WSNM-RPCA WSNM-L1 DWLP SDWLR-GS
(Ours)

p = 0.2

Couple 12.60 26.34 26.03 26.29 25.08 31.57 31.73
Elaine 12.58 30.35 30.24 30.48 28.64 36.38 42.21
Flower 12.64 27.94 27.46 27.67 26.59 31.78 41.30

Goldhill 12.46 28.64 28.00 28.16 26.79 32.97 34.09
House 12.56 30.29 31.37 31.43 29.84 37.19 46.21

Lin 12.01 29.61 29.51 29.54 26.72 33.04 38.52
Monarch 12.15 24.51 26.38 26.55 25.16 29.53 41.30
Pentagon 12.72 25.84 25.51 25.66 24.29 31.20 31.83

Tank 12.91 31.67 30.12 30.23 29.49 35.92 34.57
Average 12.51 28.35 28.29 28.45 26.96 32.29 37.97

p = 0.3

Couple 10.88 24.50 24.41 24.64 23.91 28.77 29.68
Elaine 10.80 28.42 28.44 28.65 27.15 33.46 38.77
Flower 10.91 27.11 26.28 26.43 25.38 29.29 36.25

Goldhill 10.71 27.43 26.56 28.16 25.63 30.30 31.65
House 10.76 28.88 29.51 29.77 28.15 33.89 38.08

Lin 10.29 27.22 27.80 27.93 26.18 30.58 36.03
Monarch 10.40 22.84 24.27 24.47 23.61 26.39 36.82
Pentagon 10.95 24.15 23.97 24.18 23.16 28.93 29.45

Tank 11.14 30.05 29.57 29.64 28.57 33.21 32.73
Average 10.76 26.73 26.76 27.10 25.75 30.54 34.97

p = 0.4

Couple 9.60 23.43 23.77 23.81 22.62 26.57 28.35
Elaine 9.55 25.54 26.60 27.03 25.18 30.71 35.94
Flower 9.64 25.78 25.68 25.60 24.23 28.03 33.43

Goldhill 9.44 24.79 25.40 25.92 24.12 28.68 30.22
House 9.52 24.83 27.90 27.92 25.97 31.04 34.60

Lin 9.02 25.43 26.11 26.15 23.71 27.23 33.97
Monarch 9.14 21.34 22.98 23.22 22.22 24.32 34.42
Pentagon 9.73 22.34 23.04 22.96 21.95 26.13 27.97

Tank 9.90 27.57 29.12 29.19 27.29 31.94 31.70
Average 9.50 24.56 25.62 25.76 24.14 28.29 32.29
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Restoration results comparison of the image House of the PCP, WNNM-RPCA, WSNM-
RPCA, WSNM-l1, DWLP, and our method. Here, 30% image pixels are corrupted by salt and
pepper noise. (a) The original Lena image, and the image size is 512 × 512. (b) The input corrupted
image (10.69 dB). (c) Restoration result by PCP (28.88dB). (d) Restoration result by WNNM-RPCA
(29.51 dB). (e) Restoration result by WSNM-RPCA (29.77 dB). (f) Restoration result by WSNM-RPCA
l1 norm minimization (28.15dB). (g) Restoration result by DWLP (33.89 dB). (h) Restoration result by
our method (38.08 dB).

6. Conclusions

In this paper, we constructed a smooth dual-weighted low-rank group sparse coding
model. It combined group sparse coding, the TV norm, and a dual-weighted model.
We also proved the superior performance of the proposed method in image denoising.
Experimental results show that this method is obviously superior to the original PCP
optimization, reweighted L1 norm minimization, and NSVT and SRLRMR algorithms
in removing large and sparse additive noise, and it is obviously superior to the PCP
optimization, WNNM-RPCA, WSNM-RPCA, WSNM-L1, and DWLP methods in removing
salt and pepper noise.

Although our proposed method has good performance, there is still room for further
improvement. In this paper, the algorithm solver is based on the alternating direction method,
due to the matrix–matrix multiplications and matrix inversions, and singular value decom-
position is required for each iteration, which has high computational complexity for large
matrices. In addition, when the expectation matrix becomes complex—for example, it has a
high internal rank structure or the deletion becomes dense—satisfactory performance may
not be obtained. Therefore, the question of how to reduce the computational complexity while
maintaining high performance will be our research direction in the future. In addition, other
applications of the proposed method are another important issue for future work.
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