
Citation: Xiao, M.; Tan, R.; Ye, H.;

Gong, L.; Zhu, Z. Double-Color-Image

Compression-Encryption Algorithm

Based on Quaternion Multiple

Parameter DFrAT and Feature Fusion

with Preferable Restoration Quality.

Entropy 2022, 24, 941. https://

doi.org/10.3390/e24070941

Academic Editor: Ercan Kuruoglu

Received: 27 April 2022

Accepted: 1 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Double-Color-Image Compression-Encryption Algorithm Based
on Quaternion Multiple Parameter DFrAT and Feature Fusion
with Preferable Restoration Quality
Meihua Xiao 1, Ruixiao Tan 1, Huosheng Ye 2, Lihua Gong 2 and Zhiliang Zhu 1,3,*

1 School of Software, East China Jiaotong University, Nanchang 330013, China; xiaomh@ecjtu.edu.cn (M.X.);
trxhdjd@163.com (R.T.)

2 Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China;
yhsncu@163.com (H.Y.); ncuglh@163.com (L.G.)

3 The State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing 100190, China

* Correspondence: zhiliang2019@iscas.ac.cn

Abstract: To achieve multiple color images encryption, a secure double-color-image encryption algo-
rithm is designed based on the quaternion multiple parameter discrete fractional angular transform
(QMPDFrAT), a nonlinear operation and a plaintext-related joint permutation-diffusion mechanism.
QMPDFrAT is first defined and then applied to encrypt multiple color images. In the designed algo-
rithm, the low-frequency and high-frequency sub-bands of the three color components of each plain-
text image are obtained by two-dimensional discrete wavelet transform. Then, the high-frequency
sub-bands are further made sparse and the main features of these sub-bands are extracted by a
Zigzag scan. Subsequently, all the low-frequency sub-bands and high-frequency fusion images are
represented as three quaternion signals, which are modulated by the proposed QMPDFrAT with
three quaternion random phase masks, respectively. The spherical transform, as a nonlinear opera-
tion, is followed to nonlinearly make the three transform results interact. For better security, a joint
permutation-diffusion mechanism based on plaintext-related random pixel insertion is performed on
the three intermediate outputs to yield the final encryption image. Compared with many similar color
image compression-encryption schemes, the proposed algorithm can encrypt double-color-image
with higher quality of image reconstruction. Numerical simulation results demonstrate that the
proposed double-color-image encryption algorithm is feasibility and achieves high security.

Keywords: double-color-image encryption; quaternion; non-adjacent coupled map lattices; random
pixel insertion

1. Introduction

In recent years, secure transmission of color images has attracted widespread attention.
Due to the intrinsic features of images, such as strong correlation between adjacent pixels,
large storage capacity, and high redundancy, the traditional textual encryption algorithms,
such as DES (Data Encryption Standard) and AES (Advanced Encryption Standard), are not
suitable for image encryption [1]. To ensure the confidentiality of the private image infor-
mation, a great deal of color image encryption algorithms have been presented with various
technologies. Among these algorithms, chaotic systems have been widely adopted in image
encryption owing to its excellent properties. For instance, Pak et al. introduced a simple
and effective method of generating a new chaotic sequence according to the differences in
the output sequences of two existing one-dimensional (1D) chaotic maps [2]. Based on the
obtained sequences, a linear-nonlinear-linear encryption structure of this cryptographic
system was designed to improve security. Similarly, a color image encryption scheme based
on a new combination chaotic system was proposed [3]. Nevertheless, the chaotic dynamic
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properties degrade rapidly in computer realization with finite computation precision [4].
To overcome this problem, a spatiotemporal chaotic system, i.e., the non-adjacent coupled
map lattices (NCML) was developed to alleviate the degradation of low-dimensional chaos
map [5]. Subsequently, a series of image encryption algorithms were proposed based on the
spatiotemporal chaotic system [6,7]. Moreover, for better security and larger key space, the
high-dimensional chaotic systems have been increasingly employed to design the image
encryption schemes [8–11]. In ref. [8], a novel 3D chaotic map obtained by coupling the
piecewise and logistic map is implemented to improve the performance of cryptosystem.
Tong et al. proposed a fast image encryption scheme based on a new 4D chaotic system [9].
In addition, to enhance the security and complexity of the cryptosystems, chaos-based
encryption schemes were combined with other methods, such as deoxyribonucleic acid [12],
cellular automata [13], fuzzy cellular neural network [14], and so on.

However, the permutation and the diffusion processes in these encryption schemes
were both performed in the spatial domain, which may reduce the security of cryptosystems
to some extent. Inspired by some excellent mathematical properties of transform techniques,
many researchers have attempted to devise transform-based image encryption algorithms,
where the plaintext image is encrypted in the transform domain and the pixel values
can be retrieved through a reverse process. To the best of our knowledge, there are few
investigations on double-color-image compression and encryption algorithms. In light
of this situation and the above discussions, a new double-color-image compression and
encryption algorithm based on QMPDFrAT and a joint permutation-diffusion mechanism
are designed. The main contributions of the proposed algorithm are as follows:

(1) Multiple parameter discrete fractional angular transform (MPDFrAT) is generalized to
quaternion MPDFrAT. The analysis shows its advantages in image encryption. Then,
the sub-bands of the original images can be encrypted with the proposed QMPDFrAT
in a parallel way.

(2) The deficiency caused by the linear transform system is eliminated by nonlinear
transform, i.e., spherical transform.

(3) A joint permutation-diffusion mechanism with plaintext-related random pixel inser-
tion is designed to ensure the proposed cryptosystem could counteract the powerful
chosen-plaintext attack and improve the efficiency of the cryptosystem.

(4) The effect of different components of the high-frequency sub-bands on the quality
of the decryption image is discussed and a more reasonable feature fusion method
of the high-frequency part is implemented by combining DWT with Zigzag opera-
tion. Consequently, the proposed image encryption algorithm could achieve higher
quality of the decryption images than that of the typical image compression and
encryption algorithms.

The rest of this paper is arranged as follows. In Section 2, some related works are
discussed. In Section 3, some fundamental tools including the NCML system, quaternion
algebra, and MPDFrAT are reviewed. The QMPDFrAT is defined and analyzed in Section 4.
The details of the proposed double-color-image encryption algorithm are described in
Section 5. In Section 6, simulation results and security evaluations are provided. Brief
conclusions are given in Section 7.

2. Related Works

Based on the gyrator transform, Chen et al. proposed an asymmetric optical cryp-
tosystem for the color image [15]. Xiong et al. designed an optical color image scheme
based on fractional Fourier transform and two-step phase-shifting interferometry [16].
Nevertheless, these schemes processed each color channel separately and failed to capture
the inherent correlation among three color channels. To deal with the three color channels
parallelly, many encryption methods have been investigated with the quaternion-based
transforms [17–19]. However, the outputs of these aforementioned transform-based algo-
rithms are complex values and the size of encryption results or private keys exceed that of
the original images, which may make the transmission and storage of encryption image and
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private keys inconvenient. To overcome this insufficiency, Zhou et al. devised a nonlinear
color image encryption algorithm based on reality-preserving fractional Mellin transform,
where the final output was real-value encrypted image [20]. Motivated by this work, many
other reality-preserving transforms were defined to encrypt the color image [21–23]. To
enhance the capacity of the cryptosystem, multiple color image encryptions have attracted
increasing attention [24–26]. For example, Shao et al. designed a multiple color images
encryption framework, in which the multiple color images were encrypted into phase-only
function with phase retrieval algorithm under quaternion representation [24]. In many
practical applications, for the facility of transmission of ciphertext image, it is necessary
to realize simultaneous image compression and encryption. As a novel signal sampling-
reconstruction technique, compressive sensing (CS) has been widely employed to solve
this problem [27–30]. For instance, Chen et al. put forward an asymmetric color crypto-
graphic system, in which not only the low-frequency but also the CS-based compressed
high-frequency part of the original image were encrypted in the discrete fractional random
transform domain [29]. To enhance encryption efficiency, Zhang et al. investigated an effi-
cient color image encryption approach based on CS and fractional Fourier transform, where
the measurement matrices exploited in CS were obtained by extending chaos-based low
dimensional seed matrices with Kronecker product [30]. However, these transform-based
color image compression-encryption schemes were only designed for single color image,
which makes them unable to process batch images efficiently to a certain extent. Aiming
at this problem, Han et al. suggested a double-color-image compression and encryption
algorithm based on CS and self-adaptive random phase encoding [31]. However, in some
special applications, the decryption time and the quality of decryption image are also of
significance. Table 1 shows the decryption time and the PSNR values of the test image
“Peppers” under different reconstruction algorithms with the same compression ratio.
Unfortunately, the signal reconstruction takes too much time even though many efficient
reconstruction algorithms including orthogonal matching pursuit (OMP) and smoothed
norm have been proposed. In other words, the DWT-based compression method may be a
good choice in real-time decryption applications.

Table 1. Comparison results under the same compression ratio.

Spare and Reconstruction Algorithms DWT + OMP DWT+SL0 DWT + IDWT

Decryption time (s) 3.5582 3.6933 0.0369

PSNR 20.3441 20.5292 30.5270

3. Fundamental Knowledge
3.1. Non-Adjacent Coupled Map Lattices System

The non-adjacent coupled map lattices system is considered as the improved spa-
tiotemporal chaotic system, which can generate pseudorandom sequences with stable
chaotic properties [5]. The NCML considers L logistic maps coupled as

xn+1(ρ) = (1− δ) f [xn(ρ)] +
δ

2
{ f [xn(υ)] + f [xn(ω)]} (1)

where f (x) = λx(1− x) is logistic map, δ is the coupling parameter (0 ≤ δ ≤ 1), n is the
time index (n = 1, 2, 3, . . .), and ρ, υ, ω are the lattices (1 ≤ ρ, υ, ω ≤ L). The relations of ρ,
υ, and ω can be obtained by Arnold cat map, i.e.,[

υ
ω

]
=

[
1 1
1 2

][
ρ
ρ

]
mod(L) (2)
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3.2. Quaternion Representation of Multi-Image

Quaternions are hyper-complex numbers with four dimensions. A quaternion number
Q is [32]

Q = a + bi + cj + dk (3)

where a, b, c, d are real numbers and i, j, k are three imaginary operators acting on the
following rules.

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j (4)

The modulus and the conjugate of a quaternion are respectively defined as

|Q| =
√

a2 + b2 + c2 + d2, Q∗ = a− bi− cj− dk (5)

If the real part a is 0, then Q is called a pure quaternion. If the modulus |Q| equals to 1,
then Q is called a unit quaternion. Based on the above theory, the quaternion representation
of multi-image is [17]

fQ(x, y) = f1(x, y) + f2(x, y)i + f3(x, y)j + f4(x, y)k (6)

where fQ(x, y) is a quaternion signal and f1(x, y), f2(x, y), f3(x, y), f4(x, y) are four image
signals, respectively.

3.3. Multiple Parameter Discrete Fractional Angular Transform

Briefly, the definition of the discrete fractional angular transform (DFrAT) is introduced.
The kernel matrix of the DFrAT is [33]

Rα,θ
N = Vθ

NDα
N

(
Vθ

N

)T
(7)

where Dα
N = diag{1, exp(−2iπα/M), exp(−4iπα/M), . . . , exp(−2(N − 1)iπα/M)} is a

diagonal matrix, whose diagonal values are eigenvalues of the DFrAT, Vθ
N is an orthonormal

matrix and consists of the eigenvectors of the DFrAT. Vθ
N can be obtained with a recurrence

algorithm elaborated in [33].
Based on the DFrAT, a new multiple parameter discrete fractional angular transform

(MPDFrAT) was presented [34]. For a 1D signal x(n) of size N × 1, its αth order 1D
MPDFrAT is [34]

Fα,θ
M,η1

[x(n)] =
M−1

∑
l=0

Cα
l (η1)Xl [x(n)] (8)

where M is an arbitrary positive integer, η1 = (n0, n1, . . . , nM−1) ∈ ZM is a random M-
dimensional integer vector, l = 0, 1, 2, . . . , M − 1, Cα

l (η1) denotes the weight coefficient
given by

Cα
l (η1) =

1
M

M−1

∑
k=0
{exp(−2πi/M)[α(k + nk M)− lk]} (9)

Xl [x(n)] denotes 1D DFrAT with the angle θ and the fractional order 4l/M, i.e.,

Xl [x(n)] = R4l/M,θ
N x(n) (10)

where R4l/M,θ
N denotes the kernel matrix of DFrAT and can be obtained with Equation (7).

In fact, the MPDFrAT has a similar form with the multiple parameter discrete fractional
Fourier transform (MPDFrFT). The difference between MPDFrAT and MPDFrFT is the
generation process of the eigenvector of the kernel matrix. To calculate the MPDFrAT
of a discrete signal in an efficient way, one can utilize a discretization method [19] by
eigen-decomposing MPDFrAT matrix ℘α,θ

M,η1
as
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℘α,θ
M,η1

= Vθ
NDα

N

(
Vθ

N

)T

=
N−1
∑

t=0
exp

{
(−2πi/M)

[
α
(

mod(mt, M) + nmod(mt ,M)M
)]}

vmt v
T
mt ,

(11)

where mt = t, mN−1 = N for even N while mN−1 = N − 1 for odd N, mod(·) denotes the
modulo operation, vmt is eigenvector of DFrAT.

Then, one can rewrite the αth order 1D MPDFrAT of a signal x as an eigen-decomposition
form, i.e.,

=α,θ
M,η1

= ℘α,θ
M,η1

x (12)

4. Quaternion Multiple Parameter Discrete Fractional Angular Transform

Enlighted by the idea of the definition for 1D MPDFrAT with eigen-decomposition
form shown in Equation (11), one can define a new quaternion multiple parameter discrete
fractional angular transform (QMPDFrAT) for quaternion signal. For a 1D quaternion
signal xq = xr + xii + xjj + xkk, its left-side QMPDFrAT is defined as

φ
µ,α,θ
M,η1

= <µ,α,θ
M,η1

xq (13)

where

<µ,α,θ
M,η1

= Vθ
NDµ,α

M

(
Vθ

N

)T

=
N−1
∑

t=0
exp

{
(−2πµ/M)

[
α
(

mod(mt, M) + nmod(mt ,M)M
)]}

vmt v
T
mt

(14)

Equation (14) is similar to MPDFrAT matrix ℘α,θ
M,η1

in Equation (11) and complex
number i is replaced by quaternion µ. Due to the anticommutation of the multiplication of
quaternions shown in Equation (4), one can also define the right-side 1D QMPDFrAT by
shifting the kernel matrix <µ,α,θ

M,η1
to the right-side of xq, i.e.,

φ′
µ,α,θ
M,η1

=
(
xq
)T<µ,α,θ

M,η1
(15)

Without loss of generality, the left-side 1D QMPDFrAT is exploited in this paper.
In addition, to illustrate the feature of the proposed QMPDFrAT, a 1D quaternion sig-
nal of size 256 × 1 is transformed by using the fractional quaternion Fourier transform
(FRQFT) [35], the quaternion discrete fractional random transform (QDFRNT) [36], the
multiple-parameter fractional quaternion Fourier transform (MPFrQFT) [19], and the pro-
posed QMPDFrAT. The comparison results are recorded in Table 2. For brevity, only the first
imaginary parts of the input and output quaternion signal are drawn in Table 2. The compli-
cated Hermite polynomials calculation for eigenvectors in the MPFrQFT and the Schmidt
orthogonalization of a random matrix in the QDFRNT require relatively higher time. How-
ever, the eigenvectors in the QMPDFrAT can be obtained only by simple recurrences and
thus the calculation speed is greatly improved. Furthermore, the proposed QMPDFrAT
possesses the largest key space among these four quaternion transforms. Therefore, the
proposed QMPDFrAT is a suitable tool for image encryption.

The 1D QMPDFrAT can be developed to the 2D one by calculating two 1D QMPDFrATs
in the x-axis and the y-axis, respectively, i.e.,

Yµ,α,β,θ1,θ2
M1,M2,η1,η2

= <µ,α,θ1
M1,η1

yq

(
<µ,β,θ2

M2,η2

)T
(16)

where yq = yr + yii + yjj + ykk is a 2D quaternion signal.
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Table 2. Comparison of four quaternion transforms.

Transform FRQFT [35] QDFRNT [36] MPFrQFT [19] Proposed QMPDFrAT

Performance
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5. Double-Color-Image Compression and Encryption Algorithm

The encryption process for the designed double-color-image encryption algorithm is
shown in Figure 1. The main encryption processes include three stages: sparse representa-
tion of the color plaintext images, double-color-image encryption in the frequency domain
under quaternion representation, and joint permutation-diffusion mechanism. The detailed
steps are described as follows.
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Figure 1. Double-color-image encryption algorithm.

5.1. Compression Process

Step 1: Double-color plaintext images C1 and C2 of size W × H are converted into
their red, green, and blue components which can be expressed as R1, G1, B1, R2, G2, and
B2, respectively.

Step 2: The one level 2D DWT is performed on the six color components to obtain
24 image sub-bands of size W

2 ×
H
2 , namely,

{
LLR1

1 , LHR1
1 , HLR1

1 , HHR1
1

}
for R1,{

LLG1
1 ,LHG1

1 ,HLG1
1 ,HHG1

1

}
forG1,

{
LLB1

1 ,LHB1
1 ,HLB1

1 ,HHB1
1

}
forB1,

{
LLR2

1 ,LHR2
1 ,HLR2

1 ,HHR2
1

}
for R2,

{
LLG2

1 , LHG2
1 , HLG2

1 , HHG2
1

}
for G2,

{
LLB2

1 , LHB2
1 , HLB2

1 , HHB2
1

}
for B2.

Step 3: Low-frequency parts of six spectra are chosen as the three imaginary parts
of two quaternion signals fQ1 and fQ3 . To improve the quality of image reconstruction
and achieve small transmission load simultaneously, a new method for processing high-
frequency parts of six spectra is designed as follows:

(1) The sub-bands LHR1
1 , HLR1

1 and HHR1
1 of R1 are transformed by the DWT and the

interim results are scanned by the Zigzag operation [37] to obtain three 1D sequences
with length 1

4 WH, respectively. The compression process for R1 is drawn in Figure 2a.
(2) Each sequence is cut to acquire a new sequence with length b(WH)/12c. Figure 2b

shows the schematic diagram of Zigzag operation. The results after performing DWT
on the high-frequency parts are scanned from the upper left corner to the lower right
corner. This scan order can extract the main information of the high-frequency parts,
which promises the preferable restoration quality as analyzed in Section 5.2.
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(3) The above-mentioned three new sequences are constructed into one sequence. If
necessary, the zero elements are filled in the right-most row of this reorganized
sequence to ensure that the length of this sequence is (WH)/4. Then, this sequence is
converted into a composite matrix CR1 of size W

2 ×
H
2 .

(4) In a similar way, one can obtain five other composite matrices CG1 , CB1 , CR2 , CG2 , and
CB2 from five high-frequency parts of G1, B1, R2, G2, and B2, respectively.
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Figure 2. Compression process for R1. (a) shows the whole compression process and (b) shows the
schematic diagram of Zigzag operation in (a).

5.2. Double-Color-Image Encryption under Quaternion Representation

Step 1: Quaternion representation (QR): the selected to-be-encrypted sub-bands are
represented by quaternion algebra shown as follows

fQ1 = CR1 + LLR1
1 i + LLG1

1 j + LLB1
1 k

fQ2 = CG1 + CR2 i + CG2 j + CB2k
fQ3 = CB1 + LLR2

1 i + LLG2
1 j + LLB2

1 k
(17)

Step 2: With the secret keys M1, M2, η1, η2, α, β, θ1, θ2, µ1, µ2, and µ3, three quater-
nion signals shown in Equation (17) are modulated by the proposed QMPDFrAT with
three quaternion random phase masks, respectively.

Gi = <
µ1,α,θ1
M1,η1

[
fQi exp(µ32πφi)

](
<µ2,β,θ2

M2,η2

)T
(i = 1, 2, 3) (18)

where phase mask φi(i = 1, 2, 3) is a random matrix uniformly distributed in [0, 1).
Step 3: The four parts of each quaternion signal Gi are extracted and reorganized

(EAR) to form a new matrix of size W × H.

Ai =

[
R(Gi) X(Gi)
Y(Gi) Z(Gi)

]
(i = 1, 2, 3) (19)

where R(Gi), X(Gi), Y(Gi), and Z(Gi) extract the real part and the three imaginary parts
of the quaternion signal Gi, respectively.

Step 4: To eliminate the deficiency caused by the inherent linearity of the QMPDFrAT,
a nonlinear operation called spherical transform is followed to further hide the information
obtained by matrices A1, A2, and A3. For the convenience of decryption, the matrix
Ai(i = 1, 2, 3) is first mapped to the matrix Bi(i = 1, 2, 3) whose values are greater than
zero. As shown in Figure 3, the three matrices B1, B2, and B3 can be regarded as the
orthorhombic axis in the spherical coordinate domain. The mapping rules are

r(u, v) =
√

B1(u, v)2 + B2(u, v)2 + B3(u, v)2

θ(u, v) = ε · arccos B3(u,v)
r(u,v)

ϕ(u, v) = ε · arctan B2(u,v)
B1(u,v)

(20)
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where ε is a plaintext-related adjustment factor which can be calculated as

ε = sum
2553

= 1
2553

W
∑

i=1

H
∑

j=1
[R1(i, j) + G1(i, j) + B1(i, j) + R2(i, j) + G2(i, j) + B2(i, j)] (21)
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In this process, ε is considered as a supplementary key for decryption.

5.3. Joint Permutation-Diffusion Mechanism with Plaintext-Related Random Pixel Insertion

For the image encryption algorithm with the traditional permutation-diffusion struc-
ture shown in Figure 4, there are three main drawbacks: (1) multiple rounds of permutation
and diffusion operations improve the level of security but sacrifice efficiency; (2) the secret
keys are dependent on the original image and the user could not obtain keys before per-
forming the encryption process; (3) the same ciphertext image is obtained each time when
it is applied to the same plaintext image with secret keys, which weakens the robustness
of the cryptosystem. Aiming at these shortcomings, a new joint permutation-diffusion
mechanism based on the plaintext-related random pixel insertion is designed to acquire
the final encryption image E, in which only one-time traversal of the to-be-encrypted
sequence is executed [38]. The specific process is shown in Figure 5. The encryption steps
are described as follows.
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Figure 5. Joint permutation-diffusion mechanism with plaintext-related random pixel insertion.

Step 1: With the initial keys x1(1), x2(1), δ, and λ, NCML system is iterated
N0 + 3WH + 3H times. To eliminate the transient effect, the former N0 values are dis-
carded. Then, one can obtain the chaotic sequence Xi with length 3WH + 3H: Xi =
{xi(1), xi(2), . . . , xi(3WH + 3H)}(i = 1, 2). Subsequently, the sequence X1 is further pro-
cessed as

S = mod(round(X1 × 109), 256) (22)

Additionally, one could sort sequence X2 and record the positions of the corresponding
values of the sorted sequence in X2 to obtain address sequence d of length 3WH + 3H.

Step 2: Three matrices r, θ, and ϕ are converted into a 1D sequence E1,
E1R = reshape(r, 1, WH)
E1G = reshape(θ, 1, WH)
E1B = reshape(ϕ, 1, WH)
E1 = [ER, EG, EB]

(23)

Afterwards, one can quantify E1 into the range of [0, 255],

E2 = round
[

255× (E1 −min(E1))

max(E1)−min(E1)

]
(24)

Step 3: Generation of random pixel values related to plaintext. Adopting the secret
keys x1(1), x2(1), δ and the sum of all the pixels in the original images as the input of hash
function SHA-512, a 512-bits hash value V can be obtained. One can randomly select a
binary sequence b = (b7b6 . . . b0) of length 8 from V for 3H times and convert each binary
sequence into decimal integer. Consequently, a plaintext-related random sequence L of
length 3H is obtained. Afterwards, sequence L and sequence E2 are concatenated into one
sequence LE of length 3WH + 3H.

Step 4: Joint permutation-diffusion mechanism. The first encrypted pixel value
E′(1, d(1)) is randomly selected from sequence L. Then, other encrypted pixel values are
obtained by

E′(1, d(k)) = bitxor
(
mod(bitxor(LE(1, k), S(1, k)), 256), E′(1, d(k− 1))

)
(25)

where k = 2, . . . , 3WH + 3H.
Step 5: The final ciphertext E is obtained by

E = reshape(E′, W, H + 1, 3) (26)

In the proposed joint permutation-diffusion strategy, the plaintext-related random
values are randomly inserted in the interim sequence E′. The value of encrypted sequence
E′(1, d(k)) not only depends on the to-be-encrypted value LE(1, k− 1), chaotic value S(1, k),
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but also is determined by the previous encrypted value E′(1, d(k− 1)), which accords the
proposed color image cryptosystem a high level of security, as elaborated in the later section.

5.4. Double-Color-Image Decryption Algorithm

Since the proposed double-color-image encryption algorithm is symmetric, those
who know the whole keys can decrypt the ciphertext with the reverse encryption process
described in Section 5.2. The decryption process is exhibited in Figure 6. Particularly, the
inverse decryption process of joint permutation-diffusion strategy is{

LE(1, 1) = E′(1, d(1))
LE(1, k) = bitxor(S(k, 1), mod(bitxor(E′(1, d(k)), E′(1, d(k− 1))) + 256, 256))

(27)

where k = 2, . . . , 3WH + 3H. The inverse transform for Equation (20) is
B1(u, v) = r(u, v) sin θ(u,v)

ε cos ϕ(u,v)
ε

B2(u, v) = r(u, v) sin θ(u,v)
ε sin ϕ(u,v)

ε

B3(u, v) = r(u, v) cos θ(u,v)
ε

(28)Entropy 2022, 24, x FOR PEER REVIEW 11 of 27 
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After performing the inverse QMPDFrATs and inverse phase mask modulations, one
can extract the four parts of each resulting quaternion signals, respectively. Finally, the
decryption images can be retrieved through the inverse compression process and inverse
DWT operation.

6. Simulation Results and Security Analyses
6.1. Encryption and Decryption Results

To verify the feasibility of the proposed encryption algorithm, four groups of color
images of size 256× 256 shown in Figure 7 are selected from the USC-SIPI image database
to be tested [39]. The secret keys M1 and M2 are arbitrarily taken as 25 and 29, respectively.
The pure quaternions µ1, µ2, µ3, and µ4 are set as i, j, k, and (i + j + k)/

√
3, respectively.

The Mi-dimensional parameter vector ηi(i = 1, 2) is random real vector whose values
are independent and uniformly distributed in [0, 100]. The fractional orders α and β are
randomly given as 0.4697 and 0.4023, respectively. The initial values and control parameters
of the NCML system are chosen arbitrarily as: x1(1) = 0.4728, x2(1) = 0.3977, δ = 0.2635,
λ = 3.9864, respectively. Figures 8 and 9 show the encryption and the decryption results,
respectively. To measure the quality of restored image, two image quality assessment
criteria are considered, i.e.,

(1) Peak Signal-to-Noise Ratio (PSNR) is

PSNR = 10 log
W × H × 2552

∑W
m=1 ∑H

n=1 [C(m, n)− D(m, n)]2
(29)

where C(m, n) and D(m, n) represent the pixel values of each color component of the
original color image and the decryption one, respectively.



Entropy 2022, 24, 941 11 of 24

(2) Structural similarity (SSIM) index [40] is

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (30)

where x and y are the windows of two images with size m× m, µx and µy denote
the average values of x and y, σ2

x and σ2
y are variances of x and y, respectively,

σxy is the covariance between x and y. c1 = (k1L)2, c2 = (k2L)2, k1 = 0.01, k2 = 0.03,
L is the gray level of the plaintext image. The greater SSIM means the better recovery
of image.
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Figure 9. Decryption images: (a) “Lena”, (b) “Peppers”, (c) “Female”, (d) “Milkdrop”, (e) “House”,
(f) “Airplane”, (g) “Couple”, (h) “Tree”.

The PSNR values and the mean SSIM (MSSIM) values for different images are collected
in Table 3. It can be seen from Figures 8 and 9 and Table 3 that the ciphertext images cannot
reveal the information of the original images and the decryption images achieve good
reconstruction quality.

Table 3. PSNR and MSSIM values of decryption images.

Decryption Image
PSNR (dB)

MSSIM
R G B Average

“Lena” 30.8783 28.1759 29.3766 29.4769 0.9801

“Peppers” 31.1626 29.1326 30.8829 30.3927 0.9903

“Female” 34.9543 34.1980 32.3790 33.8437 0.9925

“Milkdrop” 41.5283 32.1835 33.6339 35.7819 0.9957

“House” 34.6128 34.6335 32.6833 33.9765 0.9946

“Airplane” 28.3353 27.4659 30.7483 28.8499 0.9787

“Couple” 34.8817 35.7362 34.2417 34.9532 0.9904

“Tree” 30.6282 28.3096 29.3898 29.4425 0.9842

6.2. Decryption Quality Evaluation

In the conventional DWT-based image compression and encryption methods, to
achieve the purpose of compression, only the low-frequency part of the original image
is utilized for encryption and the high-frequency parts are discarded, which affects the
decryption quality of the image [41,42]. In this paper, to achieve compression and improve
the quality of image reconstruction simultaneously, five methods shown in Table 4 are
designed to flexibly select the high-frequency parts of the original images.
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Table 4. Five methods for selecting high-frequency sub-bands.

Method 6 High-Frequency Sub-Bands

Method 1 LHR1,G1,B1,R2,G2,B2
1

Method 2 HLR1,G1,B1,R2,G2,B2
1

Method 3 HHR1,G1,B1,R2,G2,B2
1

Method 4 LHR1,R2
1 , HLG1,G2

1 , HHB1,B2
1

Method 5

(
LHR1,R2

1 + HLR1,R2
1 + HHR1,R2

1

)
DWT&Zigzag

→
CR1,R2

1(
LHG1,G2

1 + HLG1,G2
1 + HHG1,G2

1

)
DWT&Zigzag

→
CG1,G2

1(
LHB1,B2

1 + HLB1,B2
1 + HHB1,B2

1

)
DWT&Zigzag

→
CB1,B2

1

Simulations are conducted with the five above-mentioned methods. The correspond-
ing PSNR values of different decryption images are depicted in Figure 10. Decryption
images with the proposed five methods have relatively higher reconstruction quality than
those in [29,31], since both the low-frequency parts and the high-frequency parts of orig-
inal images are reserved to be encrypted. As an example, decryption images “Peppers”
with five methods are shown in Figure 11. Corresponding selected details of decryption
“Peppers” are exhibited in Figure 12. From Figures 10–12, although the PSNR value of
the decryption image with method 1 (2, 3) is acceptable, the details of the corresponding
decryption image are distorted obviously, for only one of the three high-frequency parts
associated with the original RGB components are reserved to be encrypted. For method 4,
the selected high-frequency parts (LH1, HL1, HH1) of each RGB component are differ-
ent and the decryption images contain all these three high-frequency parts as possible,
which leads to the decryption images not only achieving similar decryption quality with
method 1 (2, 3), but also reducing the undesirable distortion effect of the detail part to a
certain extent. For method 5, the main information of all the three high-frequency parts of
every RGB component are reserved via the DWT and Zigzag operation, which can make
the decryption images achieve higher visual quality and relatively higher reconstruction
quality than method 4. Based on the above discussion, the adoption of method 5 as the fea-
ture fusion of the high-frequency parts of the original images is more helpful for improving
the reconstruction quality of decryption image.

6.3. Statistical Analyses
6.3.1. Histogram Analysis

Histograms play an important role in statistical analyses. Figure 13(a1–c1,a2–c2)
are the histograms of RGB components of original “Lena” and “Peppers”, respectively.
Figure 13(a3–c3) are the histograms of RGB components of encryption image, respectively.
In the encryption process, the proposed QMPDFrAT is performed on the compressed
image, which causes the histograms of the intermediate results have a similar distribution.
Afterward, the proposed joint permutation-diffusion operation can make the pixel values
of intermediate results distributed uniformly among the range of 0–255. From Figure 13,
the histograms of RGB components of original color images “Lena” and “Peppers” are
quite different while those of RGB components of the encryption image show similarity
and uniform distribution. In addition, the chi-square (χ2) test is adopted to numerically
measure the uniformity of the histogram of ciphertext [43], i.e.,

χ2 =
255

∑
L=0

(oL − eL)
2

eL
(31)
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where oL is the observed number of the L-th gray level and eL is the expected number of the
L-th gray level. Table 5 gives the results of the chi-square test for the RGB components of the
encryption image under different input images. From Table 5, the χ2-values of encrypted
RGB components are under the critical values with 1% and 5% level of significance, which
indicates that the proposed encryption algorithm can withstand the histogram attack.
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Table 5. Results of chi-square test.

Image
χ2-Value Critical Value

R G B 1% Probability 5% Probability

“Lena-Peppers” 244.9391 227.9453 260.7734

310.457 293.2478
“Female-Milkdrop” 239.0859 243.7813 249.9844

“House-Airplane” 267.0547 223.8281 261.0781

“Couple-Tree” 243.7188 249.2656 191.0938

6.3.2. Correlation Analysis

A total of 12,000 pairs of adjacent pixels in the horizontal, vertical, and diagonal direc-
tions are chosen randomly from the original color image “Lena” and the corresponding
encryption image. Their correlation distributions are displayed in Figure 14. In Figure 14,
the correlation distributions of the three color channels of the original image “Lena” are
linear and strongly correlated, while those of the corresponding three color channels of the
encryption image are almost uniform. Moreover, to evaluate this feature numerically, the
correlation coefficients of the selected 12,000 pairs of adjacent pixels in three directions are
calculated, as shown in Table 6. The correlation coefficients in the original color images
are close to 1, while those in the encryption images are near 0. The results suggest that
the proposed algorithm can reduce the correlation in original images significantly. There-
fore, the statistical analysis attack is impracticable for the proposed double−color−image
encryption algorithm.

Entropy 2022, 24, x FOR PEER REVIEW 19 of 27 
 

 

 
Figure 14. Correlation distributions of adjacent pixels in the horizontal, vertical, diagonal directions: 

(a) distribution of original color image “Lena”; (b–d) distributions of red, green, and blue compo-

nents of encryption image “Lena−Peppers”, respectively. 

6.3.3. Information Entropy Analysis 

Information entropy  H m  can reflect the degree of randomness and the unpredict-

ability of a random event m , i.e., 

   
 

2 1

0

1
log

N

i

i i

H m p m
p m





   (32) 

where  ip m  is the occurrence probability of the random event im . Theoretically, the 

value of  H m  for an encryption image with 256−level gray is 8 bits when all gray levels 

obey the uniform probability distribution. In our double−color−image encryption algo-

rithm, the ciphertext image is obtained by the QMPDFrAT and chaos-based joint permu-

tation−diffusion, which makes encrypted pixel values randomly distributed as much as 

possible. The information entropies of the RGB components in the final encryption image 

under different input test images are shown in Table 7. One can see that the information 

entropies are extremely close to 8 bits. Therefore, the proposed double-color-image en-

cryption algorithm can resist the information entropy analysis attack. 

Table 7. Results of information entropy (dB) of encryption color images. 

Algorithm Encryption Image R G B 

Proposed algorithm 

“Lena−Peppers” 7.9970 7.9974 7.9976 

“Female−Milkdrop” 7.9973 7.9974 7.9971 

“House−Airplane” 7.9970 7.9976 7.9975 

“Couple−Tree” 7.9973 7.9973 7.9979 

Ref. [11] “Lena” 7.9915 7.9912 7.9909 

Ref. [30] “Lena” 7.3488 7.4637 7.3369 

Ref. [31] “Lena” 7.2496 7.3555 7.2855 

Ref. [38] “Lena” 7.9990 7.9989 7.9992 

Figure 14. Correlation distributions of adjacent pixels in the horizontal, vertical, diagonal directions:
(a) distribution of original color image “Lena”; (b–d) distributions of red, green, and blue components
of encryption image “Lena−Peppers”, respectively.



Entropy 2022, 24, 941 17 of 24

Table 6. Correlation coefficients of adjacent pixels.

Scheme Image Horizontal Direction Vertical Direction Diagonal Direction

Proposed scheme

“Lena”

R 0.9662 0.9355 0.9056

G 0.9459 0.9047 0.8735

B 0.8931 0.8662 0.8314

“Peppers”
R 0.9507 0.9453 0.9069

G 0.9652 0.9571 0.9307

B 0.9451 0.9356 0.9028

“Female”

R 0.9553 0.9716 0.9401

G 0.9653 0.9722 0.9547

B 0.9493 0.9607 0.9360

“Milkdrop”
R 0.9947 0.9824 0.9809

G 0.9710 0.9572 0.9418

B 0.9542 0.9567 0.9182

“Lena−Peppers”
R −0.0013 −0.0111 0.0046

G 0.0135 0.0064 −0.0241

B 0.0179 0.0131 0.0023

“Female−Milkdrop”
R 0.0016 0.0044 −0.0013

G −0.0120 0.0095 0.0056

B 0.0017 0.0094 0.0141

Ref. [11] “Lena”

R −0.0027 −0.0131 −0.0032

G 0.0073 0.0178 0.0127

B 0.0012 −0.0140 0.0123

Ref. [31] “Lena”

R 0.0847 0.0501 0.0356

G 0.0707 −0.0318 0.0831

B 0.1394 −0.0133 0.1065

Ref. [38] “Lena”

R 0.0025 0.0047 0.0021

G 0.0019 0.0127 0.0037

B −0.0032 0.0101 0.0087

6.3.3. Information Entropy Analysis

Information entropy H(m) can reflect the degree of randomness and the unpredictabil-
ity of a random event m, i.e.,

H(m) =
2N−1

∑
i=0

p(mi) log
1

p(mi)
(32)

where p(mi) is the occurrence probability of the random event mi. Theoretically, the
value of H(m) for an encryption image with 256−level gray is 8 bits when all gray lev-
els obey the uniform probability distribution. In our double−color−image encryption
algorithm, the ciphertext image is obtained by the QMPDFrAT and chaos-based joint
permutation−diffusion, which makes encrypted pixel values randomly distributed as
much as possible. The information entropies of the RGB components in the final encryption
image under different input test images are shown in Table 7. One can see that the informa-
tion entropies are extremely close to 8 bits. Therefore, the proposed double-color-image
encryption algorithm can resist the information entropy analysis attack.
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Table 7. Results of information entropy (dB) of encryption color images.

Algorithm Encryption Image R G B

Proposed
algorithm

“Lena−Peppers” 7.9970 7.9974 7.9976
“Female−Milkdrop” 7.9973 7.9974 7.9971
“House−Airplane” 7.9970 7.9976 7.9975

“Couple−Tree” 7.9973 7.9973 7.9979

Ref. [11] “Lena” 7.9915 7.9912 7.9909
Ref. [30] “Lena” 7.3488 7.4637 7.3369
Ref. [31] “Lena” 7.2496 7.3555 7.2855
Ref. [38] “Lena” 7.9990 7.9989 7.9992

6.4. Sensibility Analyses
6.4.1. Key Sensitivity Analysis

To inspect the sensitivity of the proposed algorithm, a set of tests are performed by
decrypting the ciphertext image with a tiny perturbation in the correct encryption key.
Figures 15 and 16 exhibit the decryption image “Peppers” when one of the initial keys
has a tiny deviation while all the other keys are correct, respectively. Figure 16 shows the
decryption image “Peppers” decrypted with wrong keys α′ = α + 10−3, β′ = β + 10−3,
M′1 = M1 + 1, M′2 = M2 + 1, randomly generated real vectors η′1 and η′2, respectively. The
decryption results indicate that these images cannot reveal any serviceable information
and the proposed image encryption algorithm is sensitive to the above-mentioned keys.
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6.4.2. Key Space Analysis

Simulations show that the secret keys θ1, θ2, and ε are not sensitive enough, thus
they are considered supplementary keys. From the sensitivity analysis in Section 6.4.1, the
precision of the keys x1(1), x2(1), and λ is up to 10−15. The deviation of control parameter δ
is about 10−6. The key space for fractional order α (β) is 10−3. Therefore, the total key space
of the proposed algorithm is at least 1057, which is greater than 2189. It indicates that the key
space of the proposed encryption algorithm is large enough to resist the brute-force attack.

6.4.3. Differential Attack Analysis

Two common indicators, i.e., NPCR (number of pixel change rate) and UACI (unified
average changing intensity) are introduced to evaluate the ability of the proposed algorithm
to resist differential attack. These two indicators can be computed, respectively, as [11]

NPCRR,G,B = ∑
i,j

DR,G,B(i, j)
W × H

× 100% (33)

UACIR,G,B = ∑
i,j

∣∣∣E′R,G,B(i, j)− ER,G,B(i, j)
∣∣∣

255×W × H
× 100% (34)

DR,G,B(i, j) =
{

0, E′R,G,B(i, j) = ER,G,B(i, j)
1, E′R,G,B(i, j) 6= ER,G,B(i, j)

(35)

where ER,G,B and E′R,G,B are the ciphertext images without and with only one pixel altered
in the plaintext images, respectively. In these experiments, 10 pixels of different positions
in each plaintext image are randomly selected and only one pixel is changed each time.
In the diffusion process, the plaintext-related random values are randomly inserted into
the to-be-encrypted sequence and the encrypted values are determined by the chaotic
values and their previous ciphered values, both of which make the proposed cryptosystem
sensitive to plaintext images. The average NPCR values and the average UACI values for
the two ciphertext images are tabulated in Table 8. It shows that the proposed encryption
algorithm could resist differential attack, since the values of NPCR and UACI are close to
their theoretical values.

Table 8. Results of average NPCR and UACI values for different color images.

Image
NPCR (%) UACI (%)

Red Green Blue Red Green Blue

“Lena” 99.6429 99.6628 99.6261 33.4440 33.4876 33.4167

“Peppers” 99.6325 99.6118 99.6253 33.4530 33.4729 33.4237

“Female” 99.6536 99.6332 99.6379 33.4521 33.4136 33.4377

“Milkdrop” 99.6045 99.5992 99.6210 33.3561 33.4129 33.4459

“Lena” in Ref. [11] 99.6101 99.6136 99.6141 33.4695 33.4292 33.4665

“Lena” in Ref. [31] 99.6258 99.6366 99.5997 33.3894 33.3944 33.4859

“Lena” in Ref. [38] 99.6103 99.9098 99.6089 33.4655 33.4652 33.4591

6.5. Robustness against Noise Analysis and Data Loss Attack

Assume that the encryption image is polluted by the additive Gaussian noise and
Salt and Pepper noise during transmission. Decryption results of image “Peppers” with
these two types of noises added to the ciphertext are displayed in Figure 17. Although the
quality of decryption images decreases with the increase of noise parameter, the decryption
images are still identifiable. It indicates that the proposed color image encryption algorithm
could resist the noise attack to a certain extent. Figure 18 shows the PSNR values of
different decryption images with the increase of noise parameter, which further supports
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our conclusion. To analyze the robustness of the proposed algorithm against data loss
attack, the ciphertext image is assumed to be cropped to a limited degree. Simulation results
are exhibited in Figure 19. It can be noted that the main information of the decryption image
can still be recognized since the main information of the plaintext images is randomly
distributed over the whole ciphertext image by the proposed QMPDFrAT and the joint
permutation-diffusion mechanism. Therefore, the proposed algorithm can withstand data
loss attack to a limited degree.
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6.6. Robustness of the Proposed Algorithm against Four Typical Attacks

Among the four potential attacks including ciphertext-only attack, known-plaintext
attack, chosen-ciphertext attack, and chosen-plaintext attack, the chosen-plaintext attack is
considered as the most powerful one. In the cryptanalysis, if the cryptosystem is immune
to the chosen-plaintext attack, it will be able to withstand other three attacks [12].

Under the chosen-plaintext attack, attackers may deduce the secret keys by a pair
of the corresponding plaintext and ciphertext images. In our algorithm, the deficiency
caused by the linear transform system is eliminated by a nonlinear spherical transform.
The current encrypted pixel value is associated with the plaintext-related values and the
previous ciphered value, which contributes to the high sensitivity for the plaintext images.
On the other hand, the plaintext-related values are obtained in a random way, which
enables the proposed algorithm to generate a completely different encrypted images each
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time when it is applied to the same original images with the same secret keys. In addition,
some attackers may deduce the secret keys by analyzing the special images, such as all black
and all white images [44]. To analyze this situation, double black images and double white
images are considered as the inputs of the proposed cryptosystem, respectively. Figure 20
shows one of the double special images and their corresponding encryption images. As
it is shown from the simulation results, the ciphertext images of these two special images
are all noise-like. Therefore, the designed double-color-image encryption algorithm has a
strong ability to resist the chosen-plaintext attack and the other three potential attacks.
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6.7. Time Analysis

Execution time is a significant consideration in image encryption and decryption
processes. The encryption and decryption time of the proposed cryptosystem and similar
algorithms in refs. [11,29,31,38] is shown in Table 9. Simulations with the same number of
input images are conducted under MATLAB (R2016a) on a personal computer with Intel
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(R) Core (TM) i7−3537 U CPU @2.00 GHz, 4GB RAM running Windows 10. In ref. [11],
the keystreams utilized in encryption and decryption processes are generated by iterating
the 6D hyperchaotic system, which takes too much time. In refs. [29,31], the compression
and encryption are realized efficiently by combining CS with joint low-dimensional chaotic
system. However, the decryption process is time-consuming as it takes too much time
to reconstruct the original signal. Since the whole encryption process is executed in the
spatial domain, the security of the encryption algorithm in ref. [38] is guaranteed by the
complex permutation and diffusion operations, which leads to relatively longer encryption
and decryption time. In our algorithm, the time-consuming parts include double-color-
image compression, three times QMPDFrATs, a spherical transform, and one-time joint
permutation-diffusion operation. QMPDFrAT was pointed out to be efficient in Section 3.
Only one-time traversal of the to-be-encrypted sequence allows the permutation-diffusion
process to take relatively shorter encryption and decryption time. Figure 21a,b shows
the encryption time and the decryption time of each part, respectively. As observed from
Figure 21, the encryption and decryption time is acceptable. Therefore, the proposed image
compression-encryption algorithm is feasible in real-time cryptosystem.

Table 9. Encryption and decryption time (s).

Time Proposed Scheme Ref. [11] Ref. [29] Ref. [31] Ref. [38]

Encryption time 1.2271 4.0821 0.8574 0.9139 1.8094
Decryption time 1.1579 4.2116 4.6658 4.5348 1.9225
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7. Conclusions

The quaternion multiple parameter discrete fractional angular transform is firstly
defined. The analysis shows that the proposed quaternion multiple parameter discrete frac-
tional angular transform is a suitable tool for image encryption. Based on this transform, a
new double-color-image compression-encryption algorithm with a spatiotemporal chaotic
system is obtained. Sub-bands of original images based on quaternion representation are
encrypted with quaternion multiple parameter discrete fractional angular transform and
the intermediate results are constructed into three new matrices with the same size of
plaintext images, which avoids the additional data extension that many transform-based
methods yield. The spherical transform, as a nonlinear operation, is introduced to non-
linearly make the three transform results interact. A new joint permutation-diffusion
mechanism with plaintext-related random pixel insertion is developed to enhance the
security of cryptosystem and reduce encryption time simultaneously. The simulation re-
sults show that the proposed algorithm has better reconstruction effects than some similar
compression-encryption algorithms. The security performance evaluation demonstrates
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that the proposed color image encryption algorithm has a large key space, high key sensitiv-
ity, and can withstand statistical analyses attack, differential attack, noise attack, occlusion
attack, known-plaintext attack, and chosen-plaintext attack.
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