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Abstract: We characterise the geometry of the statistical Roegenian manifold that arises from the
equilibrium distribution of an income of noninteracting identical economic actors. The main results for
ideal income are included in three subsections: partition function in distribution, scalar curvature, and
geodesics. Although this system displays no phase transition, its analysis provides an enlightening
contrast with the results of Van der Waals Income in Roegenian Economics, where we shall examine
the geometry of the economic Van der Waals income, which does exhibit a “monetary policy as
liquidity—income” transition. Here we focus on three subsections: canonical partition function,
economic limit, and information geometry of the economic Van der Waals manifold.

Keywords: statistical Roegenian economics; information geometry (ideal income, Van der Waals
income); economic partition function; Fisher–Rao metric; scalar curvature; geodesics

MSC: 53B20; 60D99

1. Introduction

We have been inspired from information geometry in Thermodynamics (see [1]) to
produce an information geometry in Roegenian economics [2–17].

For this, we used a part of Udriste team dictionary (a table that lists the words of a
thermodynamic language and their correspondents in economics, associating “elements”
that behave similarly; it is similar to a morphism—a structure-preserving map from one
mathematical structure to another one of the same type). The dictionary part what interests
us here is

THERMODYNAMICS ECONOMICS

U = internal energy . . . G = growth potenţial
T = temperature . . . I = internal political stability
S = entropy . . . E = entropy
P = pressure . . . P = price level (inflation)
V = volume . . . Q = volume, structure, quality
M = total energy (mass) . . . Y = national income (income)
Q = electric charge . . . I = total investment
W = mechanical work . . . W = wealth of the system
Q = heat . . . q = stock market
h = Planck constant . . . h = economic quantum

Definition 1. The economy based on rules similar to those in thermodynamics, via Udriste team
dictionary (morphism), is called Roegenian economics.
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In Roegenian economics, P means price level, I means internal politics stability, Q
means goods volume, and Y means national income.

Generally, we develop the vision of Nicholas Georgescu Roegen, which links the
economic phenomena of entropy and other mathematical and physical elements of a
significant economic nature. We will study the information geometry necessary in the case
of aggregation of initially stable and independent economic subsystems in a functional
entity, e.g., the architecture of the European Community Economy.

Although the system of ideal income, Section 2, displays no phase transition, our
analysis provides an enlightening contrast with the results of Section 3 where we shall
examine the geometry of the Van der Waals income, which does exhibit a “monetary policy
as liquidity—income” transition. The topics of Section 2 are: partition function in P− I
distribution, curvature for ideal income, and geodesics for ideal income. The topics of
Section 3 include: state equation, canonical partition function, economic limit, and geometry
of the economic Van der Waals manifold.

Generally, the information geometry approach [1,2,16–20] studies the differential geo-
metric structure of statistical models. Refs. [1,18,21,22] helped us to complete our ideas on
the geometry of statistical manifolds with economic significance. In fact, the geometriza-
tion of economic systems produces a surplus of readable information through geodesics,
curvature, etc.

2. Ideal Income in Roegenian Economics

Let us characterise the geometry of the statistical Roegenian manifold that arises from
the equilibrium distribution of an ideal income (see [16]) of noninteracting economic actors.

2.1. Partition Function in P− I Distribution

To elucidate the geometrical representation of ideal income systems in statistical Roege-
nian economics, we begin our analysis with a system of noninteracting identical economical
actors in the absence of potential energy. Economically, this system corresponds to a clas-
sical ideal income immersed in an economic system of goods. As we shall show below,
the Riemann curvature tensor field is 0 and the geodesic equations can be solved exactly.

Let H be the economic Hamiltonian (mimics “the free particle kinetic energy”),

H =
N

∑
i=1

p2
i

2y
,

where y means income, the same for each actor. We consider, in particular, a “price level—
internal politics stability” P− I distribution (see also known Boguslavski distribution in
Thermodynamics) of the form

p(H, Q|α, β) =
exp(−βH − αQ)

Z(α, β)
(1)

defined on the phase space Γ of an economic system of goods, where H is the economic
Hamiltonian, and Q is the goods volume. Here, the partition function Z(α, β) is determined
by the phase-space and goods volume integral

Z(α, β) =
1

N!h3N

∫ ∞

0

(∫
Γ

exp(−βH) dq dp
)

exp(−αQ) dQ, (2)

where β = 1
kB I , α = P

kB I , and P denotes the price level, h the economic quantum, and N the
number of actors in the system.

Thus, we consider a closed system of noninteracting actors immersed in an economic
system of goods at “inverse internal politics stability” 1

I and effective “price level” P. Since
the system has fixed “internal politics stability” and “price level”, the system energy and
the volume of goods fluctuate. In I-equilibrium, the distribution of these variables is



Entropy 2022, 24, 932 3 of 12

determined by the Formula (1). For a real income, the constituent actors inevitably interact.
Nevertheless, the ideal income represented by the distribution (1) adequately characterises
the properties of a real income at high I or few actors in the system, where the effects of
inter-actors’ interactions can be neglected.

Comparing (1) with exponential form of distributions, we observe that the economic
potential is given by ψ(α, β) = ln Z(α, β). Therefore, to determine the Fisher–Rao metric,
we must perform firstly the integration (2). Highlighting the fact that each q-integration in
(2) gives the goods volume Q of the system, one obtains the partition function

Z(α, β) =

(
2πy
h2β

) 3N
2

α−(N+1). (3)

This follows from the fact that∫
Γ

exp(−βH) dq dp =
∫

q

(∫
p

e−β ∑N
i=1

p2
i

2y
N

∏
i=1

dpi

)
N

∏
j=1

dqj

is just a product of Gaussian integrals, and the identity

1
N!

∫ ∞

0
Vne−αQ dQ = α−(N+1)

is true for α > 0.
Note that the partition function z(β, Q) in the canonical ensemble is

z(β, Q) =
1

N!h3N

∫
Γ

exp(−βH) dq dp =
1

N!

(
2πy
h2β

) 3N
2

QN ,

from which one can calculate the Helmholtz free energy

F(β, Q) = −kB I ln z(β, Q)

and thus obtain the equation of state

P = −
(

∂F
∂Q

)
β

= N
kB I
Q

,

satisfied by a classical ideal income (see [16]).

2.2. Scalar Curvature for Ideal Income

The expression (3) for the partition function clearly shows that the Riemannian geom-
etry of the statistical model M associated with the classical ideal income depends upon the
number N of actors. Although finite size effects in small systems are sometimes of interest,
here we are primarily concerned with the geometry that arises in the so-called economic
limit N → ∞. Thus, we consider the economic potential ψ(α, β) per actor in the economic
limit, given by

ψ(α, β) = lim
N→∞

N−1 ln Z(α, β) =
3
2

(
ln

2πm
h2 − ln β

)
− ln α.

The covariant components gij of the Fisher–Rao Hessian metric [1,2] are

g11 =
∂2ψ

∂α2 , g12 =
∂2ψ

∂α∂β
, g22 =

∂2ψ

∂β2
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or explicitly

g11 = α−2, g12 = 0, g22 =
3
2

β−2. (4)

It follows the contravariant components

g11 = α2, g12 = 0, g22 =
2
3

β2. (5)

From this expression, we deduce the following.

Proposition 1. The Riemann tensor field of the statistical manifold M, associated with the classical
ideal income, vanishes and thus the manifold is flat. Consequently, the scalar curvature also
vanishes identically.

Proof. From the components of the metric (4), one can calculate the Christoffel symbols Γi
jk

and the components of the Riemann curvature tensor field Rijkl using the definitions.
Alternatively, to show that this manifold is flat, it suffices to display a change of

coordinates which transforms the metric (5) into a Euclidean metric. Here, we adopt the
latter approach because it permits a more expeditious solution. We recall that, under a
coordinate transformation xi → x̄i, the metric of a Riemannian manifold transforms in the
usual tensorial manner, so that the components of the inverse metric in the new coordinate
system are determined by the formula

ḡkl = gij ∂x̄k

∂xi
∂x̄l

∂xj .

Now, we fix the following coordinate transformation:

α→ ᾱ = ln α, β→ β̄ =

√
3
2

ln β.

A straightforward calculation then shows that the components of the inverse metric in the
(ᾱ, β̄) coordinate system are

ḡ11 = 1, ḡ12 = 0, ḡ22 = 1,

and thus the manifold is indeed flat, and the geodesics are straight lines.

2.3. Geodesics for Ideal Income

Recall that P means price level, and I means internal politics stability. The geodesics
of the statistical manifold M include the derivation of P− I relation at a constant level of
goods production regarded as supply (corresponding to adiabatic transformations).

Proposition 2. The geodesic curves on the statistical manifold M associated with the classical ideal
income are given by

P
P0

=

(
kB I
kB I0

)1+c
,

where P0, I0, and c are integration constants. In particular, the geodesics include the constant level
of good curves of state for the ideal income, corresponding to the choice c = −CQ/NkB, where CQ
is an economic capacity.

Proof. The geodesic equations for the variables α and β assume identical forms, i.e.,

d2x
ds2 +

1
x

(
dx
ds

)2
= 0, for x = α, β.
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This can be rewritten as
d
ds

ln
dx
ds

=
d
ds

ln x,

from which we see that the general solution is x(s) = c1ec2s, where c1, c2 are arbitrary
constants. Thus, we obtain

P
kB I

= c1ec0s, and
1

kB I
= c3ec2s

as the general solution to the geodesic equations. Eliminating the parameter s, we obtain
the formula in proposition written in the form

P =
c1

cc0/c2
3

(kB I)1−c0/c2 .

Setting s = 0, we find c1 = P0/kB I0 and c3 = 1/kB I0, which yields at once the expression
in the Proposition.

3. Van Der Waals Income in Roegenian Economics

The geometry of the statistical manifold M changes considerably if the economic actors
interact. In particular, if the system exhibits a phase transition, then the scalar curvature
tends to become singular at the transition point. This property seems to be universal and
appears in many systems exhibiting critical phenomena. The Van der Waals income model
is not only of economic interest, but also illustrates many of the universal geometrical
features of the associated manifold of equilibrium states.

3.1. Van Der Waals State Equation

Let P be the price level, Q be the volume of goods, and I be internal politics stability.
Here, we shall extend the model to include economic actors’ interactions, which leads to
the economic Van der Waals equation of state (see also [16])(

P + a
N2

Q2

)
(Q− bN) = NkB I, (6)

where N is the total number of economic actors and a, b are constants determined by the
properties of each actor. The “monetary policies as liquidity or consumption—income”
transition occurs at the critical point where price level P, volume of goods Q, and the
internal politics stability I assume the values

Pc =
a

27b2 , Qc = 3bN, Ic =
8a

27kBb
.

3.2. Canonical Partition Function

The economic equation of state (6) is similar to the Van der Waals equation in thermo-
dynamics [23]. However, it can also be derived analytically from the canonical partition
function associated with an empirically postulated inter-actors potential. Assume that
the interaction energy between a pair of economic actors, separated by an “economic
distance” r, is given by an economic potential (similar to the Lennard–Jones potential in
thermodynamics)

φ(r) = 4φ0

[(
d
r

)12
−
(

d
r

)6
]
= φ0

( r0

r

)12
− 2φ0

( r0

r

)6
,
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where r0 = 21/6d, and d is a parameter which can be regarded as the radius of the economic
actor. Clearly, φ(d) = 0 and φ(r) assume its minimum value −φ0 at r = r0. As we see in
the table of variations,

r | 0 d r0 ∞

φ(r) | ∞ ↘ 0 ↘ −φo ↗ 0

This inter-actor potential energy gives rise to a weak long-range attractive economic force
and a strong short-range repulsive economic force between each pair of actors. The canoni-
cal partition function can thus be written as

z(β, Q) =
1

N!h3N

N

∏
i=1

∫
d3 pi

∫
d3ri exp

−β
N

∑
i=1

p2
i

2y
− β ∑

(ij)
φij

,

where φij = φ(rij), with rij denoting the “economic distance” between the i-th and j-th
actors, and y means income, the same for each economic actor. Thus, the canonical partition
function can be expressed as a product

z(β, Q) = z0(β, Q) q(β, Q),

where z0(β, Q) is the canonical partition function for the ideal income (see Section 2) and

q(β, Q) =
1

QN

∫
d3r1 · · ·

∫
d3rN exp

−β ∑
(ij)

φij

 (7)

is the contribution from the interaction energy. Now, as an approximation to the economic
Lennard-Jones potential, we assume that exp(−βφij) = 0 for rij < d. In other words, we
regard the actors as "hard spheres" of radius d, which cannot overlap. As a consequence,
the overlapping region can be removed from the range of the volume of goods integration
(7). Defining the so-called Mayer function fij = f (rij) by fij = exp(−βφij)− 1, we rewrite
the integral (7) as

q(β, V) = 1
QN

∫
r1>d d3r1 · · ·

∫
rN>d d3rN ∏(ij)(1 + fij)

= 1
QN

∫
r1>d d3r1 · · ·

∫
rN>d d3rN

(
1 + ∑ij fij + ∑ij ∑kl fij fkl + . . .

)
.

(8)

Assuming that the parameter φ0 in the economic potential is sufficiently small, the contri-
bution arising from fij in the specified integration range can be regarded as an infinitesimal.
The first term on the right side of (8), i.e., the integral of unity, can, on the other hand, be
approximated by

Q(Q−Q0) · · · [Q− (N − 2)Q0][Q− (N − 1)Q0] ≈ (Q− bN)N ,

where we put Q0 = 2b = 4
3 πd3. The integrations are performed consecutively, so that the

first actor can occupy the volume of goods Q without constraints, the second actor can
occupy the volume of goods Q less the volume Q0 occupied by the first actor, the third
actor can occupy volume of goods Q less the volume 2Q0 occupied by the first two actors,
and so on. Similarly, the second term on the right side of (8) can be approximated by∫

r1>d d3r1 · · ·
∫

rN>d d3rN fij = (Q− bN)N−1
∫

rj>d fij

≈ (Q− bN)N−1βπ
∫ ∞

d φ(r)r2dr.
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Assembling these results, we can approximate q(β, Q) in the following closed form

q(β, Q) ≈
(

1− b N
Q

)N(
1 + β aN2

Q2 + . . .
)

≈
(

1− b N
Q

)N
exp

(
β aN2

Q2

)
,

where we have defined a = −π
∫ ∞

d
φ(r)r2dr. Using the above expression for q(β, Q), we

finally obtain the canonical partition function

z(β, Q) =
1

N!

(
2πy
βh2

)3N/2
(Q− bN)N exp(aβN2/Q). (9)

From the expression for the partition function of the canonical distribution, we deduce
the equation of state

P =
1
β

(
∂

∂Q
ln z(β, Q)

)
β

=
NkB I

Q− bN
− a

N2

Q2 ,

where for clarity we have substituted β = 1/kB I. Observe that this is precisely the Van der
Waals equation. If we had not applied various approximations in the derivation of (9), then
additional terms of order (N/Q)3 and higher would have appeared on the right side of the
previous formula. Similarly, the Gibbs free energy is

G = PQ− kB I ln z(I, Q).

3.3. The Economic Limit

The existence of the instability in the economic Van der Waals system studied above
is related to the fact that, in the canonical distribution, the volume of goods Q of the
system is held fixed, whereas, in a real income, volume fluctuations are significant in the
neighborhood of the critical point. In other words, the canonical distribution does not
provide a completely accurate economic description of the “income—monetary policy of
liquidity” equilibrium. Therefore, as in the case of an ideal income, we consider the “price
level—internal politics stability” distribution, with the corresponding partition function

Z(α, β) =
1
b

∫ ∞

bN
z(β, Q) exp(−αQ) dQ, (10)

wherein the volume of goods fluctuation is integrated out. Recall that b = 2
3 πd3 represents

the smallest volume each actor can occupy. Hence, the random variable Q representing the
total volume of goods ranges from bN to infinity. When the canonical partition function
(9) is substituted into (10), the resulting integral does not admit an elementary analytical
expression. Nevertheless, in the thermodynamic limit N → ∞, we can implicitly determine
the potential ψ(α, β) = limN→∞ N−1 ln Z(α, β) by the method of steepest descent [22].

Changing the variable, ŝ = N−1 Q, the integral becomes

Z(α, β) =
1
b

∫ ∞

b
z(β, Nŝ) exp(−αNŝ) dŝ.

The method of steepest descent requires us to write the integrand under exponential
special form

z(β, Nŝ) exp(−αNŝ) = exp[Ng(α, β, ŝ)],
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where ŝ = N−1 Q and

g(α, β, ŝ) = N−1(ln z(β, Nŝ)− αŝ)

= 1− αŝ + ln
[(

2πy
βh2

)3/2
(ŝ− b)

]
+ βa

ŝ ,

via Stirling formula ln N! ≈ N ln N − N. It should be evident that the Gibbs free energy
is now

G = −β−1g(α, β, ŝ).

Recall that we are interested in the economic potential per actor as the economic limit

ψ(α, β) = lim
N→∞

N−1 ln Z(α, β).

Let s̄ = s̄(α, β) be the function of α and β which maximises g(α, β, ŝ). Then, using the
method of steepest descent, we find that ψ(α, β) in the previous limit is given by

ψ(α, β) = g(α, β, s̄) = −αs̄ + ln z(β, s̄).

However, in the P− I distribution, the volume of goods is a random variable, hence we
must take its expectation to obtain the equation of state

〈ŝ〉 = − 1
N

∂

∂α
ln Z(α, β),

where 〈ŝ〉 denotes the expected volume per particle in the P− I distribution characterised
by the density function Z−1(α, β) exp[Ng(α, β, ŝ)].

Since s̄ = s̄(α, β) minimises the Gibbs free energy, it is the solution of the economic
Van der Waals equation of state. Although the exact form of function s̄(α, β) is not at our
disposal owing to the cubic nature of the equation of state, we can nonetheless determine
the exact expression for the scalar curvature in terms of the variables β and s̄. Before we
proceed, however, we first establish the following result

Proposition 3. The economic expectation value of the volume of goods ŝ per actor in the P− I
distribution is given by s̄, i.e., 〈ŝ〉 = s̄.

Proof. We compute the partial derivative

∂ψ

∂α
= −s̄ +

(
−α +

∂ ln z
∂s̄

)
∂s̄
∂α

.

Since s̄ is a maximum point of g(α, β, ŝ), we must have

∂g
∂s̄

= −α +
∂ ln z

∂s̄
= 0 (11)

and hence ∂ψ
∂α = −s̄. On the other hand, from a previous formula, we have 〈ŝ〉 = − ∂ψ

∂α , and
thus 〈ŝ〉 = s̄.

3.4. Geometry of the Economic Van Der Waals Manifold

Let us find the Fisher–Rao geometry on the Van der Waals manifold M.
As we have just indicated, the function s̄ = s̄(α, β) is only implicitly known. Conse-

quently, we can determine the expressions for the partial derivatives ∂s̄
∂α , ∂s̄

∂β and so on via
the implicit function theorem. To do that, we consider the equation

G(α, β, s̄) = −∂g
∂s̄

= α− 1
s̄− b

+ β
a
s̄2 = 0,
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which defines the implicit function s̄ = s̄(α, β) > 0 (this is just the equation of state for the
Van der Waals income). In general notations, the implicit function theorem gives

∂s̄
∂α

= −∂G
∂α

/
∂G
∂s̄

,
∂s̄
∂β

= −∂G
∂β

/
∂G
∂s̄

.

Automatically, we find

∂G
∂α

= 1,
∂G
∂β

=
a
s̄2 ,

∂G
∂s̄

=
1

(s̄− b)2 −
2a
s̄3 β.

Accepting D = 2a
s̄3 β− 1

(s̄−b)2 6= 0, we deduce

∂s̄
∂α

=
1
D

,
∂s̄
∂β

=
1
D

a
s̄2 .

Remark 1. The function s̄ is a solution of the PDE ∂s̄
∂β = ∂s̄

∂α
a
s̄2 , but this equation is not useful at

this moment.

We observe that D = 0 is the equation for the spinodal curve, which contains the
critical point (Pc, Qc, Ic). On the other hand, for the positiveness of the Fisher–Rao metric,
we need the condition D < 0.

The derivatives of s̄(α, β) with respect to the parameters α and β are required in order
to determine the covariant components of the Fisher–Rao Hessian metric [1,2]

g11 =
∂2ψ

∂α2 , g12 =
∂2ψ

∂α∂β
, g22 =

∂2ψ

∂β2

on the economic Van der Waals manifold M. Specifically, we obtain the following

Proposition 4. In terms of the “price level—internal politics stability” coordinates (α, β), the Fisher–
Rao metric on the Van der Waals manifold M has the components

g11 = − 1
D

, g12 = − 1
D

a
s̄2 , g22 =

3
2

β−2 − 1
D

a2

s̄4

and g = det(gij) = − 3
2Dβ2 > 0. In particular, in the ideal income limit, a→ 0 and b→ 0 (or in

the limiting case a→ 0 and b 6= 0), the metric in this proposition reduces to the metric in formula
(4) for the ideal income.

Proof. The components of the Fisher–Rao metric are gij = ∂i∂jψ(α, β). In Proposition 3, we

have established that ∂ψ
∂α = −s̄, and, using (11), we find

∂ψ

∂β
= −α

∂s̄
∂β

+
∂ ln z

∂s̄
∂s̄
∂β

+
∂ ln z

∂β
=

∂ ln z
∂β

.

Therefore, we obtain

∂2ψ

∂α2 = − ∂s̄
∂α

,
∂2ψ

∂α∂β
= − ∂s̄

∂β
,

∂2ψ

∂β2 =
∂2 ln z

∂β2 +
∂2 ln z
∂β∂s̄

∂s̄
∂β

,

whence the desired expression for the metric follows from the formula (9) for the canonical
partition function. In the ideal income limit a→ 0 and b→ 0, we have D → − 1

s̄2 . However,
from the ideal income equation of state, we have s̄ = α−1, hence we recover the results in
Section 1.
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For surfaces immersed or submersed in R3, the scalar curvature is twice the Gaussian
curvature, and completely characterizes the curvature of a surface.

To compute the scalar curvature R of the economic Van der Waals manifold M, we
need the partial derivatives

s̄β =
1
D

a
s̄2 , Dα = − 2

D

(
3aβ

s̄4 −
1

(s̄− b)3

)

Dβ = − 2a
Ds̄2

(
3aβ

s̄4 −
1

(s̄− b)3 −
D
s̄

)
=

a
s̄2 Dα +

2a
s̄3 .

Proposition 5. The scalar curvature R of the economic Van der Waals manifold M is

R =
9a

2D6 s̄8β7

(
− 8a3

Ds̄2 β3 + 6as̄2 β− 3Ds̄5
)

.

Proof. Generally, in an n-dimensional Riemannian manifold with a Hessian metric gij =
fij = ∂i∂j f , we have

Γijk =
1
2

fijk, Rijkl = −
1
4

gpq( f jlp fikq − filp f jkq), R = gikgjl Rijkl ,

where fijk = ∂i∂j∂k f . It is remarkable that the curvature tensor field of a Hessian metric
depends only on the derivatives of f to order at most three, whereas one would expect
fourth derivatives of f to come in.

Our statistical manifold M is two-dimensional. Then, the expression for the scalar cur-
vature R admits a more simple form: denoting ψij = gij = ∂i∂jψ(α, β), ψijk = ∂i∂j∂kψ(α, β),
we find the formula

R = − 1
2g2

∣∣∣∣∣∣
g11 g12 g22

ψ111 ψ112 ψ122
ψ112 ψ122 ψ222

∣∣∣∣∣∣.
Computing,

ψ111 = ∂1g11 =
1

D2 ∂1D, ψ112 = ∂2g11 =
1

D2

(
a
s̄2 ∂1D +

2a
s̄3

)
,

ψ122 = ∂2g12 =
a

D2 s̄2

(
a
s̄2 ∂1D +

2a
s̄3

)
+

2a
Ds̄3 ∂2 s̄,

ψ222 = ∂2g22 = − 3
β3 +

a2

D2 s̄4

(
a
s̄2 ∂1D +

2a
s̄3

)
+

4a2

Ds̄5 ∂2 s̄,

and using a little algebra, we find our statement.

Corollary 1. (1) R > 0, and limD→0 R = ∞ (diverges along the entire spinodal curve); (2) the
scalar curvature vanishes in the ideal income limit obtained from a→ 0 and b→ 0; but the scalar
curvature vanishes also in the limiting case a→ 0 and b 6= 0.

Remark 2 (see [24]). The manifold M is not compact. We introduce the universal covering M,
which is compact.

Let M be a compact manifold with dimension 2. In this case, the scalar curvature R(x)
coincides with the Gaussian curvature and the Gauss–Bonnet formula

χ(M) = (4π)−1
∫

M
R(x) dvol(x)

relates it to the Euler–Poincaré characteristic χ(M), which is a topological invariant of the 2-
manifold M.
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Generally, if a 2-dimensional compact manifold M admits a metric of positive scalar curvature,
then χ(M) > 0 and, by the classification theorem of 2-manifolds, this implies that M = S2

or M = RP2 and, indeed, these manifolds do admit metrics of positive scalar curvature. Thus,
χ(M) > 0 if and only if M admits a metric of positive scalar curvature.

4. Conclusions

A brief historical review of Information Geometry can be found in paper [20]. This
field was historically motivated by providing some differential-geometric structures to
statistical models in order to create a better representation and understanding of statistics.

Our modelling includes an economic thermodynamic dictionary (morphism), an eco-
nomic Hamiltonian, a Fisher–Rao Hessian metric, geodesics for ideal income, Van der
Waals income in Roegenian economics, a canonical partition function, the economic limits,
and geometry of Van der Waals manifold.
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