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Abstract: In the process of disease identification, as the number of diseases increases, the collection of
both diseases and symptoms becomes larger. However, existing computer-aided diagnosis systems do
not completely solve the dimensional disaster caused by the increasing data set. To address the above
problems, we propose methods of using symptom filtering and a weighted network with the goal of
deeper processing of the collected symptom information. Symptom filtering is similar to a filter in sig-
nal transmission, which can filter the collected symptom information, further reduce the dimensional
space of the system, and make the important symptoms more prominent. The weighted network,
on the other hand, mines deeper disease information by modeling the channels of symptom informa-
tion, amplifying important information, and suppressing unimportant information. Compared with
existing hierarchical reinforcement learning models, the feature extraction methods proposed in this
paper can help existing models improve their accuracy by more than 10%.

Keywords: computer-aided diagnosis; symptom filtering; weighted network; hierarchical reinforce-
ment learning

1. Introduction

With the development of machine learning and deep learning, artificial intelligence
technologies are being used to varying degrees in all corners of society, including the medi-
cal field. Artificial intelligence not only provides tools to support hospitals and patients,
but also creates a new healthcare ecosystem with new ways of engagement, new modes of
interaction, and new interrelationships [1]. Many technicians have previously attempted to
use machine learning or deep learning to complete the computer-aided diagnosis of before.
L Li et al., completed the identification of type 2 diabetes [2], Edward Choi et al., used GRU
to model the time series relationship of patient health records to diagnose premature heart
failure [3], and Yining Zhang et al., used perceptron machine learning algorithms to analyze
heart disease-related data, and finally came to a judgment of whether the person had heart
disease [4]. Qiang Chen has implemented a buffalo disease diagnosis system based on
BP neural network [5]. However, the above attempts mostly target only one disease and
cannot transfer the model from one disease to another.

Previous studies have also developed dialogue systems to interact with patients and
give more personalized medical instructions [6]. Xu et al., proposed a method called
KR-DQN that embedded entity relations into a DQN agent [7]. To achieve better reuse of
the model across different diseases, Qianlong Liu et al., proposed a task-oriented computer-
aided diagnosis system based on reinforcement learning. The agent collects information
about the symptoms by continuously interacting with the patient to achieve the recognition
of several different diseases [8]. Similar to their task, some works developed symptom
checkers for online healthcare services by reinforcement learning, using DQN methods to
inference diagnosis [9]. However, a single reinforcement learning model is not friendly
for the recognition of multiple diseases. As the number of diseases increases, reinforce-
ment learning will suffer from dimensional disasters. With the application of hierarchical
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reinforcement learning in course recommendation [10], relation extraction [11], and vi-
sual dialogue [12], it has been successfully demonstrated that hierarchical reinforcement
learning can solve the dimensional catastrophe problem to some extent. Inspired by this,
Qianlong Liu et al., proposed a computer-aided diagnosis system based on a hierarchical
reinforcement learning model, which solved the problem of plummeting quasi-accuracy
rate of disease judgments as the number of diseases and disease symptoms grows [13].

Although the proposed hierarchical reinforcement learning model performs better than
the original model, we believe that there are other methods to further alleviate the problem
of dimensional disaster. In our opinion, previous attempts all ignore the mining of disease
and disease symptom information. After getting the patient’s symptom information, these
models simply mark the slot values corresponding to the symptoms and simply select
the next action for the agent by BP neural network. However, we believe that mining for
disease and disease symptom information is essential, and experiments have shown that
the accuracy of the model’s judgment of disease can be greatly improved by modeling
symptom information. Adequate consideration of various factors in data mining can ensure
mining efficiency and quality [14]. Our goal is to find a better way of processing and mining
disease symptom information for the original model.

Filters are an important part of signal processing, which allows specific frequency
components of the signal to pass through while greatly attenuating other frequency compo-
nents. Using the frequency selection function of the filter, a pure signal can be obtained
after filtering out noise [15]. The computer-aided diagnosis process also has the problem of
“noise”. Considering the real situation, a patient with hyperthyroidism may have symptoms
of both hyperthyroidism and fever, but hyperthyroidism is more likely to lead the model
to make a correct judgment of hyperthyroidism, while fever is a common symptom of
many diseases, which may lead the model to make an “arbitrary” judgment in the diag-
nosis of the disease. Therefore, fever looks like a “noise” in the information transmission.
We believe that instead of giving the same weight to all symptoms, a filter-like approach
should be used to leave typical symptoms such as excessive thyroid hormone and filter out
the “symptom noise” that occurs in many diseases.

Inspired by these points, this paper proposes two methods for processing disease
symptom information. First, similar to the role of filters in signal transmission, we designed
filters for disease symptoms, which can effectively filter out the “symptom noise” that
reduces the accuracy of model judgment, further remove useless information and reduce
the dimension of the agent.

Second, each symptom is represented by a three-dimensional vector ([1, 0, 0], [0, 1, 0],
[0, 0, 1] subscales for yes, no, and indeterminate), and each response is considered as a chan-
nel. Three channels form the first category of channels; the other considers a disease
symptom as a channel, and the set of all symptoms forms the second category of channels.
We modeled the two types of channels separately to obtain the importance of different
channels in their respective categories and to achieve the goal of distinguishing the im-
portance of symptoms. Experiments demonstrate that both approaches help the model to
improve the accuracy of disease judgments.

2. Hierarchical Reinforcement Model
2.1. Markov Decision Process

Reinforcement learning is an interactive learning technique by interacting with users
and obtaining feedback [16]. In recent years, reinforcement learning has made great
breakthroughs in many complex decision-making problems [17]. It mainly consists of
an intelligent agent and the environment that interact through three signals: state, action,
and reward. Assuming that X(t), t is a random process, and the random variable X(t) has
known variables X(t1) = x1, X(t2) = x2, . . . , the conditional distribution function is only
related to X(tn) = xn, but not related to X(t1) = x1, . . . , X(tn−1) = xn−1. This is the the
Markov condition. A reinforcement learning task is called a Markov Decision Process
(MDP) if it satisfies the Markov property [18].
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A Markov decision process is a sequential decision process that can be represented by
a quadruple [19]:

< S, A, Pa
ss′

, Ra
ss′

> (1)

where S is a set of states describing the system environment [20]. A is the set of all discrete
actions an agent can choose from [20]. Pa

ss′
represents the probability that a state may

be reached s
′

in the next step, after giving it a status s and an action a. Ra
ss′

represents

the expected value obtained after reaching the state s
′

given the state s
′

and action a.
In any reinforcement learning model, the goal of an intelligent agent is to find a suitable

strategy to maximize the rewards from the environment. However, the rewards obtained
by the agent in the current state include all possible rewards in the future. To make the in-
telligence more focused on the present and reduce the influence of the future, a discount
factor γ must be introduced into the action-value function to attenuate the influence of
future uncertainties.

Qπ(s, a) = E(Rt|st = s, at = a) = Eπ

[
∞

∑
k=0

γkrt+k+1|st = s, at = a

]
(2)

The optimal action-value function follows the Bellman equation:

Qπ(s, a) = Es′ [r + γmaxQ∗
(

s
′
, a
′ |st = s, at = a

)
] (3)

Only if for each state and action follow Qπ(s, a) = Q∗(s, a), then this strategy is optimal.

2.2. Hierarchical Reinforcement Learning Model

Although reinforcement learning has a strong learning ability, it has its weaknesses
and gradually appears in its continuous development. Hierarchical reinforcement learning
can solve the problem of dimensional disaster to a certain extent, which makes it show
more excellent processing capabilities in environments with more complex environments
and larger action spaces [21]. However, we believe that reinforcement learning coupled
with feature processing can take the model performance to the next level. Using the idea
of breaking up the whole into parts, our experiment consists of a main-decision maker,
a disease classifier, and multiple sub-decision makers. All diseases are divided into nine
disease groups according to medical knowledge in advance, and one sub-decision maker is
responsible for one disease group.

In this experiment, the main-decision maker’s state is st = [b1, b2, . . . , bn]. Each vector
b represents a symptom on the data set, which is a three-dimensional vector representing
the user’s response to this symptom (yes, no, not sure). For example, if the user confirms
the presence of one symptom, then it will be represented as [1, 0, 0]. Before the sub-decision
maker interacts with the environment, we will extract the symptom information from
the disease group that the sub-decision maker is responsible for, to form a new state s.

s = ExtractState[b1, b2, . . . , bn] (4)

The main-decision maker is responsible for the activation of sub-decisions makers and
disease classifiers. Its action space is Am =

{
ai|i = 1, 2, . . . , m

}
, m is the sum of the sub-

decisions and the disease classifier, indicating that at a certain moment t, the main-decision
maker activates one of the sub-decisions to collect more symptom information or activates
the disease classifier to make the final inference.

The action space of the sub-decision maker is An =
{

ai|i = 1, 2, . . . , n
}

, and n is
the sum of all symptoms in their respective groupings. At the current time t, the sub-
decision generates an action ai, asking the patient whether the symptom indexed as i is
present or not, based on the current state s.



Entropy 2022, 24, 931 4 of 11

The disease classifier is not responsible for interacting with the environment. Af-
ter being activated by the main-decision maker, the disease classifier makes a final disease
identification judgment based on the total disease symptom information provided by
the main-decision maker.

Before each diagnosis begins, the model receives a dominant symptom from the out-
side world to mimic the user’s first elaboration of his or her dominant symptom. The model
then continuously interacts with the environment to get the patient’s implicit symptoms
until a final identification is made.

3. Disease Symptom Information Filter

Based on the hierarchical reinforcement learning model, we design corresponding
disease symptom filters for each decision-maker, helping them focus on important disease
symptom information. We first analyzed each group and calculated the frequency f of each
symptom of various diseases in this group.

fi =
n

∑
i=1

i f (ai = true)/m (5)

Where m represents the total number of people suffering from the disease, n represents
the total number of current symptoms, ai = true means that the current patient suffers
from this symptom.

Considering two situations, one is that because the patients are not professional medi-
cal workers, they may make wrong judgments about symptoms such as “abdominal pain”
and “stomach pain”; another is that there may be only a very small probability of a certain
symptom when suffering from a certain disease. Both of them have the potential to cause
very infrequent symptoms, bringing the dimensional disaster to this situation. Adding
action space for these is not worthwhile. We will first weed out these symptomatic features.

Based on the analysis of the probability of symptoms appearing in different diseases,
we found that there may be a high degree of overlap between the symptoms of different
diseases in the same disease group. In the Figure 1, we present the symptom overlap for
the first group of diseases (where different colors represent different diseases, and the
horizontal axis represents the 28 symptoms with the highest probability of occurrence
in this group):

Figure 1. The x-axis represents the 28 symptoms with the highest probability, and the y-axis represents
the proportion. Each term describes the disease distribution for a given symptom.



Entropy 2022, 24, 931 5 of 11

3.1. Sub-Decisions Maker Symptom Filter

The goal of the sub-decisions maker symptom filter is to filter out the set of symptoms
that are representative of the disease. When the model makes inferential predictions,
we believe that the model should focus more on symptom information that has a low
overlap rate and appropriately ignore overly repetitive symptom information. If a symptom
occurs frequently in different groups of patients with different diseases, its information
value will be greatly reduced, even can be regarded as a noise that affects judgment. On the
contrary, if a symptom is almost appearing exclusively in one disease, its information value
will be greatly enhanced.

For this purpose, we established an n-dimensional disease symptom filter. We regard
symptoms with a frequency greater than 0.2 as high-frequency symptoms of a disease,
and symptoms below 0.2 are low-frequency symptoms. Symptoms that are only high-
frequency symptoms of a disease are considered as the most valuable information and are
marked as 1. These disease signature filters will be applied in the future.

3.2. Main-Decision Maker Symptom Filter

The goal of the main-decision maker symptom filter is to filter out the set of symptoms
that are representative of different disease groups. Similar to the previous approach,
for each disease group we calculate the probability that each symptom will occur on this
disease group.

f j =
n

∑
i=1

i f (ai = true)/mj(1 ≤ j ≤ 9) (6)

Where mj denotes the total number of people in disease group j, n denotes the sum
of all symptoms in group j, and ai = true means that the current patient does suffer from
this symptom.

We regarded symptoms with a frequency greater than 0.1 as high-frequency symptoms
in the total disease characteristics, and those with a frequency below 0.1 as low-frequency
symptoms. If a high-frequency symptom is not just a high-frequency feature of a group,
then it will be removed from the high-frequency symptom group. We believe that the re-
maining high-frequency symptoms can be representative of their disease group. We set
the dimension of the main-decision maker symptom filter as the sum of the total disease
symptoms, and high-frequency features will be given higher weight by multiplying their
frequency by 10. This symptom filter will also be applied in the follow-up.

The disadvantage of the disease symptom filter is that it causes some rare symptoms
not to be mentioned, making it more difficult to determine the disease in a very small
number of patients. However, such a sacrifice is worth it in terms of the improvement
in model accuracy.

4. Weighted Network

In addition to symptom information filtering, we also perform deeper information
mining on the state. Many previous works have been done to improve the performance
of the network from the spatial dimension. For example, the Inception network structure
embeds multi-scale information and aggregates features from different receptive fields to
obtain performance gains [22], while the Inside-Outside network considers spatial context
information [23]. Unlike the above approaches, SENet targets the connections between
feature channels, the goal is to explicitly the interdependence between channels to improve
the quality of network representation [24]. Specifically, the weight of each feature channel
is automatically obtained through learning, then enhances useful features and suppresses
useless features by these weights, to achieve channel adaptive calibration. Kaolin Jiang et al.,
also started from the channel and improved the detection accuracy of malicious codes
using multi-channel image deep learning [25].
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4.1. Weighted Network Module

We build a weighted network with the goal of modeling the interdependencies be-
tween feature channels to mine the depth information of states. We divide the channels into
two categories, one is the three channels consisting of “yes”, “no” and “not sure”, which
can be considered as a description of a symptom, similar to the RGB color description of
a pixel. The second is to combine all symptom sets into another channel. We model the two
channels separately to improve the judgment accuracy of the model.

4.2. Channel Modeling and Weighted Network

First, convert the state s1 into c1 ∗ h1 and c2 ∗ h2, where c1 = 3, c2 is the sum of
the symptoms that the current decision-maker is responsible for. The two states are, respec-
tively, passed into two weighted network modules. These two weighted networks have
no essential difference in structure. Each network is divided into two parts: compression
and excitation. Convolutional neural networks are good at extracting local features and
downsampling [26], however, it has no global receptive field. The compression part uses
a one-dimensional adaptive average pooling operation to convert the input state into c1 ∗ 1
and c2 ∗ 1, the compressed state can be regarded as obtaining a global view on a channel,
with the receptive field enlarged. The excitation part consists of two one-dimensional con-
volutions, one is to compress the channel, the other is to restore the channel to the original
number, and finally calculate the weight value of each channel.

The weights are obtained after s1 and s2 pass through the weighted network. Then,
two states are each multiplied by their channel weight matrix. After that, the dimensions
are uniformly transformed into 3 ∗ h and finally added. Where h represents the sum of
symptoms for which the current decision-maker is responsible. The calculation formula is
expressed as:

s = (s1 ∗ w1 + s1) + transpose(s2 ∗ w2 + s2) (7)

Its process is shown in the Figure 2:

Figure 2. Weighted network module.

Before passing the state s into the final single-layer neural network, we need to perform
a final noise filter on it. Whether the noise filter belongs to the main-decision maker or
the sub-decision maker, they are all one-dimensional vectors, and the dimension is equal to
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the dimension h of the current state s. The same index position represents the same disease
symptoms. We use the dot product method to expand the valuable disease symptoms
in the state s, and set the disease symptoms with serious overlap to 0. The calculation
formula is:

s
′
i,j =

{
0(j 6= n, 0 ≤ j ≤ h, 0 ≤ n ≤ h)

si,j ∗ f iltern(0 ≤ j = n < h, 0 ≤ i < 3)
(8)

To avoid the filtered state being too sparse, the original state needs to be superimposed.
The specific implementation is shown in the Figure 3:

Figure 3. Status processing flow.

5. Experiments and Results
5.1. Data Set

The experimental data comes from a synthetic data set provided by Fudan University.
This synthetic data set was constructed based on the disease-symptom database SymCat.
The database SymCat contains 801 diseases, which the experimenters divided into t21
groups according to medical norms. They select the most representative 9 groups, each of
which contains 10 typical diseases.

Because of the confidentiality of patient visit information in the real world, the experi-
menters constructed a synthetic data set containing 30,000 visits. Experimenters obtained
the probabilities of symptoms associated with each disease from Centers for Disease Con-
trol and Prevention (CDC) database. Based on the probability distribution, records were
generated for each target disease. Given a disease, the labels of symptoms are sampled cor-
rectly or incorrectly, and one of the correct symptoms is randomly selected as the dominant
trait and the rest as recessive symptoms. Overall, 80% of the data are used for training and
20% are used for testing.

5.2. Main Parameters Settings

For the external environment bonus, the sub-decision maker will receive a +1 bonus for
each correct symptom, otherwise only a −1 bonus, and an additional +44 bonus if the final
identification is correct, and a −44 bonus if the identification fails or if the maximum
number of conversation rounds is reached and still no inference is made. The main-decision
maker controls the maximum number of dialogue turns only 25 times. Each sub-decision
maker, when activated, has a maximum of 5 conversations at a time, otherwise, it will be
forcibly stopped. The high-frequency symptom threshold of the sub-decisions maker is 0.2,
and the high-frequency threshold of the main decider is 0.1. The discount factor is set to
0.95, the learning rate is set to 0.0005, and the neural network hidden layer is 512.

5.3. Experimental Results and Comparison

We conduct experiments on laboratory equipment. Specifically, the python version
we use is 3.7.6 and the pyTorch version is 1.7.1. It is noteworthy that the experiments
are conducted on lab’s server with 3.50 GHz CPU and 24220MiB GPU. On the dataset of
30,000 examples, it takes about two days to train.
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To demonstrate the improvement of both symptom filtering and weighted network
for disease diagnosis, we set up a total of five comparison trials. They are hierarchical
reinforcement model, hierarchical reinforcement learning model plus symptom filtering, hi-
erarchical reinforcement model plus weighted network, hierarchical reinforcement learning
model plus symptom filtering and weighted network, and SVM. We will pass all the correct
symptoms to the SVM classification model at one time, and it does not need to obtain any
disease symptom information from the patients, so the recognition accuracy of the SVM
model is regarded as the upper limit based on the hierarchical reinforcement learning
model. The experimental results are in Table 1 and Figure 4:

Table 1. The performance of each model on the data set.

Model Accuracy Award Average Epochs

HRL 49.5% 0.473 16.2
HRL plus Symptom filtering 52.9% 0.61 19.76
HRL plus Weighted network 53.4% 0.76 20.18

Our model 60.5% 2.13 19.23
SVM 69.8% / /

Figure 4. The specificcomparison between the improved hierarchical reinforcement model and
the original model in 6000 rounds of training.

To prove that our model can effectively alleviate the problem of the curse of dimen-
sionality, we also conduct another comparative experiment. We use three methods on
different sizes of the collection, including SVM, hierarchical reinforcement learning (HRL),
and hierarchical reinforcement learning model plus symptom filtering and weight calcu-
lation. It can be seen from the figure that with the increase of the data set, the accuracy
of HRL drops much faster than our model. Additionally, SVM does not need agents, so
it is minimally affected. From Figure 5, we can also learn that the most difficult problem
in improving the accuracy of the model is how to get more correct symptoms.
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Figure 5. Three methods on different sizes of the collection (SVM, HRL, HRL plus symptom filtering
and weight calculation).

In order to determine whether the differences in the results are definitely due to
the algorithm’s performance and not due to random algorithmic procedures, we set a t-test,
which can test whether the difference between two groups is significant. The independent
sample t-test statistic can be expressed as:

t =
X̄1 + X̄2√

(n1−1)S1
2+(n2)S2

2

n1+n2−2

(
1

n1
+ 1

n2

) (9)

Where S1, S2 are the sample variances, and n1, n2 are the sample sizes.
We conduct five experiments on our model and the original model separately, assum-

ing they are not significantly different, and setting α = 0.05. We use the scipy library to do
the calculation and get p value = 3.91 × 10−11. So, we can conclude that our algorithm can
effectively improve the accuracy of the model.

Additionally, to prove that our method is not only effective on the current dataset,
we also compare it with more existing methods on two other datasets, the Muzhi dataset,
and the Dxy dataset [27].

The Muzhi dataset is collected from the pediatric department on Chinese online
healthcare website. It contains 710 user goals and 66 symptoms, with four kinds of la-
beled diseases, including upper respiratory infection, children’s functional dyspepsia,
infantile diarrhea, and children’s bronchitis. The Dxy Dialogue dataset is collected from
another Chinese online healthcare community. This dataset contains 527 user goals and
41 symptoms.

On these two datasets, we make a comparison with some existing methods.
Flat-DQN: It has one layer policy and an action space including both symptoms

and diseases.
HRL-pretrained: It has two levels, where the low level policy is pre-trained first and

then the high level policy is trained.
DQN+relation branch: It has one layer, but added the technology of relation branch.
The results can be seen from Tables 2 and 3.
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Table 2. The performance of each model on the Muzhi dataset.

Method Accuracy Award Average Epochs

Flat-DQN 68.2% 0.513 2.712
HRL-pretrained 69.9% 0.563 2.815

DQN+relation branch 70.1% 0.595 2.651
Our model 71.0% 0.613 2.893

Table 3. The performance of each model on the Dxy dataset.

Model Accuracy Award Average Epochs

Flat-DQN 68.5% 0.522 2.720
HRL-pretrained 69.7% 0.559 2.800

DQN+relation branch 70.1% 0.578 2.649
Our model 71.9% 0.580 2.805

Due to the low number of diseases and symptoms in the datasets, the accuracy of all
models improved while the number of turns was greatly reduced. Additionally, our model
still has a good performance in terms of accuracy. We believe that the advantage of our
model would be more pronounced if tested on a large dataset.

Because real-world patient information is confidential, it is difficult to find large
symptom-disease datasets. In the future, we may choose another way, just like the dataset
we used provided by Fudan University. This synthetic dataset was constructed based
on the symptom–disease database called SymCat, which contains 801 diseases. If it is
difficult to obtain diseases and symptoms from patients, we can manually label the corre-
sponding symptoms for various diseases according to the disease databases, and establish
a new symptom–disease database, which can be used for experiments in medical diagnosis.

6. Discussion and Conclusions

In this paper, we mainly further processed the disease symptom information col-
lected by the agent in reinforcement learning. In hierarchical reinforcement learning, every
agent has an action space, after receiving an external reward, it will make the next choice.
In order to help the agent make a better decision, we did some methodological research.
The methods adopted are symptom filtering and weight calculation, one for disease symp-
tom overlap, and another for state channel modeling. The experimental results demonstrate
the effectiveness of these two methods in improving the accuracy of the hierarchical rein-
forcement learning model. In the task-oriented dialogue system, it is the first attempt to
design filters to filter the collected information to obtain more critical information, and its
combination with weight calculation reflects the effect that one plus one is greater than two.

In the future, we will conduct more in-depth research on two aspects. First, we hope
to establish a reasonable disease knowledge base, which is a knowledge base for medical
professionals, while taking into account the general public [28], introducing more diseases
from the real world, making the knowledge base more complete. In addition to diseases and
disease knowledge, symptom filters for disease groups should also be part of the knowledge
base, which can be dynamically updated. Second, hierarchical reinforcement learning does
not fully solve the problem of dimensional disaster caused by the exponential growth of
action space and state space [29], so we will try to make these two methods general, which
can help other models based on hierarchical reinforcement learning make some progress
on their tasks.

Author Contributions: Data curation, H.W.; Formal analysis, H.W.; Project administration, X.H.;
Software, H.W.; Supervision, X.H.; Writing—original draft, H.W.; Writing—review & editing, X.H.
All authors have read and agreed to the published version of the manuscript.

Funding: Humanities and Social Sciences Research Program Funds,National Social Science Founda-
tion of China: 18YJA740016,18ZDA290.



Entropy 2022, 24, 931 11 of 11

Data Availability Statement: All data included in this study are available upon request by contacting
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Du, C. From informed consent to concerted efforts of doctors and patients. Med. Philos. 2019, 40, 1–7.
2. Li, L.; Cheng, W.Y.; Glicksberg, B.S.; Gottesman, O.; Tamler, R.; Chen, R.; Dudley, J.T. Identification of type 2 diabetes subgroups

through topologcical analysis of patient similarity. Sci. Transl. Med. 2015, 7, 311ral174. [CrossRef] [PubMed]
3. Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detection of heart failure onset. J. Am.

Med. Inform. Assoc. 2016, 24, 361–370. [CrossRef] [PubMed]
4. Zhang, Y. Application of data mining technology in medical diagnosis—Perceptron model for heart disease diagnosis. Pract.

Electron. 2019, 4, 8–10.
5. Chen, Q.; Ping, W.; Zheng, L. Carabao disease diagnosis system based on back propagation artificial neural network. Comput. Eng.

Des. 2008, 29, 1485–1488.
6. Lin, S.; Zhou, P.; Liang, X.; Tang, J.; Zhao, R.; Chen, Z.; Lin, L. Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue

Generation. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Conference, 2–9 February 2021; Volume 35,
pp. 13362–13370.

7. Xu, L.; Zhou, Q.; Gong, K.; Liang, X.; Tang, J.; Lin, L. End-to-end knowledge-routed relational dialogue system for automatic
diagnosis. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33.

8. Wei, Z.; Liu, Q.; Peng, B.; Tou, H.; Chen, T.; Huang, X.J.; Dai, X. Task-oriented Dialogue System for Automatic Diagnosis. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018;
Volume 2.

9. Tang, K.F.; Kao, H.C.; Chou, C.N.; Chang, E.Y. Inquire and Diagnose: Neural Symptom Checking Ensemble Using Deep
Reinforcement Learning. NIPS Workshop on Deep Reinforcement Learning. 2017. Available online: https://sites.google.com/
view/deeprl-symposium-nips2017/home (accessed on 15 January 2016).

10. Zhang, J.; Hao, B.; Chen, B.; Li, C.; Chen, H.; Sun, J. Hierarchical reinforcement learning for course recommendation in MOOCs. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 435–442.

11. Feng, J.; Huang, M.; Zhang, Y.; Yang, Y.; Zhu, X. Relation Mention Extraction from Noisy Data with Hierarchical Reinforcement
Learning. arXiv 2018, arXiv:1811.01237.

12. Zhang, J.; Zhao, T.; Yu, Z. Multimodal Hierarchical Reinforcement Learning Policy for Task-Oriented Visual Dialog. In Proceedings
of the 19th Annual SIGdial Meeting on Discourse and Dialogue, Melbourne, Australia, 12–14 July 2018; pp. 140–150.

13. Liao, K.; Liu, Q.; Wei, Z.; Peng, B.; Chen, Q.; Sun, W.; Huang, X. Task-oriented Dialogue System for Automatic Diagnosis via
Hierarchical Reinforcement Learning. arXiv 2020, arXiv:2004.14254.

14. Yang, J. Analysis of cloud network information data mining algorithm based on artificial intelligence decision. Chin. Foreign
Commun. 2018, 50, 22–33.

15. Qu, D. Extracting the Digital Differential Signal Based FIR and IIR Fliters. Comput. Simul. 2002, 19, 4–6.
16. Yu, L.; Du, Q.; Yue, B. Survey of Reinforcement Learning Based Recommender System. Comput. Sci. 2021, 48, 1–18.
17. Liang, X.; Feng, Y.; Ma, Y. Deep Muti-Agent Reinforcement Learning. Acta Autom. Sin. 2020, 46, 2537–2557.
18. Yu, C.; Liu, J.; Nemati, S.; Yin, G. Reinforcement learning in healthcare: A survey. ACM Comput. Surv. 2021, 55, 1–36. [CrossRef]
19. Liu, R.; Zhang, H.; Xiao, Y. Research on multiple unmanned aerial vehicles cooperative path planning based on improved Markov

decision processes model. J. Nanjing Univ. Sci. Technol. 2021, 45, 84–91.
20. Guan, R.; Ding, J.; Jia, L. A Diversity Document Ranking Algorithm Based on Reinforcement Learning. Comput. Eng. Sci. 2020, 42, 1697–1703.
21. Lai, J.; Wei, J.; Chen, X. Overview of Hierarchical Reinforcement Learning. Comput. Eng. Appl. 2021, 57, 72–79.
22. Zhao, K.; Wu, S.; Li, T. A study on method of rolling bearing fault diagnosis based on Inception-BLSTM. J. Vib. Shock 2021, 40, 290–297.
23. Bell, S.; Zitnick, C.L.; Bala, K.; Girshick, R. Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural

Networks; IEEE: Piscataway, NJ, USA, 2016; pp. 2874–2883.
24. Hu, J.; Li, S.; Sun, G. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 7132–7141. [CrossRef]
25. Jiang, K.; Bai, W.; Zhang, L.; Chen, J.; Pan, Z.; Guo, S. Malicious code detection based on multi-channel image deep learning. J.

Comput. Appl. 2021, 41, 1142–1147.
26. Chen, M.; Zhu, Y.; Lu, B. Classification of Application Type of Encrypted Traffic Based on Attention-CNN. Comput. Sci. 2021, 48, 325–332.
27. Xia, Y.; Zhou, J.; Shi, Z.; Lu, C.; Huang, H. Generative Adversarial Regularized Mutual Information Policy Gradient Framework

for Automatic Diagnosis. AAAI Conf. Artif. Intell. 2020, 34, 7346–7353. [CrossRef]
28. Chen, Y.; Xin, M.; Chen, Q. Ontology-based Knowledge Base of Disease of Design. China Digit. Med. 2010, 10, 29–31.
29. Yin, C.; Yang, R.; Zhu, W. A survey on multi-agent hierarchical reinforcement learning. CAAI Trans. Intell. Syst. 2020, 15, 646–655.

http://doi.org/10.1126/scitranslmed.aaa9364
http://www.ncbi.nlm.nih.gov/pubmed/26511511
http://dx.doi.org/10.1093/jamia/ocw112
http://www.ncbi.nlm.nih.gov/pubmed/27521897
https://sites.google.com/view/deeprl-symposium-nips2017/home
https://sites.google.com/view/deeprl-symposium-nips2017/home
http://dx.doi.org/10.1145/3477600
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1609/aaai.v34i01.5456

	Introduction
	Hierarchical Reinforcement Model
	Markov Decision Process
	Hierarchical Reinforcement Learning Model

	Disease Symptom Information Filter
	Sub-Decisions Maker Symptom Filter
	Main-Decision Maker Symptom Filter

	Weighted Network
	Weighted Network Module
	Channel Modeling and Weighted Network

	Experiments and Results
	Data Set
	Main Parameters Settings
	Experimental Results and Comparison

	Discussion and Conclusions
	References

