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Abstract: On 31 December 2019, a cluster of pneumonia cases of unknown etiology was reported
in Wuhan (China). The cases were declared to be Coronavirus Disease 2019 (COVID-19) by the
World Health Organization (WHO). COVID-19 has been defined as SARS Coronavirus 2 (SARS-
CoV-2). Some countries, e.g., Italy, France, and the United Kingdom (UK), have been subjected to
frequent restrictions for preventing the spread of infection, contrary to other ones, e.g., the United
States of America (USA) and Sweden. The restrictions afflicted the evolution of trends with several
perturbations that destabilized its normal evolution. Globally, Rt has been used to estimate time-
varying reproduction numbers during epidemics. Methods: This paper presents a solution based on
Deep Learning (DL) for the analysis and forecasting of epidemic trends in new positive cases of SARS-
CoV-2 (COVID-19). It combined a neural network (NN) and an Rt estimation by adjusting the data
produced by the output layer of the NN on the related Rt estimation. Results: Tests were performed
on datasets related to the following countries: Italy, the USA, France, the UK, and Sweden. Positive
case registration was retrieved between 24 February 2020 and 11 January 2022. Tests performed on
the Italian dataset showed that our solution reduced the Mean Absolute Percentage Error (MAPE)
by 28.44%, 39.36%, 22.96%, 17.93%, 28.10%, and 24.50% compared to other ones with the same
configuration but that were based on the LSTM, GRU, RNN, ARIMA (1,0,3), and ARIMA (7,2,4)
models, or an NN without applying the Rt as a corrective index. It also reduced MAPE by 17.93%,
the Mean Absolute Error (MAE) by 34.37%, and the Root Mean Square Error (RMSE) by 43.76%
compared to the same model without the adjustment performed by the Rt. Furthermore, it allowed
an average MAPE reduction of 5.37%, 63.10%, 17.84%, and 14.91% on the datasets related to the USA,
France, the UK, and Sweden, respectively.

Keywords: time series; deep learning; neural networks; COVID-19; SARS-CoV-2; epidemic trend

1. Introduction

On December 31, 2019, a cluster of pneumonia cases of unknown etiology was reported
in Wuhan (China), which was declared to be Coronavirus Disease 2019 (COVID-19) by the
World Health Organization (WHO). COVID-19 rapidly spread worldwide, degenerating
from an epidemic to a pandemic on 11 March 2020 [1]. COVID-19 principally involves
the respiratory tract, and the clinical presentation is very similar to that of Severe Acute
Respiratory Syndrome (SARS), which there was an outbreak of in 2003. According to this
similarity, COVID-19 has been defined as SARS Coronavirus 2 (SARS-CoV-2).

Infectious disease outbreaks exhibit a set of patterns that may be identified by studying
their transmission dynamics [2]. COVID-19 showed a dynamic transmission during the epi-
demic on specific patterns that depended on several aspects, such as density of population,
infection rate, ratio of the number of vaccinated people to the number of non-vaccinated
people, and lifestyle [3]. In epidemiology, these aspects are proper to each state, country,
or region, thus a mathematical model designed for a specific area cannot fit optimally with
others [4], the same observation applies between a sub-area and its super-area [5].
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As with other epidemics [6,7], data for COVID-19 were made available as a series of
data points indexed in time order (i.e., as time-series) [8].

This paper presents a solution based on deep learning (DL) for the analysis and fore-
casting of epidemic trends in new positive cases of SARS-CoV-2 (COVID-19). It combined a
neural network (NN) and Rt estimation by adjusting the data produced by the output layer
of the NN on the related Rt estimation. The latter allowed the estimation of time-varying
reproduction numbers during the epidemic, its value was computed for each prediction in
order to adjust the final forecasting.

The NN was chosen on the basis of tests performed on the assumption described
below. Generally, NNs are not suitable for historical data with respect to the RNN. However,
the absence of long-term memory might be an advantage in the case in which unforeseeable
external actions can occur within the time series, which can frequently destabilize the long
short-term memory, e.g., lockdowns, and/or limitations. To give an example, Italy was
subjected to emergency improvements that introduced restrictions for preventing the spread
of the infection [9,10]. The proposed solution was focused on the Italian dataset in order to
provide an effective model to handle what has been described. In addition, we performed
tests on the following other countries to demonstrate its evolvability and reusability: the
United States of America (USA), France, the United Kingdom (UK), and Sweden. Italy,
France, and the UK were subjected to frequent restrictions for preventing the spread of the
infection, contrary to the USA and Sweden.

In addition, our solution was able to perform several analyses that were useful for
studying the trend related to positive cases. For instance, it reported statistical information
related to the descriptive analysis, as well as the related plots. Our solution, compared with
other models based on DL, exhibited greater accuracy and robustness to variations.

The rest of the paper is organized as follows. Section 3 reports details about the datasets
used for training and analysis, model design, and data processing. Section 4 shows a set of
tests that were performed to validate the proposed solution. Section 5 reports a discussion
about the results shown in Section 4, and it highlights the objectives achieved according
to accuracy and robustness. Furthermore, a comparison with other methodologies is
discussed to corroborate the chosen network implemented within our solution.

2. Background

Time-series data are sequences of numerical values that have associated time stamps.
The trend of a time series may be studied through two main models: (i) statistical models,
or (ii) machine learning (ML) models. Usually, the former is performed by implementing
the autoregressive integrated moving average (ARIMA) [11].

The ARIMA is a generalization of the autoregressive moving average (ARMA) [12]
that includes the autoregressive (AR) model and the moving average (MA) model. ARIMA
is based on three processes: auto-regression, integration, and moving average [13]. Fur-
thermore, seasonal ARIMA (SARIMA) [14] is an extension of the ARIMA, supporting the
modeling of a seasonal component in the series. A SARIMA model is built by including
additional seasonal terms in the ARIMA: the seasonal parts of the model are the terms that
involve back shifts in the seasonal period.

The ARIMA and SARIMA models have been applied in several studies for predicting
the spread of an epidemic [15], COVID-19 included [16,17], as well as to estimate the fatality
rate [18].

The statistical models required several assumptions, e.g., the starting point of the
infectious disease, the interactions between people (related to incubation period), as well as
the input parameters for the model. Usually, the input parameters needed to be estimated
through a deductive approach based on repeated tests [19]. For instance, an ARIMA model
needs an underlying process that generates the observations (i.e., ARIMA process), in order
to estimate the following parameters [20]:

• lag order (p): the number of lag observations included in the model;
• degree of differencing (d): the number of times that the raw observations are differenced;
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• order of moving average (q): the size of the moving average window.

ArunKumar et al. [21] investigated the dynamics of cumulative COVID-19 cases in
16 countries (South Africa, Bangladesh, Brazil, Chile, Columbia, India, Iran, Italy, Mexico,
Pakistan, Peru, Russia, Saudi Arabia, Spain, the UK, the USA) by using ARIMA models
based on forecasting the cumulative analysis to estimate the best ARIMA (p,d,q) for each
country. To give an example, the authors indicated that ARIMA (7,2,4) and ARIMA (3,1,6)
were the best models for confirmed cases and death cases in Italy, respectively. Results also
indicated that COVID-19 trends could be classified into three main classes: exponential
rise (the USA, South Africa, Colombia, Brazil, India, Mexico, and Bangladesh), steep linear
increment (Saudi Arabia, Pakistan, Chile, Russia, Peru, Iran), and gradual linear increment
(Italy, the UK, and Spain).

As mentioned, a second method for studying the trend of a time series is based
on ML [22], and more appropriately on a class of ML called DL [23]. These allow the
assumptions required for statistical approaches to be overcome [24]. DL models have
proven to be an effective technique for time series analysis, including the forecasting of
an outbreak of COVID-19 [25]. In DL, an NN (or circuit of neurons) is used for solving
an artificial intelligence (AI) issue. The latter has been explored in almost every field of
medicine [26–28]. DL techniques have a significant accuracy rate both for the spread and
dynamics of the COVID-19 epidemic, and for its early detection [29].

Usually, an NN is used to process both sequential and temporal data (e.g., time
series) [30], and it can be integrated with a long short-term memory (LSTM) to support
a gated memory unit that is able to handle the vanishing gradient problems. LSTM
is a recurrent network architecture combined with a gradient-based learning algorithm
to overcome back-flow problems [31]. LSTM uses its memory cells to remember long-
range information and track the various attributes of text it is currently processing [32].
Chimmula et al. [33] analyzed data collected from Johns Hopkins University and the
Canadian Health authority by developing a DL approach based on LSTM [32].

Ayoobi et al. [34] examined six different DL methods on COVID-19 data for Australia
and Iran to investigate time series forecasting of new cases and the rate of new deaths
for COVID-19. In detail, the study performed an in-depth comparison of LSTM, convo-
lutional LSTM (Conv-LSTM) [35], and gated recurrent units (GRUs) [36] along with their
bidirectional extensions: bidirectional-LSTM (Bi-LSTM), bidirectional convolution LSTM
(Bi-Conv-LSTM), and bidirectional GRU (Bi-GRU), respectively [37]. The comparison
performed by Ayoobi et al. produced the following key observations: Conv-LSTM, Bi-
Conv-LSTM, and GRU, obtained the best rank for the prediction of new cases over 1, 3,
and 7 days, respectively, for the Australian dataset. Conv-LSTM obtained the best rank
for new deaths in all tests for the Australian dataset (i.e., prediction over 1, 3, and 7 days).
For the Iranian dataset, results were even more heterogeneous. Therefore, the mentioned
study suggested that the best DL model did not exist for any dataset, but that they must be
assessed on a case-by-case basis.

Similarly, Zeroual et al. [38] investigated DL methods focusing on NNs, and recurrent
NNs (RNNs). In an NN, the data flow transformations can be passed via hidden layers
in one direction by producing an output that is affected only by the current situation.
Otherwise, an RNN has a low memory that may be increased by including an LSTM hidden
layer or a GRU.

NNs are usually employed to study time series forecasting models. Time series are a
crucial issue for several topics, including epidemiology [39].

Let us denote the current time stamp with ht, the time stamp at previous state with ht−1,
the weight matrix with W, the bias matrix with b, and the hyperbolic tan function with tanh.
Formally, the function of an NN cell may be represented by using the following equation:

ht = tanh(W[ht−1, xt] + b)

Briefly, each cell calculates ht by performing a hyperbolic tan function in which ht−1
and xt are combined with a weight matrix, adding also a specific bias. The hyperbolic tan
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function allows scaling the actual values within the range [−1,+1]. Therefore, the output
of a cell is updated by using the following sigmoid function ( f (x)) at each time step:

f (x) = 1/(1 + e−x)

According to the equations above, Figure 1 shows the schematic representation for
an NN cell; note that the output produced by a cell can be imported as input for a subse-
quent one.

b

ht 1

W(ht 1)

W(xt)

tanh [output]
ht

Xt

Cell

Figure 1. The schematic representation of a single NN cell.

An NN recollects only recent information, unless its memory is extended, e.g., with
an LSTM or GRU. As discussed, NN are not suitable for historical data in respect to
LSTM. However, external actions could occur within the time series, destabilizing the
long short-term memory, e.g., lockdowns, and/or limitations. To give an example, Italy
was subjected to emergency improvements that introduced restrictions for preventing the
spread of COVID-19. For instance, our tests demonstrated that LSTM for our dataset was
counterproductive, contrary to the datasets of countries where government interventions
were less frequent. To give an example, Ma et al. [40] analyzed epidemic trends in the US,
the UK, Brazil, and Russia by combining LSTM with the Markov method to optimize the
results, because the pure use of LSTM had proven to be not optimal. In Chandraa et al. [41],
an approach based on LSTM resulted in data that was highly biased by a single major peak,
when the entirety of India’s cases were considered.

3. Materials and Methods

This section presents the methodology that was applied for designing the proposed
solution. This one was based on an in-house algorithm that implemented a model based on
the NN in order to support a time-dependent model with event persistence. Furthermore,
we adjusted the data produced by the output layer of the NN by using the Rt estimation as
a corrective index. As described, Rt allows the estimation of time-varying reproduction
numbers during epidemics, and its value was computed for each prediction in order to
adjust the final forecasting. It was integrated downstream of the output layer of the NN.

The proposed solution was based on the following main steps: (i) pre-processing,
(ii) NN modeling, (iii) prediction, (iv) post-processing. In preprocessing, the data were
parsed by filtering only the information of interest and were reshaped into the [samples,
time steps, features] format. The NN was modeled by integrating the Rt estimation during
its computation. Finally, data were subject to an inverse transformation according to the
original time-series. The pipeline is shown in Figure 2.
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Figure 2. Figure reports the pipeline for our solution. We parsed data by retrieving the positive case
registration as a time series.

3.1. Dataset

The proposed solution retrieved data from the “Our World in Data COVID-19 Cases”
dataset (ourworldindata.org/covid-cases, accessed on 11 January 2022) [42]. This dataset
is a freely available resource under a Creative Commons license that aggregates datasets
provided by government agencies and research institutes for 207 countries. For instance,
the Italian dataset was acquired by the official GitHub Repository provided by the Depart-
ment of Italian Civil Protection. It includes daily information related to the tracking of
COVID-19 trends, such as tested confirmed cases, the number of people who reportedly
died, and the number of people who reportedly recovered from COVID-19.

We focused our attention on Italy, extending the analysis to the USA, France, the
UK, and Sweden, in order to demonstrate the evolvability and reusability of our solution.
The data sources aggregated in the “Our World in Data COVID-19 Cases” dataset for the
listed countries are reported in Table 1.

Our algorithm only used information related to new positive cases (or new cases) for
computation and forecasting, therefore other ones were excluded. New cases consisted of
the difference between the total number of cases on the current day and the total number
of cases from the previous day. This information could be used to construct a time series
related to the daily change in new cases. New case registration was retrieved between 24
February 2020 and 11 January 2022; Table 2 reports the descriptive statistics both for new
cases and total cases.

ourworldindata.org/covid-cases
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Table 1. We obtained the information related to positive cases in Italy, the USA, France, the UK,
and Sweden, through the “Our World in Data COVID-19 Cases” dataset. For the mentioned countries,
it aggregated data from the sources accessed on 11 January 2022, and reported in this table. The related
time series were built based on the number of daily new positive cases and whose timestamp was
within the same date range (24 February 2020–11 January 2022).

Country Organization Data Source

Italy Italian Civil Protection Department github.com/pcm-dpc/COVID-19

USA Center for Systems Science and Engineering, Johns Hopkins University systems.jhu.edu

France French Ministry of Solidarity and Health and Public Health data.gouv.fr/fr/datasets

UK Government of the UK coronavirus.data.gov.uk

Sweden The Swedish Public Health Agency experience.arcgis.com

Table 2. The descriptive statistics both for new cases and total cases, in Italy, the USA, France, the
UK, and Sweden. Date range: 24 February 2020–11 January 2022 (N is the number of time points for
the time series, which is the number of evaluated days).

N Mean Std. Deviation Std. Error

95% Confidence
Interval for Mean

Minimum Maximum
Lower
Bound

Upper
Bound

Total Cases

Italy 688 2,496,779.68 2,007,837.429 76,548.084 2,346,483.41 2,647,075.95 229 7,774,863

USA 688 22,722,404.82 17,313,142.593 660,057.373 21,426,432.95 24,018,376.69 16 62,588,935

France 688 3,581,853.14 3,034,266.023 115,680.308 3,354,723.75 3,808,982.52 12 12,620,080

UK 688 3,729,463.11 3,563,954.756 135,874.501 3,462,683.98 3,996,242.24 30 14,766,757

Sweden 688 588,621.05 487,097.434 18,570.416 552,159.46 625,082.63 1 1,487,291

New Cases

Italy 688 11,317.11 22,531.009 859.612 9629.33 13,004.90 74 220,519

USA 688 90,972.27 115,946.169 4420.406 82,293.14 99,651.39 0 1,383,898

France 688 19,238.68 38,431.340 1475.947 16,340.70 22,136.67 0 368,379

UK 688 21,536.37 29,864.863 1140.246 19,297.58 23,775.17 2 219,290

Sweden 688 2161.76 5199.062 198.212 1772.58 2550.93 0 70,641

Furthermore, we investigated the effective reproduction number of new cases (i.e.,
Rt) [43] by applying the method presented by Huisman et al. [44]. The latter is based on
the approach proposed by Cori et al. [45] to estimate time-varying reproduction numbers
during epidemics.

Table 3 reports the descriptive statistics related to the study of the Rt index for the
examined countries (i.e., Italy, the USA, France, the UK, and Sweden). Figure 3 shows the
trend related to Rt estimation for Italy, the USA, France, the UK, and Sweden.

Table 3. The descriptive statistics related to the study of the Rt index in the countries of interest.

N Mean
Std.

Deviation
Minimum 25% 50% 75% Maximum

Italy 688 1.05 0.23 0.70 0.89 1.00 1.14 2.98

USA 688 1.08 0.33 0.74 0.91 1.03 1.13 3.74

France 688 1.32 2.99 0 0.91 1.06 1.24 56.87

UK 688 1.07 0.32 0.59 0.90 1.04 1.18 5.95

Sweden 688 1.11 0.622 0.02 0.93 1.06 1.20 10.04
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Figure 3. The trends related to the Rt estimation for Italy, the USA, France, the UK, and Sweden.

3.2. Preprocessing

This step retrieved the data of interest in comma-separated value (CSV) format. A coun-
try can be indicated by its country code, according to the related International Standards
Organization (ISO) 3166-1 standard. For instance, the dataset provided by the Department
of Italian Civil Protection can be retrieved from the “Our World in Data COVID-19 Cases”
dataset by using “ITA” as the ISO code, similarly the dataset for the United State of America
can be retrieved by using “USA”. Furthermore, a date range can be defined to extract only
a subset of the information.

Each dataset contains information that is not relevant to our model. The preprocessing
step extracted the information of interest, which consisted of new positive cases.

We studied stationary points for the time-series by analyzing the autocorrelation.
To give an example, Figure 4 shows the autocorrelation plot for the new positive cases
related to the Italian dataset.

To build the training and testing datasets, we defined a function based on two main
arguments: (i) the original dataset and (ii) the number of previous time steps to use as input
variables to predict the next time period (i.e., look_back). This default created a dataset
where X was the number of observations at a given time (t) and Y was the number of
observations at the next time (t + look_back). We used a look_back value of 7 (7 days or 1
week) for training.

To build the NN model, data were subject to a transformation. The resulting format
was [samples, time steps, features]. The samples consisted of information from the previous
days according to look_back; the time step was 1 day (data were collected daily), and
the features were the new positive cases.

We split the time-series into two sets: training and testing. The split point was fixed to
80% of the observations for training, and the remaining 20% were for testing. After this
first splitting, we kept aside the test set and we randomly chose 80% of the training set as
the new training set, and the remaining (20%) was the validation set.
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Figure 4. An example of autocorrelation plot for new positive cases. Dataset: Italy.

3.3. Model

According to several studies for the prediction of short-term stock price trends [46–49],
we built a DL method based on a very-short-term time-series forecaster [50].

In Ma et al. [40], epidemic trends in the US, Britain, Brazil, and Russia were analyzed
by combining LSTM with the Markov method to optimize the result, because the pure use
of LSTM has been proven to be not optimal. In Chandraa et al. [41], an approach based
on LSTM was highly biased by a single major peak, when the entirety of India’s cases
were considered.

The proposed NN was based on two main layers: (i) a standard fully-connected (dense)
layer with a rectified linear unit (ReLU) activation and (ii) a custom dense output layer.

ReLu activation is defined as the positive part of its argument:

f (x) = x+ = max(0, x)

A major benefit of ReLu is that the gradient has a constant value, therefore it allows
faster learning.

The configuration for our NN consisted of four neurons for the dense layer, and one
neuron for the output layer. Furthermore, it used the Adam [51] for first-order gradient-
based optimization of stochastic objective functions.

The proposed solution was affected by a correction based on Rt estimation, in order to
also consider the time-varying reproduction numbers during epidemics. The estimation of
R at time t (i.e., Rt) requires incidence data. Let us denote ws as the probability distribution,
which is dependent on the time since infection of the case s, and independent of time t. Let
It be the ratio of the number of new positive cases at time t and It−s be the incidence at
t− s. The Rt is formally defined as follows:

Rt = ∑t
s=1 It−sws

According to this equation, the incidence of cases at time t may be calculated as
follows:

E[It] = Rt ∑t
s=1 It−sws

E[It] denotes the expectation at It.
Briefly, Rt is an index reflecting the incident rate: the higher Rt is the higher the

growth rate of infection is; therefore, a higher infection is expected in the next period.
The computation was based on the formula described above. Our own in-house function
computed the Rt index for each forecasting by weighting the latter on the same Rt index,
as a multiplicative factor. More implementation details are reported in Section 3.5
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3.4. Postprocessing

This step had the sole purpose of returning the data into their original format. There-
fore, data predicted by NN should be inverse-transformed starting from the dataset ob-
tained by pre-processing (i.e., [samples, time steps, features]), into the time-series format (i.e.,
[date, new positive cases]). The inverse transformation allowed both the descriptive analysis
of the predicted trend and the plotting.

3.5. Implementation

The proposed solution was implemented in Python (version 3) [52], by using the
following set of well-known packages:

• pandas [53]. This package is a software library for data analysis and manipulation. It
includes a data structure to handle data frames efficiently. Furthermore, time-series
are supported; for instance, it allows date range generation and frequency conversion,
statistics, date shifting, and lagging.

• numpy [54]. This package provides support for large, multidimensional arrays and
matrices, as well as a collection of high-level mathematical functions to manipulate
these data structures.

• tensorflow [55]. This package is one of the most widely used end-to-end open source
platforms for ML/DL.

• scikit-learn [56]. This package is a collection of tools for predictive data analysis,
classification, regressions, and clustering. It supports the interoperability with other
packages (e.g., numpy).

• epyestim [45]. This package is able to estimate time-varying reproduction numbers
(i.e., Rt) from epidemic curves. It is provided in both software tool and package form.
The latter also supports the Python languages.

The proposed solution used numpy and pandas to handle the data, while the NN
was modeled through tensorflow. Furthermore, the Rt estimation was computed by using
epyestim and was included within the output layer. Therefore, the contagion rate estimated
by Rt afflicted the original output by weighting it. From a pure implementation point of
view, we used the custom Dense layer of tensorflow to include our own function. The latter
worked as a multiplying factor by weighting the original output on the estimated Rt:
originalOutput ∗ estimatedRt.

We implemented this solution on Google Colaboratory (Colab) [57], which we also
used as a test environment. Colab is a research project for prototyping ML/DL models
on Google Compute Engine (GCE) by ensuring powerful hardware options (e.g., GPUs
and TPUs). GCE is the infrastructure as a service (IaaS) component of the Google Cloud
Platform.

3.6. Key Performance Indicators

According to comparative studies of ML/DL methods for time-series forecasting [58,59],
the proposed model was evaluated based on three well known key performance indicators
(KPIs): Mean Absolute Error (MAE) [60], Mean Absolute Percentage Error (MAPE) [61],
and Root Mean Square Error (RMSE) [62]. MAE, MAPE, and RMSE are the most common
metrics that are widely adopted to measure forecasting accuracy, as well as to evaluate
both NN and statistical models.

These are defined as follows:

MAE = 1
n ∑n

i=1|yi − ŷi|

MAPE = 1
n ∑ |yi−ŷi |

dt

RMSE =
√

1
n ∑n

i=1(yi − ŷi)
2

Within the equations reported above, yi and ŷi are the observed and predicted data,
respectively, while n is the size of the observed data.
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There is no one-size-fits-all indicator to evaluate forecast accuracy (or error) [63].
MAPE is the sum of the individual absolute errors divided by each period (i.e., de-

mand), separately. It represents the average of the percentage errors, and it expresses
model prediction error in terms of MAE percentage. According to its definition, MAPE is a
really strange forecast KPI for comparison. As neither MAE nor RMSE are scaled to the
demand, these need to be normalized to the average demand before they can evaluate if
their resulting value is good or bad. This feature makes them a particularly good KPI to
evaluate a single model, but not for comparison between different ones.

4. Results

Tests were performed in a standard Colab environment, which had the following con-
figuration:

• Type: n1-highmem-2 instance;
• CPU: 2vCPU @ 2.2 GHz;
• RAM: 13 GB;
• Backend: GCE, Python 3.

Benvenuto et al. [64] reported ARIMA (1,0,3) as the best ARIMA model for determining
the incidence of COVID-19. However, according to [21], ARIMA (7,2,4) is the best model
for confirmed cases. We used both ARIMA models for our tests.

According to what was discussed in Section 3.6, results were evaluated on the MAPE
indicator to compare the proposed NN and other solutions available in the literature. MAPE
was oriented negatively (lower was better). However, RMSE and MAE were reported,
for completeness.

Figure 5 shows the MAPE calculated for the proposed model on the Italian dataset,
as well the following ones used for comparison: LSTM, GRU, Simple RNN, ARIMA. More
specifically, the forecasting was performed multiple times (N = 10) for each model by
reporting the resulting average value for the MAPE; the related descriptive statistics are
shown in Table 4.

Table 4. The MAPE indicator was used to compare the proposed NN and the following models:
LSTM, GRU, Simple RNN, ARIMA. It was oriented negatively (lower was better). Dataset: Italy.

95% Confidence Interval for Mean

N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum

LSTM 10 0.2110 0.03281 0.01038 0.1875 0.2345 0.18 0.28

GRU 10 0.2490 0.04533 0.01433 0.2166 0.2814 0.20 0.31

Simple RNN 10 0.1960 0.05125 0.01621 0.1593 0.2327 0.16 0.33

Proposed NN w/o Rt 10 0.1840 0.01713 0.00542 0.1717 0.1963 0.16 0.21

Proposed NN 10 0.1510 0.01101 0.00348 0.1431 0.1589 0.14 0.17

In addition, RMSE, MAE, and MAPE were used to compare the proposed NN and an
NN having the same configuration but without the adjustment based on Rt (i.e., proposed
NN and proposed NN without Rt, respectively), on the Italian dataset. In this case, we
reported all KPIs so that both models were based on the same type of model and the
comparison was possible, unlike the previous case. The effect of our approach improved
all KPIs, as shown in Figure 6; Table 5 reports the related descriptive statistics.
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Table 5. RMSE, MAE, and MAPE were used to compare the proposed NN and an NN with the same
configuration but without the adjustment based on Rt. It was oriented negatively (lower was better).
The figures show the proposed solution in green, and the other models are in blue. Furthermore, we
reported our solution by excluding the use of Rt in yellow to demonstrate the benefits of using the
latter. Dataset: Italy.

95% Confidence Interval for Mean

N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum

RMSE

Proposed NN w/o Rt 10 8040.9180 1181.94026 373.76233 7195.4089 8886.4271 6224.14 9763.09

Proposed NN 10 4522.5080 2645.23581 836.49701 2630.2203 6414.7957 1407.01 7123.64

MAE

Proposed NN w/o Rt 10 3218.7000 922.85482 291.83232 2558.5294 3878.8706 2122.75 4813.67

Proposed NN 10 2112.4220 1169.72987 369.90106 1275.6477 2949.1963 918.19 4010.12

MAPE

Proposed NN w/o Rt 10 0.1840 0.01713 0.00542 0.1717 0.1963 0.16 0.21

Proposed NN 10 0.1510 0.01101 0.00348 0.1431 0.1589 0.14 0.17

0.21

0.25

0.20

0.21

0.20

0.18

0.15

0.00 0.05 0.10 0.15 0.20 0.25 0.30

LSTM

GRU

Simple RNN

ARIMA(1,0,3)

ARIMA(7,2,4)

Proposed NN w/o Rt

Proposed NN

Figure 5. MAPE for the proposed model with and without the correction computed by using the Rt

estimation (i.e., proposed NN and proposed NN without Rt, respectively), as well as for the other
models based on DL (i.e., LSTM, Simple RNN, GRU) and ARIMA. MAPE was oriented negatively
(lower was better). Dataset: Italy.

We focused the tests on the Italian dataset, and by extending these ones also to the
USA, France, the UK, and Sweden we demonstrated the evolvability and reusability of
our solution for data based on time series. MAPE was calculated for the proposed NN
with and without the correction computed by using the Rt estimation (i.e., proposed NN
and proposed NN without Rt, respectively), as well as for the other models based on DL
(i.e., LSTM, Simple RNN, GRU). In addition, in this case, the forecasting was performed
10 times for each model and the resulting average value was reported (see Table 6).
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8040.92

4522.51

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Proposed NN w/o Rt

Proposed NN

(a) RMSE

3218.70

2112.42

0 500 1000 1500 2000 2500 3000 3500

Proposed NN w/o Rt

Proposed NN

(b) MAE

0.18

0.15

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Proposed NN w/o Rt

Proposed NN

(c) MAPE
Figure 6. RMSE, MAE, and MAPE were used to compare the proposed NN and an NN with the
same configuration but without the adjustment based on Rt. Values related to this plot are reported
in Table 5.

Table 6. MAPE was reported for the proposed model with and without the correction computed by
using the Rt estimation, as well as for the other models based on DL (i.e., LSTM, Simple RNN, GRU).
The forecasting was performed 10 times for each model and the resulting average value was reported.
MAPE was oriented negatively (lower was better).

Proposed NN Proposed NN w/o Rt LSTM Simple RNN GRU

USA 0.33 0.39 0.30 0.34 0.38

France 0.30 0.64 0.96 1.00 0.76

UK 0.09 0.10 0.11 0.12 0.11

Sweden 0.35 0.41 0.38 0.44 0.42

We summarized the MAPE provided by the presented tests on the DL models of
interest (i.e., proposed NN, proposed NN without Rt, LSTM, Simple RNN, GRU) by
plotting a bar chart. The latter is shown in Figure 7.
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Figure 7. Figure shows a comparison between the proposed model with and without the correction
computed by using the Rt estimation (i.e., proposed NN and proposed NN w/o Rt, respectively),
as well as from the test on the other models based on DL (i.e., LSTM, Simple RNN, GRU) and ARIMA.
The comparison is based on MAPE, and it concerns all countries of interest: Italy, USA, France, UK,
and Sweden. MAPE is oriented negatively (lower is better).

For demonstration purposes only, Figure 8 shows a forecast related to the positive
cases in Italy. It consists of the following information: the green line is related to the
proposed solution that includes our adjustment based on Rt estimation; the red line an NN
based on a model built on the same configuration without Rt; the black line concerns the
real trend for the period of interest.
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Figure 8. This plot shows a forecast related to the positive cases in Italy. The green line is related to
the proposed solution that includes our adjustment based on Rt estimation; the red line an NN based
on a model built on the same configuration without Rt; the black line concerns the real trend for the
period of interest. The X-axis reports the time points, while the Y-axis reports estimated positive cases.

In addition, we investigated the statistical significance related to the use of Rt by per-
forming a paired-sample t-test (or dependent-sample t-test) [65] before and after applying
it to the proposed solution. Therefore, we considered the predicted time points with (i.e.,
after) and without (i.e., before) applying Rt: the green line and the red line, respectively,
in Figure 8. Table 7 reports the results. Each time point was measured twice, resulting in
pairs of observations.
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Table 7. The paired-sample t-test before and after applying the Rt adjustment to the proposed
solution. Dataset: Italy.

Mean Std. Deviation Std. Error Mean
95% Confidence Interval of the Difference

p-Value

Lower Upper

−646.23 2690.34 247.67 −1136.72 −155.74 0.01

5. Discussion

We built the time-series by processing the positive cases available within the dataset
of the following countries: Italy, the USA, France, the UK, and Sweden. We focused on
the Italian dataset, and extended the analysis to other mentioned countries. Each dataset
was partitioned into two subsets for training (train set) and testing (test set), 80% and 20%
respectively. After this first splitting, we kept aside the test set and we randomly chose
80% of the train set as the new train set, and the remaining (20%) was the validation set.
The model was iteratively trained and validated on these sets. The train and validation sets
were also used as entry points for Rt estimation. Furthermore, the predicted values were
evaluated on the data produced by the output layer of our model, iteratively. Finally, Rt
was applied as weight for each predicted value before providing the final output.

The KPIs (i.e., MAPE, MAE, RMSE) used for comparisons were oriented negatively:
lower was better. On the Italian dataset, the results showed that our solution reduced
MAPE by 28.44%, 39.36%, 22.96%, 17.93%, 28.10%, 24.50% compared to other ones with the
same configuration but based on LSTM, GRU, Simple RNN, ARIMA (1,0,3), and ARIMA
(7,2,4) models, or an NN without applying the Rt as a corrective index (i.e., proposed
NN without Rt). Furthermore, it reduced MAPE by 17.93%, MAE by 34.37%, and RMSE
by 43.76% compared to the same model without the output adjustment performed through
the Rt. Table 4 and Figure 5 report what has been described. Furthermore, Table 5 and
Figure 6 show that our solution allowed a reduction of 17.93% in the MAPE, 34.37% in the
MAE, and 43.76% in the RMSE compared to an NN that did not include the Rt estimation
as a corrective index.

In addition, the tests performed on the other countries were consistent with what
was described above. According to Table 6 and the related plot in Figure 7, a comparison
between our solution and other ones provided the following reduction in the MAPE
indicator for the USA, France, the UK, and Sweden:

• vs. proposed without Rt: 5.38%, 53.13%, 10.00%, and 14.63%;
• vs. LSTM: -10.00%, 68.75%, 18.18%, and 7.89%;
• vs. Simple RNN: 2.94%, 70.00%, 25.00%, and 20.45%;
• vs. GRU: 13.16%, 60.53%, 18.18%, and 16.67%,

It is important to underline that only the comparison on the USA dataset between
our solution and the model based on LSTM provided a better result for the second model
(−10.00% for LSTM). However, the proposed solution allowed an average MAPE reduction
of 5.37%, 63.10%, 17.84%, and 14.91% on the datasets related to the USA, France, the UK,
and Sweden, respectively.

Italy was subjected to emergency improvements that introduced restrictions for pre-
venting the spread of COVID-19, as well as France and the UK. On the contrary, the USA and
Sweden introduced a more permissive policy (no or low restrictions). Overall, the described
results identified the proposed solution as the most appropriate in our tests, especially for
time series affected by influences over the time (e.g., lockdowns and limitations).

Furthermore, the statistical analysis related to the use of Rt applied to the proposed
solution (see Table 7) indicated a statistical significance (p-value of 0.01). This analysis was
related to the forecast in Figure 8.
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6. Conclusions

This paper presented a DL algorithm for the analysis and forecasting of SARS-CoV-2
(COVID-19) epidemic trends by combining an NN with Rt estimation. In the proposed
solution, the data produced by the output layer of the NN were weighted on Rt estimation.
The Rt was included as a multiplying factor at the end of the output layer, making sure
that the estimated contagion rate could afflict the original output by weighting it.

We applied the proposed solution to the datasets of Italy, the USA, France, the UK,
and Sweden, by focusing the attention on the Italian dataset. Results showed that our
solution allowed a reduction in MAPE of 28.44%, 39.36%, 22.96%, 17.93%, 28.10%, 24.50%
compared to other ones with the same configuration but based on LSTM, GRU, RNN,
ARIMA (1,0,3), and ARIMA (7,2,4) models, or an NN without applying the Rt as a corrective
index. It also allowed a reduction of 17.93% in MAPE, 34.37% in MAE, and 43.76% in
RMSE compared to an NN that did not include the Rt estimation as a corrective index.
Furthermore, it allowed an average MAPE reduction of 5.37%, 63.10%, 17.84%, and 14.91%
on the datasets related to the USA, France, the UK, and Sweden, respectively.

Future work could affect the tracking of SARS-CoV-2 variants by evaluations that take
into account multiple rates of contagiousness, as well as including sets of information both
for personal and clinical data (e.g., clustering data for ages and comorbidities, susceptible
patients, and statistics on mobility).

Key Points

• We combined an NN with the estimation of time-varying reproduction numbers
during epidemics (i.e., using Rt as a corrective index).

• We developed a solution that was able to handle the frequent restrictions adopted by
a country (e.g., lockdowns and limitations) that could destabilize the evolution of a
time series.

• We provided an effective methodology to forecast COVID-19 epidemic trends on a
dataset consisting of a limited amount of information (e.g., Italy).
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