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Abstract: Many security-related scenarios including cryptography depend on the random generation
of passwords, permutations, Latin squares, CAPTCHAs and other types of non-numerical entities.
Random generation of each entity type is a different problem with different solutions. This study is
an attempt at a unified solution for all of the mentioned problems. This paper is the first of its kind to
pose, formulate, analyze and solve the problem of random object generation as the general problem
of generating random non-numerical entities. We examine solving the problem via connecting it
to the well-studied random number generation problem. To this end, we highlight the challenges
and propose solutions for each of them. We explain our method using a case study; random Latin
square generation.

Keywords: integer compositions; Linear Feedback Shift Registers (LFSRs); parallel LFSRs; random
number generation; random object generation; S-restricted random number generator

MSC: 65C10; 94A60; 97P60

1. Introduction and Basic Concepts

Random password generation [1], random CAPTCHA generation (Completely Auto-
mated Public Turing test to tell Computers and Humans Apart) [2,3], random permutation
generation [4,5] and random Latin square generation [6,7] are critical cryptographic prob-
lems. There are many other similar problems that play critical roles in different branches of
science and technology. Each of these problems is about random generation of non-numeric
entity, to all of which we refer using the general name object in this paper. Although the
mentioned problems may appear conceptually similar, solutions proposed for each of them
may not be applicable to others. In this paper, we unify these problems and formalize the
general problem of random object generation as the problem of generating random instances
of any non-numeric entity type. Afterwards, we examine solving the newly-posed problem
via connecting it to the well-known problem of random number generation. The primary
idea behind our proposed approach is to assign numeric codes to objects, and generate
random object codes using Random Number Generators (RNGs) (Please see more details
in Section 2.3). However, there are challenges that need to be resolved. We analyze and
resolve each of these challenges (Section 2.2).

In this study, we first formalize the problem of random object generation. Then, we
introduce the notion of S-restricted RNGs as RNGs capable of generating random numbers
derived from an arbitrary set S. We show how the use of S-restricted RNGs along with
proper encoding schemes can lead to a solution to the problem of random object generation.
We present our proposed random object generation method based on these two components.
In the next step, we will propose a method based on integer compositions for automatic
design of parallel LESRs. Furthermore, we present an architecture based on parallel LFSRs
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(as parallel RNGs) for designing S-restricted RNGs. Lastly, we present a case study for
illustrating the proposed method. We design a circuit for generating random Latin squares
of order 4 with the help of a novel encoding scheme.

Before formalizing the ROG problem and discussing our approach towards its solution,
we need to introduce some concepts in the next subsection.

1.1. Basic Concepts

In the following, we define integer composition, parallel LESRs, S-restricted RNGs
and Latin squares, which will be used later while describing our solution to the problem of
random object generation.

1.1.1. Integer Compositions

A composition C of a positive integer 7 is a sequence of positive integers called parts
(summands) that add up to n. Different aspects and applications of integer compositions
have been studied by researchers [8]. In this paper, we represent compositions by tu-
ples, and denote the set of compositions of a positive integer n by C(n). As an example,
c(3) = {(1,1,1),(1,2),(2,1),(3)}. It can easily be shown that |C(n)| = 2"! for ev-
ery n € N. For a composition C = (cy,¢p,...,¢_1,¢) and i € {1,2,...,1}, we define
C = (cj,c-1,---,c0,¢c1), AMC,i) = ¢, first(C) = A(C,1) = ¢y, last(C) = A(C,I) = ¢,
length(C) =1, f~(C) = (c2,...,¢1-1,¢;) and [~ (C) = (c1,¢2,...,¢,-1). Moreover, for a
positive integer x, we represent (x,c1,¢2,...,¢_1,¢;) and (¢1,¢2,...,¢_1,¢;, %) by x;C and
C; x, respectively. It is immediate that f~(C) = I7(C) = ¢ = () if length(C) = 1,
and x;C=C;x = (x)ifC = ¢.

An S-restricted composition of # is a composition in which all parts are chosen from a
givenset S C {1,2,...,n}. Several properties of S-restricted compositions as well as related
problems have been investigated in various research works [9]. We use C () (n) to represent
the set of S-restricted compositions of 1. For example, C(112}) (3) = {(1,1,1), (1,2), (2,1)}.
Different types and aspects of S-restricted compositions have been investigated by re-
searchers [10]. However, to the best of our knowledge, there is no closed form solution for
calculating the number of S-restricted compositions.

A palindromic composition (a palindrome) of # is a composition of n that is read
in the same way from the left and the right. The notation Cp(n) is used in this paper to
represent the set of palindromic compositions of n. For example, Cp(3) = {(1,1,1),(3)}.
It can easily be shown that |Cp(n)| = 2l2). An S-restricted palindromic composition
(S-restricted palindrome) of n is a palindrome in which parts are chosen from a given set

S C{1,2,...,n}. For example, CI{,l’Z} (3)={(1,1,1)}.

1.1.2. Parallel LFSRs

An LFSR is constructed of a shift register for keeping the state of the LFSR, along
with a feedback loop, which controls the state transition. We denote an LFSR with n
flip-flops and the generating polynomial G by P, (G, M), where M is the input string.
There are two common representations for P, (G, M); Fibonacci representation and Galois
representation. Galois and Fibonacci representations are mathematically equivalent in the
sense that every sequence generated by a Fibonacci LFSR can be generated by a Galois
LFSR, and vice versa [11][12]. Since the delay in the corresponding logic circuit is not
dependent on the size of the LFSR, we choose to use Galois LFSR defined by Equation (1):

P(k—|— 1) - Fn(k) + My, i=1, 1)
l ~ \E_i(k) + Gi1Eu(k), i€{2,3,...,n}.

In Equation (1),  is referred to as the size of the LFSR, and the vector S¥(P, (G, M)) =
[F(k), Fa(k), ..., Fy(k)] is called the k! state of the LFSR. Especially, S°(P,(G, M)) =
[F1(0), F»(0),...,F,(0)] is referred to as the initial state of the LFSR. An implementation of
an LFSR of size n is called a programmable implementation if it is capable of working with
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any arbitrary generating polynomial of degree n. A programmable LFSR implemented on
the basis of Equation (1) is shown in Figure 1.

Feedback
Value Gi~e) G, '5 G '3

SRR D FID- (R} -

Figure 1. A programmable LFSR of size n.

In the programmable LFSR shown in Figure 1, @ and ® represent GF(2) addition and
multiplication, respectively, which can be implemented at the hardware layer using XOR
and AND gates. Given a fixed generating polynomial, the ® operations will obviously be
no longer needed. Moreover, in an implementation with a fixed generating polynomial,
the output of each © operation will be equal to 0 if its G input is 0. This eliminates the need
for the corresponding @ operation. As an example, an LFSR with generating polynomial
G = x84+ x* + 2% + x2 + 1 is shown in Figure 2. In this paper, we use P to represent
programmable LFSRs and £ for LESRs that work with a fixed generating polynomial.

Feedback
e 5 £, 61} 5} S EHEHEHED
erial Inpu

Figure 2. Galois and Fibonacci representations of an LFSR with generating polynomial G = x8 + x* +
3 2
x> +x-+ 1

An LFSR with n flip-flops and a primitive polynomial G guarantees to generate 2" — 1
different numbers {1,2,...,2" — 1} in each 2" — 1 consecutive clock cycles by an order
r1,72,...,1m_1, which depends on G. This capability makes it possible to use LFSRs in the
design of pseudo-random number generators.

The definition of parallel LFSR (as suggested by the related literature) is a little tricky.
A parallel LFSR with generating polynomial G and a sampling rate equal to j generates
the sequence ry, Fit1, 12415 - - - where r1,17,...,ron_1 is the sequence generated by a serial
LFSR with the same generating polynomial, and r; is equal to the seed. As stated by the
definition, a parallel LFSR skips j — 1 consecutive random numbers and outputs the j* one
in each invocation or clock cycle.

For a positive integer j, an n-bit j-parallel LFSR E{; (G, M) is defined by Equation (2):
Vk > 0: SK(LL(G, M) = SH (L, (G, M)). @)

In Equation (2), j is referred to as the sampling rate or the degree of parallelism.
Parallel LFSRs are designed to achieve higher performance [13].

The LFSR £1(G, M) = £,(G, M) is sometimes called a serial LFSR in order to dis-
tinguish it from parallel LFSRs. Similar to the case of serial LFSRs, parallel LFSRs can be
implemented in a programmable way. We represent a programmable n-bit j-parallel LFSR
by P} (G, M)). Programmable LFSRS have been of particular interest for designers during
the last few decades [14]. Figure 3 shows the block diagram of P}, (G, M)).

In Figure 3, the state transition logic calculates S'(P),(G, M)) = S/(Px(G, M)) using
S%(Ps(G, M)), G and M in the first clock cycle. Afterwards, the state calculated in each
cycle is considered as the initial state for the next cycle. In the rest of this paper, the term
"LFSR” refers to non-programmable serial Galois-type LFSR, unless we clearly specify
another type of LFSR. An LFSR with # flip-flops and a primitive polynomial G guarantees
to generate 2" — 1 different numbers {1,2,...,2" — 1} in each 2" — 1 consecutive clock
cycles by an order rq,73,...,7m_1, which depends on G. This helps LFSRs be used as
random number generators. Figure 4 shows how LFSRs and parallel LFSRs can be used to
build a parallel RNG.
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Figure 3. The block diagram of a programmable n-Bit j-parallel LFSR.
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Figure 4. A j-parallel RNG based on parallel LFSRs.
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1.1.3. S-Restricted RNGs

Assume the set S of positive integers, not necessarily consisting of consecutive integers.
Furthermore, assume a random sequence of positive integers 7 : (1'1)}":l in a way that
{ij]ij € T} = S. Any RNG capable of generating Z is referred to as an S-restricted RNG.
Simply put, S-restricted RNG, which takes an arbitrary set S of integers as the input,
and randomly generates the elements of S without generating any other random number.
The notion of S-restricted RNG is introduced for the first time in this paper. We use it as
part of our solution to the problem of random object generation.

1.1.4. Latin Squares

A Latin square of order g contains 1,2, ..., q in each row and each column in a way
that no number is repeated in a row or a column. Latin squares are of many applications in
cryptography [15-17] and related areas [18]. Table 1 shows a Latin square of order 10.

1.2. Organization

The rest of this paper is organized as follows: Section 2 formalizes the problem of
random object generation, discusses the challenges raised by the problem and presents our
proposed solution based on S-restricted RNGs and encoding schemes. Section 3 reviews
related research works. This section compares the most relevant works with our work in
this paper. Section 4 presents a novel method based on integer compositions for designing
parallel LFSRs. Section 5 proposes an architecture for designing S-restricted RNGs using
parallel LFSRs. Section 6 presents the case study. The first subsection in this section
presents a novel encoding scheme for Latin squares. The second subsection designs a
circuit for generating random Latin squares of order 4. Lastly, Section 7 concludes the paper
and suggests further research.
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Table 1. A sample Latin square of order 10.
1 8 9 10 2 4 6 3 5 7
7 2 8 9 10 3 4 6 1
6 1 3 8 9 10 4 5 7 2
5 7 2 4 8 9 10 6 1 3
10 6 1 3 5 8 9 7 2 4
9 10 7 2 4 6 8 1 3 5
8 9 10 1 3 5 7 2 4 6
2 3 4 5 6 7 1 8 9 10
3 4 6 7 1 2 10 8 9
4 5 6 7 1 2 3 9 10 8

2. Preliminaries

In this section, we preset some preliminary discussions. In Section 2.1, we state the
problem of random object generation. Section 2.2 discusses the challenges raised by the
formulated problem. Section 2.3 introduces our approach to solving the problem. Lastly,
Section 2.4 explains the novelties and achievements of this paper.

2.1. Problem Statement

Forn € N, let O = {o01,0z,...,0n} and S = {s1,52,...,5,} C Z* represent a set of
objects and a set of non-negative integers, respectively. Furthermore, let M : O — S be
an injective and surjective map. In the presence of M, we refer to each element of S as a
valid object code, and any other integer is considered as an invalid object code. The problem
of random object generation is defined as the problem of generating a random sequence
of positive integers Z : (ij)j_, in a way that {ijlij € T} = S. Solving this problem
requires an RNG that generates the sequence Z. Forn € N, let O = {01,0y,...,0,} and
S ={s1,82,...,5n} C Z™" representing a set of objects and a set of non-negative integers,
respectively. Furthermore, let M : O — S be an injective and surjective one-to-one
map, playing the role of an encoding scheme. In the presence of M, we refer to each
element of S as a valid object code, and any other integer is considered as an inwvalid object code.
The problem of random object generation is defined as the problem of generating a random
sequence of positive integers Z : (i;)!_; in a way that {i|i; € Z} = S. Solving this problem
requires an RNG that generates the sequence 7.

2.2. Challenges

A naive solution to the problem of random object generation is to assign numerical codes
to objects, let an RNG generate random numbers and interpret the generated random
numbers as object codes. However, there are some challenges. These challenges are
discussed below.

1. The first challenge here is to find or to build an RNG for which the set of possible
outputs is exactly equal to the set of codes assigned to the objects. For example,
for random permutations, we require encoding schemes that assign codes from
S =1{1,2,...,q!} to permutations of g objects [19]. Each of the mentioned codes can
be represented by I = [logg!| binary digits. However, a [-bit RNG usually generates
all 2! elements of {0,1,.. L2l — 1}, while 2l — q' = 2[logg!] _ 2logaq! of them are invalid.
We address this challenge by introducing S-restricted RNGs, which generate random
numbers drawn from a given set S.

2. The second challenge is that the encoding scheme will most likely be different from
one problem to another. For example, an encoding scheme proposed for passwords
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may not be applicable to CAPTCHAs as the statistical properties of valid passwords
are totally different from those of valid CAPTCHAs.

3. Third, the S-restricted RNG will be dependent on the encoding scheme and conse-
quently on the target set of objects. This component will vary from Latin squares of
order n to the same squares of order m # n. We address this challenge as well as the
above one via proposing the use of reconfigurable S-restricted RNGs. In our case
study, this challenge is resolved in two ways. First, our proposed architecture for
designing S-restricted RNG is capable of adopting any kind of parallel RNG. Second,
we use programmable parallel LFSRs instead of fixed-polynomial parallel LFSRs to
improve the reconfigurability of the design. Existing methods for designing parallel
LFSRs work only with a fixed generating polynomial [20,21]. In addition to inade-
quate reconfigurability, fixed-polynomial LFSRs make the system more vulnerable
against some well-known security attacks [22].

2.3. Problem Solving Approach

Figure 5 shows our solution to the problem of random object generation.

The Encodina Scheme

M(0;) = S;
M=(S;) = 0
0 s
@ O1ke—S1

ot M) MT(ER), - MTH(L)

Random Objects
On—Sn @

The Set of Numerical

@ Objects Codes
- A [1,1,"", itT
w S ®
. Random
S-Restricted Random Numbers
Number Generator

Figure 5. A solution to the problem of random object generation. Using S-Restricted RNGs: (1) An
encoding scheme is created that assigns the set S of numeric codes to the set O of objects using a
one-to-one (reversible) mapping. (2) An S-restricted random number generator is designed that is
capable of generating elements of S in a random way. (3) The S-restricted random number generator
generates random numbers. (4) The generated random numbers are converted to random objects
using the reverse of the encoding map.

The solution illustrated in Figure 5 depends on an encoding scheme and an S-restricted
RNG. The encoding scheme is inevitably dependent on the specific set of target objects.
We compensate this dependence via the use of flexible S-restricted RNGs. This way, our
method can be used for solving any kind of random non-numerical object generation
problem with the help of a proper encoding scheme and an s-restricted RNG that generates
exactly the set of numeric codes assigned to the objects.

In our proposal, the S-restricted RNG is constructed of a few parallel RNGs, which
simultaneously generate multiple random numbers, along with a selection mechanism that
chooses a valid object code among the generated random numbers. As a case study, we will
show later how S-restricted RNGs can be used to generate Latin squares. We use parallel
LFSRs to build parallel RNGs and subsequently S-restricted RNGs for generating Latin
squares of order 4. We have chosen LFSRs due to their lightweight implementation.
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> Delay 7 —— Module [
Module di

Figure 6 demonstrates our proposed architecture for the design of S-restricted RNGs.

This architecture is based on parallel RNGs. A parallel RNG is capable of creating multiple
simultaneous random numbers at its output [23]. In addition to parallel RNGs, the proposed
architecture uses an Invalid Run length calculation module as well as a feedback selection
module. In Figure 6, the delay module is initialized to d;. In each clock, the parallel RNG
generates {d, 71,1,d142,...,d1j_1} where j is the sampling rate of the parallel RNG. r; = r.
An invalid run length equal to k allows i; = d;x in the output and loads it on the feedback
loop as well.

—>

dl+j-1
di+2 Feedback
Parallel - .|
d RNG d Selection >

Invalid Run [navlid
Length Run
Calculation Length

Module

Figure 6. The architecture of an S-restricted RNG based on a parallel RNG.

2.4. Novelties and Contributions

The contributions of this paper can be listed as follows:

In this paper, we unify all problems related to random generation of non-numerical
entities for the first time. We bring all these problems under a single umbrella via
posing and formulating the general problem of random object generation (Section 2.1).
This paper is the first to propose a solution suitable for generating random instances
of any kind of non-numerical entity. Our solution depends on two core components.
The first component is a proper encoding scheme assigning a unique code to every
individual object. The second component is an RNG capable of generating random
numbers restricted to the set of assigned numeric codes (Section 2.3).

In this paper, we propose a novel approach based on integer compositions for auto-
matic design of programmable parallel LFSRs (Section 4);

In this paper, we introduce the notion of S-restricted, RNGs for the first time. More-
over, we present a novel method for designing S-restricted RNGs using parallel LEFSRs
(Section 5);

This paper presents the first encoding scheme for Latin squares. This encoding is
essentially en extended variant of Lehmer’s code previously proposed for encoding
permutations of a set of objects (Section 6.1);

We propose the first circuit for generating random Latin squares of degree 4 (Section 6.2).

Figure 7 shows the achievements of this paper and how they are connected to

each other.
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Figure 7. The achievements of this paper: (1) We unify problems like random CAPTCHA generation,
random password generation, random permutation generation and random Latin square generation.
We formulate the unified problem as the random object generation problem. (2) We present a solution
based on proper encoding and S-restricted random number generators for the problem of random
object generation. (3) We present an encoding scheme for Latin squares. (4) We propose a method
based on integer compositions for designing parallel LESRs. We propose a method based on parallel
LFSRs for designing S-restricted random number generators. (6) As a case study, we propose a logic
circuit for generating Latin squares of order 4.

3. Background and Related Works

In this section, we take a quick look at the background of research on random number
generation as well as the random generation of non-numerical entities. We compare the
most relevant research works with our work in this paper.

3.1. Random Numbers

Random number generation is an old problem. Random bit generation [24], random
sequence generation [25], and random vector generation [26] can be mentioned as variants
of this problem. There are two main types of random numbers, namely true-random
numbers and pseudo-random numbers.

True random numbers are generated using an unpredictable physical object, phe-
nomenon or process referred to as the source of randomness. Among these sources, one
may refer to the following:

e Noises [27,28];
e Waves [29,30];
e  Hardware Sources [31].

Pseudo-random numbers are completely computer-generated. They are generated
using computer algorithms or devices. Pseudo-random numbers are used in a variety of
applications ranging from sensor networks [32] to cryptography [33]. Different approaches
have been used for designing pseudo-random number generators [34,35]. Moreover, several
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enabling technologies including artificial intelligence [36,37], fuzzy logic [38] and chaos
theory [39] are used for this purpose.

3.2. LFSRs and Parallel LFSRs

Among existing random umber generators, LEFSRs are most relevant as we are using
them in our case study. The research community has considered LFSRs as promising choices
for random number generation and cryptographic purposes because of their low area and
power consumption as well as their high throughput [40,41]. They have been widely
used for both pseudo-random [42] and true-random number [43,44] generation. Different
variants of LESRs have been used for this purpose [22,45,46]. LFSRs are particularly used
for random key generation in stream ciphers [47]. In addition to serial LFSRs, parallel
LFSRs have been of interest to the research community in recent years [48]. They have been
widely used in random number generation [49] and many other applications [50,51].

3.3. Random Non-Numerical Entities

Generating random non-numeric entities dates back to the last few decades [52-54].
Random network coding [55], random decision trees [56] or random device IDs [57] are
required in different domains. Just as an example, random deadlines [58], random power
levels [59] and random linear network codes [60] are required to be generated in IoT appli-
cations for traffic management, attack resistance and bandwidth management purposes,
respectively. Particularly, random permutations [61], random passwords [1], and random
CAPTCHAs [2] play significant roles in cryptography.

Different Approaches can be used to generate random non-numeric entities [62,63].
A variety of enabling technologies including chaos theory [64], information theory [65] and
artificial intelligence [66] are utilized in this area.

Random Latin Squares

Latin squares appear as part of our case study in this paper. This is why we would
like to discuss them separately. Random Latin squares have been widely used in IoT
environments for channel access arbitration [67], encryption [15], secret sharing [18], etc.
Generating random Latin squares is a critical problem in the realm of combinatorial cryp-
tography [6,7,68,69]. Currently, there is no systematic solution for this problem.

3.4. Most Relevant Works

According to the above discussions, many existing research reports are somehow
relevant to this study. However, the most relevant research works are those focusing on
restricted random number generation or generating random non-numerical entities using
RNGs. These works are studied in the following:

3.4.1. Restricted RNGs

By a restricted RNG, we mean an RNG that generates a certain subsetof {0,1,2,...,2" — 1}.
The literature comes with some RNGs of this type.

As an example, one may refer to constrained random number generators, which have
been of interest to researchers in recent years [70]. A constrained random number generator
is defined as follows [71]. Let x be an element of the Cartesian product x" of a given set x.
Constrained RNG uses a sequence of random numbers subject to a distribution v on x”
defined by Equation (3):

1(x) Ax = c:
v(x) _ u({x:Ax=c}) . 3)
0, Otherwise.

In Equation (3), y is a probability distribution on x", A is a function A : x" — {Ax :
x € x"},and c € {Ax : x € x"}. Constrained RNGs are used in channel coding [72].
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A constrained RNG is similar to an S-restricted RNG in that both of them filter the
output of a traditional RNG. However, the difference is that a constrained RNG uses the
value of a function to filter the generated random numbers, while an S-restricted RNG
checks them against a given set S of valid numbers.

Another relevant research has been reported in [23], which presents a VLSI (Very
Large Scale Integration) design for a parallel RNG, and uses it to generate random numbers
drawn from an interval of integers. This work is different from ours in three aspects.
First, the parallel RNG designed in [23] generates multiple streams of random numbers,
while our proposed S-restricted RNG architecture depends on parallel RNGs that generate
multiple random numbers from the same stream as their output each time. Second, their
designed RNG generates random numbers is a contiguous interval of integers, while
our S-restricted RNG can generate elements of any arbitrary set S. Third, in our work,
parallel RNGs are based on parallel LFSRs and can be automatically designed with arbitrary
generating polynomials.

3.4.2. RNGs and Random Non-Numerical Entities

Some researchers have proposed methods based on random number generators
for generating random decision trees [56], random permutations, and random device
IDs [73]. However, none of these methods are capable of being applied on all kinds of
non-numerical entities.

3.5. Motivations

There are a wide range of problems, each of which can be considered as a spacial
instance of the problem posed in this paper: random object generation. However, they have
not been formulated as a single general problem. The reason is the lack of a general-purpose
solution applicable to all of these problems. This is the gap we are addressing in this paper.
We formalize the general problem and provide a general solution for it.

4. Automatic Design of Parallel LFSRs Using Integer Compositions

Existing methods for designing parallel LFSRs work only with a fixed generating
polynomial [20,21]. However, in security-related applications, we are usually interested in
randomizing the generating polynomial. Thus, we need an automatic method for designing
programmable parallel LFSRs.

In this section, we present a framework for automatic design of parallel LFSRs using
the mathematical properties of integer compositions. This framework consists of two parts.
In the first part, we present a method for automatic derivation of Reed-Muller expressions
describing programmable parallel LFSRs using compositions and palindromes. Afterwards,
we modify the framework to describe (non-programmable A.K.A fixed-polynomial) par-
allel LFSRs by Reed-Muller expressions using S-restricted palindromes. In the second
part of the framework, we present procedures for automatic generation of compositions,
palindromes and S-restricted palindromes. For j € {0,1,...,n — 1}, let b;(i) represent
the (n — j)th most significant digit of B, (i) = by, —1(i)by—2(i) ... bj(i) ... b1(i)bo(i) being the
binary representation of i € Z" in n digits. The Reed-Muller canonical form represents a
Boolean function f(x,_1,X,—2,..., X1, Xg) in the form of Equation (4),

2"—1

f(xy—1,%p-2,...,%1,%) = Z a; H X |- (4)

=0\ b(i)=1

In Equation (4), the addition and multiplication operations are defined over GF(2).
A Boolean function described in the Reed-Muller canonical form can be uniquely converted
to other canonical forms such as CNF (Conjunctive Normal Form) and DNF (Disjunctive
Normal Form). An advantage of Reed-Muller canonical form is that it does not need any
NOT gates to be implemented. This canonical form is commonly used in the description
and design of logic circuits [74].
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In the second part of our framework for designing parallel LFSRs, we present proce-
dures for automatic generation of compositions, palindromes and S-restricted palindromes.

4.1. Expression Derivation

In this subsection, we take an inductive approach to derive a Boolean expression
for describing a programmable parallel LFSR. We begin with Equation (1) and expand it.
Induction helps us describe consecutive expansions of this equation using palindromic
integer composition.

Before beginning to derive the expressions, let us prove Lemma 1, which presents
a procedure for creating C(i + 1) (the set of compositions of i + 1) given C(i) (the set of
compositions of 7).

Lemma 1. Procedure CreateNextComp in Algorithm 1 returns C;11 = C(i + 1) provided that
Ci =C(i).

Algorithm 1 create C(i + 1) given C(i)

Requires: C; = C(i).
Ensures: Cj1 =C(i +1).

1: procedure CREATENEXTCOMP(C;)

2 Cip1=0

3 forall C € C; do

4 Cit1 < Cipa U{(first(c) +1); f~(C)}
5: Cit1 < Ciy U{L;C}

6 end for

7 return C;

8: end procedure

Proof. Since C; = C(i), it is obvious that VC € C; : (first(c) +1); f~
C(i+1) Thus, C;;1 C C(i +1). On the other hand, VC' € C(i
f=(C") € C(i)) V (first(C") — 1); f(C') € C(i). Thus, C(i+1)
is proved. 0O

(C)eC(i+1)A1;Ce
i+ ) (first(C") = 1A
C Cjy1, and the lemma

Equation (5) is immediate from Lemma 1:
Vi>0:C(i+1) = {(first(c) +1); f(C)|C e C(i)}U{1;,C|C e C(i)} (5)

Now, let us continue by proving Theorem 1, which gives a Reed—Muller description of
P} (G, M) using integer compositions.

Theorem 1. A Reed—Muller expression of PZL (G, M) (shown in Figure 3) is given by Equation (6),
wherein C' = f~(C), Gy =0fort <0and F; = M_ for t <O0.

j—1 length(C’) ®)
Z ) zflrst U Gn—/\(C’,u) Fn—r(o) ’

wherei € {1,2,...,n}.

Proof. We take an induction-based approach to prove Theorem 1. For j = 1, consider-
ing C(1) = {(1)}, first((1)) = 1 and length(f~((1))) = 0, Equation (6) is converted to
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Equation (1). Thus, Equation (6) holds for j = 1. On the other hand, if this equation holds
for j = g, we can use it to derive Equation (7) via replacing i by i — 1.

Fi-1(9) = Fi_(441)(0)+

g—1 length(C’) (7)
Y Y (Gi@sos| TI Guoacw |Far(0) |,

r=0 ) u=1

=0CeC(q—r

wherei € {2,3,...,n+1}.

In the derivation of Equation (7), we have replaced i —1 —gbyi— (g+ 1), and i —
1 — first(C) by i — (first(c) + 1). Furthermore, Equation (8) can be obtained by substituting
n for i in Equation (6) (rewritten for g instead of j) and multiplying the equation by G;_1:

Gilen(Q) = Gilenfq(O)Jr

g—1 length(C’) (8)
Z Z Gi1 Gn—ﬁrst(C) H Gy A(Cu) FW*Y(O) .

=0 ceCz-n)

Considering Equations (1) and (5), we can add Equations (7) and (8) together to obtain
Equation (9) via some simple algebraic operations:

Fi(q+1) = F_(g41)(0)+

length(C’) )
Z Gi first(C) H Gy A(Cu) FH—T’(O) ’

r=0CeC(g+1-r)

wherei € {1,2,...,n}.
Equation (9) states that, if Equation (6) holds for j = g, it will hold for j = g+ 1 as
well, and the theorem is proved.
O

It is obvious that 73{; (G, M) can be implemented using logical AND and XOR gates on
the basis of the Reed-Muller representation given in Equation (6). Corollary 1 presents an

equivalent Reed-Muller description of P} (G, M) using palindromes. This can be consid-
ered as a simplification to the representation of Theorem 1 because |Cp(x)| < |C(x)| for
every x > 2 and |Cp(x)| = |C(x)| for every x € {1,2}.

Corollary 1. A Reed—Muller expression of P,];(G, M) (shown in Figure 3) is given by Equa-
tion (10), wherein C' = f~(C).

Fi(j) = Fi—j(0)+
j—1 length(C’) (10)
Z. (Gl first C)( H Gu-a(c, u)) Fy— ,(0))

wherei € {1,2,...,n}.
Proof. In order to prove Corollary 1, we note that

VCeC(j—r):C¢Cp(j—r) = first(C);C’ = first(C);C' =
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length(C")
G- first(C H Gy AMCu)

length(C")
Gi_ first(C) H G —A(Cu) =0.

Thus,
length(C’)
Yo | Giaso)| II Guaow) | For(0) | =
CeC(j—r) u=1
length(C’)
Z Gi_ first(C H G ACu) FH—T’(O) .
CECp(j—r)
O

Given a fixed generating polynomial, P) (G, M) canbe converted to c, (G, M). To show
how this can be done, let us prove Corollary 2, which gives a Reed-Muller representation

of £, (G, M) using S-restricted palindromes.

Corollary 2. A Reed—Muller expression of c, (G, M) is given by

Fi(j) = Fi-;(0)+

j—1 length(C’) (11)
Z Z Gz first(C H Gn AMC u) Fi v (0) ’
" (j-1)

r=0cecsi-
wherei € {1,2,...,n}and C' = f~(C).
Proof. In Equation (10), it is obvious that Ji € Cp(j —7) : G,_ycu) = 0 = Hlength C)
Gu_a(c'u) = 0. Thus, given a fixed generating polynomial G, the set Cp(j — r) can be
replaced with X'(j —r,G) = {C|C € Cp(j —r) AVu € {1,1,...,length(C")} : G,_p (o) =
1}. On the other hand, for each C € Cp(j — r), the set of summands in C is equal to
that of C’, except for (j —r). Thus, X(j —r,G) = Cg(]fr’G) (j—r), where S(j —r,G) =
{G—r}U{xlGurx =1} O

4.2. Generation Procedures

In this subsection, we complete our automatic parallel LFSR design framework by pre-
senting procedures for generating compositions, palindromes and S-restricted palindromes
of a positive integer 7.

Let us begin with systematic generation of C(n). It can be done as shown by procedure
CreateComp in Algorithm 2 via the use of procedure CreateComp in Algorithm 1, which was
proved to be correct in Section 4.1.
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Algorithm 2 Create C(n)

Requires: 7 is a positive integer.
Ensures: C, = C(n).

1: procedure CREATECOMP(n)

2 if n == 1 then

3 Co {1}

4 else

5: Cn_1 + CreateComp(n — 1)

6 Cpn < CreateNextComp(Cy,_1)
7 end if
8 return C,
9: end procedure

Lemma 2 introduces a procedure for systematic creation of Cp(n) for a positive inte-
ger 1.

Lemma 2. Procedure CreatePal in Algorithm 3 returns Cp(n) for a positive integer n.

Algorithm 3 Create Cp(n)

Requires: 7 is a positive integer.
Ensures: C,, = C(n).

1: procedure CREATEPAL(n)

2 if n == 1||n == 2 then

3 C,n « CreateComp(n)

4 else

5: C,,n 2

6 C,n—2 ¢ CreatePal(n —2)

7 forall C € C,,n—z do

8 T = (first(c) +1); f~(C)
9: Con < C,n U{I7(T); (last(T) + 1)}
10: Con <—Can{1;C;1}

11: end for

12: end if

13: return Cp,1

14: end procedure

Proof. This lemma can be proved in a very similar way to the case of Lemma 1. O

Lemma 3 introduces a procedure for generating C3 (1) for a positive integer 7 and a
set S of positive integers.

Lemma 3. For a positive integer n and a set S C of positive integers, procedure CreateSRestPal in
Algorithm 4 returns C3(n) if C3(n) # @ and {()} (a set consisting of only an empty composition)

if C3(n) = @.
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Algorithm 4 Create S-restricted palindromic compositions

Requires: 1 a positive integer, S a set of positive integers.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Ensures: C3 = Cp(n) if C3(n) # @,C5 = {()} if C3(n) = @.

procedure CREATESRESTPAL(n,S)

G<«+0
51+ S
if 5 == @ then
C3+ {0} > A set consisting of an empty composition
return
end if
if n € S; then
C3+ C3U{(n)}
G<+1
end if
C3+ @
foralls € S\ {n} do
for all ¢ € CreateSRestPal(n —2s,51 \ {n}) do
'+ (s);¢(s) > Concatenate s to the left and the right of ¢
C3+ Cau{c}
G<+1
end for
end for
if G == 0 then
¢s {0}
end if
return

24: end procedure

Proof. In order to prove this lemma, we prove the following statements:

1.

C3 C C3(n) if C3(n) # Q.

There are only two statements in Procedure CreateSRestPa that add compositions to Cj:
Statement 9 and Statement 16. Statement 9 adds (1), which is definitely an element
of C3(n) considering n € S. Moreover, Statement 16 adds ¢’ = (s);¢; (s), which is
an element of C3(n) since ¢ € C3(n —2s), and s € S. Thus, whatever Procedure
CreateSRestPa adds to C is an element of C3(n).

C3(n) C C3if C3(n) # @. Ps(n, S) may consist of two kinds of compositions.

* (1 = (n): This composition is added by Statement 9 if n € S.

o {clfirst(cy) = last(cy) = s € S\ {n}, f~(I"(c2)) € C3'"} (1 — 25)}: All of these
compositions are added by Statement 16.

Thus, every element of C ls,(n) is guaranteed to be generated by Procedure CreateS-
RestPa.

converted to ().

€3 ={()} ifand only if C3(n) = @.

The above two statements show that C3 = C3(n). It is immediate that, if C3(n) = @,
Procedure CreateSRestPa will generate no composition. Since 1 is assigned to G only
after adding compositions to Cj (by Statements 9 and 16), Statement 21 sets C3 = {()}
if C3(n) = @. On the other hand, C3 will not be equal to {()} if C5(n) # @ because
G = 1is executed after generating each composition.
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5. Designing the S-Restricted Random Number Generator

In this section, we propose an architecture for designing S-restricted RNGs. The archi-
tecture is based on parallel RNGs that generate multiple simultaneous random numbers.
While any kind of parallel RNGs can be used in the proposed architecture, we use parallel
RNGs constructed of parallel LFSRs to explain the design procedure. The rationale under-
lying this choice is that LFSRs (and parallel LFSRs) are simple devices with lightweight
implementations using a few flip-flops along with a few logical gates, the layout of which
is defined by a generating polynomial.

An LFSR L, (G) of degree n with generating polynomial G can be used to implement
an RNG R, (G) that periodically generates a sequence of 2" — 1 mutually different values
Cy(R) = ro,71,...,12n_3,1n_o provided that S%(L,(G)) # 000...00 [75]. In this case,
each state of £,(G) is considered as a random number generated by R, (G). We define
A(Ru(G)) = {ro,r1,...,rm_3,rm_p}. Moreover, we define the period length of R, (G) as
the length of the sequence Cy(R), and represent it |C, (R, (G))| = |[A(Ru(G))|.

For a positive integer number n and aset S C {1,2,.. .,2”‘1}, we define an (LFSR-
based) S-restricted RNG R3(G) as an RNG, for which A(R5(G)) = S. We refer to S as the
set of valid states for R3(G). Moreover, we refer to I(R3(G))) = {1,2,...,2" 1} \ S as the
set of invalid states of R3(G)).

A traditional LFSR-based RNG R,(G) is obviously incapable of serving as an S-
restricted RNG as it will generate some invalid outputs (outputs which are not valid
numeric codes assigned to the objects), and Cy(R(G)) will consist of alternate runs of
valid and invalid numbers (valid runs and invalid runs) unless S = {1,2,...,2" —1}.
Figure 8 compares R, (G) with R;(G)).

F F
[ VR1.1 VR1 1
VR11 L VR4 H
LVR1v1 VR1,v11
IRy | R
L IRq,ii1
" v
VR; 1 { VR; 4
v v
° °
® ®
: :
v ¥
{ VR 1 <| VR 1
IRy 1
IR, H
IRr,iIr
&
Traditional S-Restricted
LFSR-Based RNG LFSR-Based RNG

Figure 8. A comparison between traditional and S-restricted LFSR-based RNGs.

In Figure 8, valid runs (VRq, VRy, ..., VR,) and invalid runs (IR, IRy, ..., IR,) are
highlighted by blue and red colors, respectively. In this figure, vl; and il; represent the
length of the i*" valid run and that of the i invalid run, respectively. This figure shows
how invalid runs are bypassed by R;,(G)).

A parallel LFSR £},(G) with a sampling rate of j can bypass j — 1 consecutive states
generated by £},(G) in each clock cycle. Thus, a number of parallel LFSRs with different
degrees of parallelism can be used to bypass invalid runs with different lengths. In this
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section, we use this idea for the design of S-restricted RNGs. Figure 9 shows our proposed
architecture for the design of R5(G)).

4= ===" ¥ oo
(F1)(F2) <<« (Ful:
\___ Flip-Flops
[ — v

1-Parallel State
Transition Logic

Invalid Run Length
Calculation Logic

Enablers l H 3-Parallel State
Encoder Logic Transition Logic

Degree of MDP-Parallel State
Parallelism Transition Logic
1
Select
]

Multiplexer Logic
e —
Next Valid State

<

Figure 9. The proposed architecture for S-restricted LESR-based RNG.

As shown in Figure 9, the proposed architecture consists of a serial (1-parallel) LFSR
(£4(G)) and a set of parallel LESRs (£2(G), £3(G),...,LMIRL(G)), which share n flip-
flops along with an Invalid Run Length Calculation Logic ILCL) and a multiplexing logic,
which control the feedback loop. In this figure, MDP (Maximum Degree of Parallelism) is
calculated as MDP = MIRL + 1, and MIRL (Maximum Invalid Run Length) is calculated
as MIRL = Max{ily,ily,...,il,}. The architecture includes a j-parallel state transition logic
ifand only if Jv € {1,2,...,r} 1 il, = j.

In the architecture of Figure 9, each state transition logic circuit is fed by the outputs
of the flip-flops Fy, F,, . . ., F; (the current state of the circuit). In each clock cycle, the ILCL
generates (at most) MDP enabling signals (enablers), which we denote by eq, ey, ..., empp.
The signal e; will carry the logic value 1 if the current state of the circuit is a valid state.
Fori € {2,3,..., MDP}, the enabler e; will be active if the current state is the beginning of
an invalid run of length i — 1. The enablers are encoded to the proper degree of parallelism
using an encoding logic to provide proper select signals for the multiplexing logic. Finally,
we have the multiplexing logic Multiplexes among the outputs of the state transition logic
modules to feed the next valid state back into the flip-flops.

IR11,IRz4,...,1R, 1 can be used to design logical signals ey, e3, . . ., eppp, where e; (if
equal to 1) indicates that the RNG should bypass t — 1 invalid states. An encoder converts
these signals to proper select inputs for the multiplexer.

6. Case Study: Random Latin Squares of Order 4

In this section, we first present a method for assigning numerical codes to Latin squares
of an arbitrary order g. Afterwards, we design an S-restricted RNG that generates random
valid codes for Latin codes of order 4.

6.1. Encoding Latin Squares

A Latin square A of order g canbe modeled by (A1, Ay, ..., Ay), whereVi,j € {1,2,...,q} :
A(i) = A € T({1,2,...,q9}) A A € D(A)). Thus, the methods that are used for encoding per-
mutations [19] can be modified to encode Latin squares. In this paper, we modify Lehmer’s
encoding scheme [19] to assign numerical codes to Latin squares of degree 4. For every
EC{1,2,...,q},and every ¢ € 5, let us define (¢, Z) = [{x|x € EAx < }|. Lehmer’s
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encoding scheme assigns a numerical code 0 < H(y) < g!—1toeachy € I'({1,2,...,9})
on the basis of Equation (12),

M-

Il
—_

H(y) = ) (q =)' H(v(i),{L2,....9} \ {7()[0 < j < i}). (12)

As an example, consider H((3,1,2)) = 2! %2+ 1! %0+ 0! « 0 = 4. Now let us define
the total order < onT({1,2,...,9}) as V1,72 € T({L,2,...,9}) : 11 < 12 & H(m) <
H(72). Using the total order < onT'({1,2,...,q}), we define = on A; as VAj, Ay € Ay :
M=Aedie{ll.. g :(V1<i<i:A() =) AAa(i+1) <A(i+1)). Inour
proposed encoding scheme, the numerical code of each A € A, is calculated as shown in
Equation (13),

FA)=Hx[x e AgAx A} +1. (13)

The codes assigned to Latin squares of order 4 can be seen in Appendix A.

6.2. S-Restricted RNG for S = {F(A)|A € Ag}

The first step towards the design of an S-restricted RNG is to list the set S of valid
states, and to decide the size of the LFSRs (the number of flip-flops) accordingly. It is well
known that [A;| = 576. Therefore, using the method explained above, the elements of A4
can be encoded by the elements of S = {1,2,...,576}. Moreover, the size of each LFSR
should be [log576] = 10.

The second step is to decide the generating polynomial for the serial and parallel
LFSRs. There are 60 different primitive polynomials of degree 10 over GF(2). In this case
study, we have chosen G = %19 4+ x3 4 1 because it has the minimum number of non-zero
coefficients, and this reduces the number of gates required to implement the state transition
logic modules. One can obviously choose polynomials with more non-zero coefficients in
order to improve resistance against algebraic attacks.

Now we need to analyze the period of £19(G) to identify the beginning state and the
length of each invalid run to decide the set of sampling rates and design the corresponding
state transition logic modules. We have analyzed a whole period of £19(G) beginning
from the initial state 0000000001, and identified 221 invalid runs. These runs are shown
in the supplementary file. Runs of lengths 1 through 8 as well as 9 and 10 have been
identified in the period. The beginning states of the runs are shown in Table 2 along with
the corresponding run lengths. In Table 2, the columns labeled “L” show the run lengths,
and the ones labeled “Begin” show the beginning states of the runs.

Table 2. Run beginners.

Begin

580 608 834 656 596 706 752 686 694 848 602 726 654 632 640 578 720 598 650 738 760 588 836 610 728 630 688 666 742 584

612 832 582 626 732 638 674 744 622 646 854 642 736 700 684 842 658 740 862 680 618 730 758 604 696 702

644 592 594 724 710 600 668 676 704 664 692 648 616 614 850 660 708 590 718 860 698 750 712 620 838 624 716
1 844 852 714 754 764 856 670 858 662 652 840 628 606 682 746 762 766 672 586 722 756 634 734 690 748 846 636 678

585 749 653 641 577 589 665 757 637 685 645 725 705 621 669 593 733 597 761 717 649 721 845 697 849 693 737 601 661 833

2 857 765 837 677 753 673 613 841 605 689 625 581 617 709 729 609 701 861 853 681 657 629 741 633 745 713
747 739 859 643 635 651 851 731 587 843 619 627 835 667 715 603
723 755 699 691 763 595 707 683 659 611 579 675
599 615 679 583 663 631 647 695 743 727 711 759 839 855
L Begin Begin L Begin L Begin L Begin L Begin
623 591
5 ggg ;?; gg;, Z?); 7 703 8 767 9 - 10 639

847
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Now we can design the components of the S-restricted RNG in the form of black boxes.
These components are shown in Figure 10.
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Figure 10. The components of S-restricted RNG for generating random Latin squares of order 4.

In the next step, the state transition logic should be designed. This can be done using
the method presented in Section 4. Tables 3 and 4 show the logic expressions describing
the output of the state transition logic modules.

Table 3. Logic descriptions of the state transition logic modules in the S-restricted RNG for generating
random Latin squares of order 4 (Part 1).

j Equation
F(2) = F3(0), 2(2) = Fy(0), F;5(2) = F10(0)

) F4(2) = F(0) + F5(0), F5(2) = F2(0) + Fo(0)
Fs(2) = F5(0), F7(2) = F4(0), Fs(2) = F5(0)
Fy(2) = F5(0), F10(2) = F7(0),
F(3) = F7(0), 2(3) = F3(0), F5(3) = Fo(0)

3 Fy(3) = F10(0) + F7(0), F5(3) = F1(0) + F5(0)
Fe(3) = B(0) + F5(0), F7(3) = F5(0)
F3(3) = F4(0), F9(3) = F5(0), F10(3) = F5(0)
F(4) = F(0), 2(4) = F7(0), F5(4) = F3(0)

. Fy(4) = F5(0) + F¢(0), F5(4) = Fi0(0) + F7(0)
Fe(4) = F1(0) + F5(0), F;(4) = F(0) + Fo(0)
Fg(4) = F5(0), Fo(4) = F4(0), Fio(4) = F5(0)
F(5) = F5(0), 2(5) = Fs(0), F5(5) = F7(0)

5 Fy(5) = F3(0) + F5(0), F5(5) = Fo(0) + F6(0)
Fe(5) = F10(0) + F7(0), F7(5) = F1(0) + F3(0)
Fs(5) = F(0) + F9(0), Fo(5) = F3(0), F19(5) = F4(0)
F1(6) = F4(0), F2(6) = F5(0), F3(6) = Fs(0)
F4(6) = F;(0) + F4(0), F5(6) = F3(0) + F5(0)

6 Fe(6) = Fo(0) + F¢(0), F7(6) = Fi9(0) + F7(0)
Fg(6) = F1(0) + F5(0), Fo(6) = F>(0) + Fo(0)
Fio(6) = F5(0)
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Table 3. Cont.

j Equation
F(7) = F5(0), R2(7) = F4(0), F5(7) = F5(0)
F4(7) = F5(0) + F5(0), F5(7) = F7(0) + F4(0)
7 Fs(7) = F3(0) + F5(0), F7(7) = Fy(0) + F¢(0)
F3(7) = F10(0) + F7(0), Fo(7) = F1(0) + F3(0)
Fi0(7) = F2(0) + Fo(0)

Table 4. Logic descriptions of the state transition logic modules in the S-restricted RNG for generating
random Latin squares of order 4 (Part 2).

j Equation
F(8) = F2(0) + F5(0), F2(8) = F5(0), F5(8) = F4(0),
Fy(8) = F5(0) + F2(0) + F(0),

8 F5(8) = Fe(0) + F3(0), F6(8) = F7(0) + F4(0),
F7(8) = F3(0) + F5(0), F3(8) = Fo(0) + F5(0),
Fy(8) = F10(0) + F7(0), F10(8) = F1(0) + F3(0)
F(9) = F(0) + F(0),
FK(9) = R(0) + F5(0), F3(9) = F5(0),
F4(9) = E4(0) + F1(0) + F3(0),

9 F5(9) = F5(0) + F2(0) 4 F5(0),
Fs(9) = Fs(0) + F3(0), F7(9) = F7(0) + F4(0),
Fg(9) = F(0) + F5(0),
Fy(9) = Fy(0) + Fs(0)F10(9) = Fi0(0) + F7(0)
F(9) = F(0) + F(0), (9) = F2(0) + F5(0),
F3(9) = F5(0), F4(9) = F4(0) + F1(0) + F5(0),

0 F5(9) = F5(0) + K(0) + F(0),
Fe(9) = F6(0) + F5(0), F7(9) = F7(0) + F4(0),
Fg(9) = F(0) + F5(0),
Fo(9) = Fo(0) + Fe(0)F10(9) = F10(0) + F7(0)
F(11) = F(0) + F6(0), F2(11) = F19(0) + F7(0),
F5(11) = F(0) + F3(0),
F4(11) = £(0) + Fo(0) + Fo(0) + F6(0),

11 F5(11) = F3(0) + F19(0) + F7(0),
Fe(11) = F4(0) 4+ F1(0) + F(0),
F7(11) = F5(0) + F2(0) + Fo(0)Fg(11) = F4(0) + F3(0),
Fo(11) = F7(0) 4 F4(0), Fio(11) = F(0) + F5(0)

Now, let us design the ILCL. It can be designed according to the information given
in Table 2. As an example, to show how the ILCL is designed, let us consider the row
labeled “L = 6” in Table 2. The beginning states in this row can be represented as 10-digit
binary numbers by 1010011111, 1011011111, 1101011111 and 1001011111, respectively. This
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corresponds to the logic expression given by Equation (14) (In the rest of this section, we
simply use ‘F;" instead of ‘F;(0)" fori € {1,2,...,10}).

ey = [ FyF3E)FLFo FyFgFoFyo + Fy FyFs EyFLFo FyFg Fo Fyg

(14)
FyE,FyFyFLFFyFsFoFyo + Fy By FyFyFLF Fy Fy Fo Fi.

In Equation (14), + represents logical OR (to separate it from logical XOR or GF(2) ad-
dition). The logical expression in Equation (14) can be simplified as shown by Equation (15)
using standard logic function simplification methods:

ey = [ FyFsFLFoFyFgFoFyo + Fy FyFyFLFg Fy Fy Fo Fyo. (15)

Non-simplified logic expressions of the enablers are listed in the Supplementary File.
Simplified enabler expressions are shown in Table 5.

Table 5. Simplified logic expressions for enablers in the S-restricted RNG for generating random
Latin squares of order 4.

j Simplified Logic Expression

ez = FiFyF3F) t FEyFyFsF)y t FyFaFyEyFLF] ) + Fy FjFyFLFsFly t FLFyFyFLF,F)g +
FyF}F,FLFgF)y t Fy F{FyFLFyF),

3 e3 = FFjFsFyFig t FLFyFyFyFy t FyF3FFLF Fyg

4 ey = FiFyFsF4FoFy t FyFyFyFFoFyo + Fy FyFyFLFSFoFrg

5  es = FiFjFsF,FgFyFyg t FyFyFyF)FgFoFig t Fy FyFyFLF,FyFyFyg

6 s = FIFjFsF.F,FsFoFyg t FyFyEyFLFyFsFoFig t FyF4FyFLFLFsFgFoFig
7

8

9

e7 = FyF}F3FLFsF;FgFo Fig t Fy FyEyFLFs FFgFo i
eg = FiFyF3F}FsFsFyFgFoFig
eg = FyFjF3FyFsFgFyFsFoFyg

11 ey = FF}F,FyFsFsFyFsFyFyg

1 61:(621'631'641'651'661'671'681'691'611)/

The invalid runs and the enablers of the circuit designed in this section can be seen in
Appendixes B and C, respectively.

7. Conclusions and Further Works

In this paper, we unified the problems of random password generation, random
captcha generation and random permutation generation as well as several similar problems
into a generalized problem, which we call random object generation. The advantage of this
generalization is that every solution proposed for the generalized problem will work for
all the aforementioned problems. Moreover, we proposed a solution to the random object
generation problem via introducing the notion of S-restricted RNG, which generates random
numbers restricted to be drawn from a given set S. Our solution requires S to be the set of
numeric codes assigned to objects of a specific type. We demonstrated how S-restricted
RNGs can be constructed using parallel RNGs. We illustrated the construction procedure
using parallel LESRs. Moreover, we examined random generation of Latin squares as a
case study. The most critical limitation of our work is the dependence of the coding scheme,
and consequently the S-restricted RNG, on the set of target objects. This issue can be
addressed via further research on encoding schemes for different kinds of non-numerical
entities. Moreover, research can be continued by applying other types of parallel RNGs
or Non-Linear Feedback Shift Registers (NFSRs) to the construction of S-restricted RNGs.
Moreover, interested researchers can analyze the impact of the object encoding scheme
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as well as the LFSR generating polynomials on the performance and complexity of the
S-restricted RNGs proposed in this paper.
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Abbreviations

LFSR Linear Feedback Shift Register
Completely Automated Public CAPTCHA generation

Turing test to tell Computers and Humans Apart

RNG Random Number Generator

VLSI Very Large Scale Integration

CNF Conjunctive Normal Form

DNF Disjunctive Normal Form

ILCL Invalid Run Length Calculation Logic
MDP Maximum Degree of Parallelism
MIRL Maximum Invalid Run Length
NFSR Nonlinear Feedback Shift Register

Appendix A. Codes Assigned to Latin Squares of Order 4

Codes are separated from the corresponding Latin squares using “:”. Each Latin square
is represented as a permutation of permutations. Each permutation is denoted using a pair

7z

of “(” and “)”. Elements of each permutation are separated using “,”.

1: ((1,2,3,4),(2,1,4,3), (3,4,1,2), (4,3,2,1)), 2: ((1,2,3,4),(2,1,4,3), (3,4,2,1), (4,3,1,2))

3:((1,2,3,4),(2,1,4,3), (4,3,1,2), (3,4,2,1)), 4: ((1,2,3,4),(2,1,4,3), (4,3,2,1), (3,4,1,2))

5:((1,2,3,4),(3,1,4,2),(2,4,1,3), (4,3,2,1)), 6: ((1,2,3,4),(3,1,4,2), (4,3,2,1), (2,4,1,3))

7: ((1,2,3,4), (4,1,2,3),(2,3,4,1),(3,4,1,2)), 8 ((1,2,3,4), (4,1,2,3), (3,4,1,2), (2,3,4,1))

9: ((1,2,3,4),(2,3,4,1),(4,1,2,3), (3,4,1,2)), 10: ((1,2,3,4), (2,3,4,1), (3,4,1,2), (4,1,2,3))
11: ((1,2,3,4), (2,4,1,3), (3,1,4,2), (4,3,2,1)), 12: ((1,2,3,4), (2,4,1,3), (4,3,2,1), (3,1,4,2))
13: ((1,2,3,4), (3,4,1,2),(2,1,4,3), (4,3,2,1)), 14: ((1,2,3,4), (3,4,1,2), (4,1,2,3),(2,3,4,1))
15: ((1,2,3,4), (3,4,1,2), (2,3,4,1), (4,1,2,3)), 16: ((1,2,3,4), (3,4,1,2), (4,3,2,1), (2,1,4,3))
17: ((1,2,3,4), (3,4,2,1),(2,1,4,3), (4,3,1,2)), 18: ((1,2,3,4), (3,4,2,1), (4,3,1,2), (2,1,4,3))
19: ((1,2,3,4), (4,3,1,2),(2,1,4,3), (3,4,2,1)), 20: ((1,2,3,4), (4,3,1,2), (3,4,2,1), (2,1,4,3))
21: ((1,2,3,4), (4,3,2,1),(2,1,4,3), (3,4,1,2)), 22: ((1,2,3,4),(4,3,2,1),(3,1,4,2), (2,4,1,3))
23: ((1,2,3,4), (4,3,2,1),(2,4,1,3), (3,1,4,2)), 24: ((1,2,3,4), (4,3,2,1),(3,4,1,2),(2,1,4,3))
25: ((1,2,4,3),(2,1,3,4), (3,4,1,2), (4,3,2,1)), 26: ((1,2,4,3),(2,1,3,4), (3,4,2,1), (4,3,1,2))
27: ((1,2,4,3),(2,1,3,4), (4,3,1,2), (3,4,2,1)), 28: ((1,2,4,3),(2,1,3,4), (4,3,2,1), (3,4,1,2))
29: ((1,2,4,3),(3,1,2,4), (2,4,3,1), (4,3,1,2)), 30: ((1,2,4,3), (3,1,2,4), (4,3,1,2),(2,4,3,1))
31: ((1,2,4,3), (4,1,3,2),(2,3,1,4), (3,4,2,1)),32: ((1,2,4,3), (4,1,3,2), (3,4,2,1),(2,3,1,4))
33: ((1,2,4,3),(2,3,1,4), (4,1,3,2), (3,4,2,1)), 34: ((1,2,4,3),(2,3,1,4), (3,4,2,1), (4,1,3,2))
35: ((1,2,4,3),(2,4,3,1),(3,1,2,4), (4,3,1,2)), 36: ((1,2,4,3),(2,4,3,1),(4,3,1,2),(3,1,2,4))
37: ((1,2,4,3),(3,4,1,2),(2,1,3,4), (4,3,2,1)), 38: ((1,2,4,3), (3,4,1,2), (4,3,2,1),(2,1,3,4))
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39: ((1,2,4,3),(3,4,2,1),(2,1,3,4), (4,3,1,2)), 40: ((1,2,4,3), (3,4,2,1),(4,1,3,2),(2,3,1,4))
41: ((1,2,4,3),(3,4,2,1),(2,3,1,4), (4,1,3,2)), 42: ((1,2,4,3),(3,4,2,1), (4,3,1,2),(2,1,3,4))
43:((1,2,4,3),(4,3,1,2),(2,1,3,4), (3,4,2,1)), 44: ((1,2,4,3),(4,3,1,2), (3,1,2,4), (2,4,3,1))
45: ((1,2,4,3),(4,3,1,2), (2,4,3,1), (3,1,2,4)), 46: ((1,2,4,3),(4,3,1,2), (3,4,2,1),(2,1,3,4))
47: ((1,2,4,3),(4,3,2,1),(2,1,3,4), (3,4,1,2)), 48: ((1,2,4,3),(4,3,2,1),(3,4,1,2),(2,1,3,4))
49: ((2,1,3,4),(1,2,4,3),(3,4,1,2), (4,3,2,1)), 50: ((2,1,3,4),(1,2,4,3), (3,4,2,1), (4,3,1,2))
51: ((2,1,3,4), (1,2,4,3), (4,3,1,2), (3,4,2,1)), 52: ((2,1,3,4), (1,2,4,3), (4,3,2,1), (3,4,1,2))
53: ((2,1,3,4),(1,3,4,2), (4,2,1,3), (3,4,2,1)), 54: ((2,1,3,4),(1,3,4,2), (3,4,2,1), (4,2,1,3))
55: ((2,1,3,4),(1,4,2,3), (3,2,4,1), (4,3,1,2)), 56: ((2,1,3,4), (1,4,2,3),(4,3,1,2),(3,2,4,1))
57: ((2,1,3,4), (3,2,4,1),(1,4,2,3), (4,3,1,2)), 58: ((2,1,3,4), (3,2,4,1), (4,3,1,2),(1,4,2,3))
59: ((2,1,3,4),(4,2,1,3),(1,3,4,2), (3,4,2,1)), 60: ((2,1,3,4),(4,2,1,3), (3,4,2,1), (1,3,4,2))
61: ((2,1,3,4),(3,4,1,2),(1,2,4,3), (4,3,2,1)), 62: ((2,1,3,4), (3,4,1,2), (4,3,2,1),(1,2,4,3))
63: ((2,1,3,4),(3,4,2,1),(1,2,4,3), (4,3,1,2)), 64: ((2,1,3,4), (3,4,2,1),(1,3,4,2), (4,2,1,3))
65: ((2,1,3,4), (3,4,2,1), (4,2,1,3),(1,3,4,2)), 66: ((2,1,3,4), (3,4,2,1),(4,3,1,2),(1,2,4,3))
67: ((2,1,3,4), (4,3,1,2),(1,2,4,3), (3,4,2,1)), 68: ((2,1,3,4), (4,3,1,2),(1,4,2,3),(3,2,4,1))
69: ((2,1,3,4), (4,3,1,2), (3,2,4,1),(1,4,2,3)), 70: ((2,1,3,4), (4,3,1,2), (3,4,2,1),(1,2,4,3))
71: ((2,1,3,4), (4,3,2,1),(1,2,4,3), (3,4,1,2)), 72: ((2,1,3,4), (4,3,2,1),(3,4,1,2),(1,2,4,3))
73: ((2,1,4,3),(1,2,3,4), (3,4,1,2), (4,3,2,1)), 74: ((2,1,4,3),(1,2,3,4), (3,4,2,1), (4,3,1,2))
75: ((2,1,4,3),(1,2,3,4), (4,3,1,2), (3,4,2,1)), 76: ((2,1,4,3), (1,2,3,4), (4,3,2,1), (3,4,1,2))
77: ((2,1,4,3), (1,3,2,4), (4,2,3,1), (3,4,1,2)), 78: ((2,1,4,3), (1,3,2,4), (3,4,1,2), (4,2,3,1))
79: ((2,1,4,3),(1,4,3,2), (3,2,1,4), (4,3,2,1)), 80: ((2,1,4,3), (1,4,3,2), (4,3,2,1), (3,2,1,4))
81: ((2,1,4,3),(3,2,1,4), (1,4,3,2), (4,3,2,1)), 82: ((2,1,4,3), (3,2,1,4), (4,3,2,1), (1,4,3,2))
83: ((2,1,4,3), (4,2,3,1),(1,3,2,4), (3,4,1,2)), 84: ((2,1,4,3), (4,2,3,1),(3,4,1,2),(1,3,2,4))
85: ((2,1,4,3),(3,4,1,2),(1,2,3,4), (4,3,2,1)), 86: ((2,1,4,3), (3,4,1,2),(1,3,2,4), (4,2,3,1))
87: ((2,1,4,3),(3,4,1,2), (4,2,3,1),(1,3,2,4)), 88: ((2,1,4,3), (3,4,1,2), (4,3,2,1),(1,2,3,4))
89: ((2,1,4,3),(3,4,2,1),(1,2,3,4), (4,3,1,2)),90: ((2,1,4,3), (3,4,2,1), (4,3,1,2),(1,2,3,4))
91: ((2,1,4,3), (4,3,1,2),(1,2,3,4), (3,4,2,1)),92: ((2,1,4,3), (4,3,1,2), (3,4,2,1),(1,2,3,4))
93: ((2,1,4,3), (4,3,2,1),(1,2,3,4), (3,4,1,2)), 94: ((2,1,4,3), (4,3,2,1),(1,4,3,2),(3,2,1,4))
95: ((2,1,4,3), (4,3,2,1),(3,2,1,4), (1,4,3,2)),96: ((2,1,4,3), (4,3,2,1),(3,4,1,2),(1,2,3,4))
97: ((1,3,2,4), (2,1,4,3), (4,2,3,1), (3,4,1,2)),98: ((1,3,2,4),(2,1,4,3), (3,4,1,2), (4,2,3,1))
99: ((1,3,2,4), (3,1,4,2), (2,4,1,3), (4,2,3,1)), 10 0 ((1,3,2,4),(3,1,4,2),(2,4,3,1), (4,2,1,3))
101: ((1,3,2,4), (3,1,4,2), (4,2,1,3),(2,4,3,1)),102: ((1,3,2,4), (3,1,4,2), (4,2,3,1),(2,4,1,3))
103: ((1,3,2,4), (4,1,3,2),(3,2,4,1),(2,4,1,3)), 104: ((1,3,2,4), (4,1,3,2),(2,4,1,3),(3,2,4,1))
105: ((1,3,2,4), (3,2,4,1),(4,1,3,2),(2,4,1,3)),106: ((1,3,2,4), (3,2,4,1), (2,4,1,3), (4,1,3,2))
107: ((1,3,2,4),(2,4,1,3), (3,1,4,2), (4,2,3,1)),108: ((1,3,2,4), (2,4,1,3), (4,1,3,2),(3,2,4,1))
109: ((1,3,2,4),(2,4,1,3),(3,2,4,1), (4,1,3,2)), 110: ((1,3,2,4), (2,4,1,3), (4,2,3,1),(3,1,4,2))
111: ((1,3,2,4), (2,4,3,1),(3,1,4,2), (4,2,1,3)), 112: ((1,3,2,4), (2,4,3,1), (4,2,1,3),(3,1,4,2))
113: ((1,3,2,4), (4,2,1,3), (3,1,4,2), (2,4,3,1)), 114: ((1,3,2,4), (4,2,1,3),(2,4,3,1),(3,1,4,2))
115: ((1,3,2,4), (4,2,3,1),(2,1,4,3), (3,4,1,2)), 116: ((1,3,2,4), (4,2,3,1),(3,1,4,2),(2,4,1,3))
117: ((1,3,2,4), (4,2,3,1),(2,4,1,3),(3,1,4,2)), 118: ((1,3,2,4), (4,2,3,1), (3,4,1,2),(2,1,4,3))
119: ((1,3,2,4), (3,4,1,2),(2,1,4,3), (4,2,3,1)), 120: ((1,3,2,4), (3,4,1,2), (4,2,3,1),(2,1,4,3))
121: ((1,3,4,2),(2,1,3,4), (4,2,1,3), (3,4,2,1)),122: ((1,3,4,2),(2,1,3,4), (3,4,2,1), (4,2,1,3))
123: ((1,3,4,2),(3,1,2,4),(2,4,1,3), (4,2,3,1)), 124: ((1,3,4,2), (3,1,2,4),(2,4,3,1), (4,2,1,3))
125: ((1,3,4,2),(3,1,2,4), (4,2,1,3), (2,4,3,1)), 126: ((1,3,4,2), (3,1,2,4), (4,2,3,1),(2,4,1,3))
127: ((1,3,4,2), (4,1,2,3), (3,2,1,4), (2,4,3,1)),128: ((1,3,4,2), (4,1,2,3),(2,4,3,1),(3,2,1,4))
129: ((1,3,4,2),(3,2,1,4), (4,1,2,3),(2,4,3,1)), 130: ((1,3,4,2), (3,2,1,4), (2,4,3,1), (4,1,2,3))
131: ((1,3,4,2),(2,4,1,3),(3,1,2,4), (4,2,3,1)),132: ((1,3,4,2), (2,4,1,3), (4,2,3,1),(3,1,2,4))
133: ((1,3,4,2),(2,4,3,1),(3,1,2,4), (4,2,1,3)), 134: ((1,3,4,2),(2,4,3,1), (4,1,2,3),(3,2,1,4))
135: ((1,3,4,2),(2,4,3,1),(3,2,1,4), (4,1,2,3)),136: ((1,3,4,2), (2,4,3,1), (4,2,1,3),(3,1,2,4))
137: ((1,3,4,2), (4,2,1,3),(2,1,3,4), (3,4,2,1)),138: ((1,3,4,2), (4,2,1,3),(3,1,2,4), (2,4,3,1))
139: ((1,3,4,2), (4,2,1,3),(2,4,3,1),(3,1,2,4)), 140: ((1,3,4,2), (4,2,1,3), (3,4,2,1),(2,1,3,4))
141: ((1,3,4,2), (4,2,3,1),(3,1,2,4), (2,4,1,3)), 142: ((1,3,4,2), (4,2,3,1),(2,4,1,3),(3,1,2,4))
143: ((1,3,4,2),(3,4,2,1),(2,1,3,4), (4,2,1,3)), 144: ((1,3,4,2), (3,4,2,1), (4,2,1,3),(2,1,3,4))
145: ((3,1,2,4),(1,2,4,3),(2,4,3,1), (4,3,1,2)), 146: ((3,1,2,4),(1,2,4,3), (4,3,1,2),(2,4,3,1))



Entropy 2022, 24, 928

147:
149:
151:
153:
155:
157:
159:
161:
163:
165:
167:
169:
171:
173:
175:
177:
179:
181:
183:
185:
187:
189:
191:
193:
195:
197:
199:
201:
203:
205:
207:
209:
211:
213:
215:
217:
219:
221:
223:
225:
227:
229:
231:
233:
235:
237:
239:
241:
243:
245:
247:
249:
251:
253:

((
(
((
((
(
((
((
({
(
((
((
(
((
((
(
((
((
({
(
((
((
({
((
((
({
((
(
({
(
(
(
((
(
(
((
(
((
({
(
(
({
(
((
(
(
(
(
((
(
((
({
(
((
{

3,1,2,4),(1,3,4,2),(2,4,1,3),(4,2,3,1
3,1,2,4),(1,3,4,2),(4,2,1,3),(2,4,3,1
3,1,2,4),(1,4,3,2),(2,3,4,1),(4,2,1,3
3,1,2,4),(2,3,4,1),(1,4,3,2),(4,2,1,3
3,1,2,4),(2,4,1,3),(1,3,4,2),(4,2,3,1
3,1,2,4),(2,4,3,1),(1,2,4,3),(4,3,1,2
3,1,2,4),(2,4,3,1),(4,2,1,3),(1,3,4,2
3,1,2,4),(4,2,1,3),(1,3,4,2),(2,4,3,1
3,1,2,4),(4,2,1,3),(2,3,4,1), (1,4,3,2
3,1,2,4),(4,2,3,1),(1,3,4,2),(2,4,1,3
3,1,2,4),(4,3,1,2),(1,2,4,3),(2,4,3,1
3,1,4,2),(1,2,3,4),(2,4,1,3),(4,3,2,1

( , 148:
(
{
{
(
(
{
(
(
{
2
3,1,4,2),(1,3,2,4),(2,4,1,3), (4,2,3,1
{
(
{
{
(
{
{
(
(
{
(
(

, 150:
,152:
,154:
, 156:
, 158:
, 160:
,162:
,164:
, 166:
, 168:
,170:
,172:
,174:
,176:
L 178:
, 180:
,182:
,184:
,186:
, 188:
, 190:
,192:
,194:
, 196:
,198:

)
)
)
)
)
)
)
)
)
)
)
|
3,1,4,2),(1,3,2,4),(4,2,1,3),(2,4,3,1))
)
)
)
)
)
)
)
)
)
)
)
)
), 200:
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

A ) ) )
A A ) )
) A ) )
A A ) )
) A ) )
A A ) )
A A ) )
A A ) )
) A ) )
A A ) )
A A ) )
) A ) )
) A ) )
) ) ) )
3,1,4,2),(1,4,2,3),(2,3,1,4), (4,2,3,1)
3,1,4,2),(2,3,1,4),(1,4,2,3), (4,2,3,1)
3,1,4,2),(2,4,1,3),(1,2,3,4), (4,3,2,1)
3,1,4,2),(2,4,1,3), (4,2,3,1),(1,3,2,4)
3,1,4,2),(2,4,3,1),(1,3,2,4), (4,2,1,3)
3,1,4,2),(4,2,1,3),(1,3,2,4),(2,4,3,1)
3,1,4,2),(4,2,3,1),(1,3,2,4),(2,4,1,3)
3,1,4,2),(4,2,3,1),(2,3,1,4),(1,4,2,3)
3,1,4,2),(4,3,2,1),(1,2,3,4),(2,4,1,3)
1,4,2,3),(2,1,3,4), (3,2,4,1), (4,3,1,2)
1,4,2,3),(3,1,4,2),(2,3,1,4), (4,2,3,1)
1,4,2,3),(4,1,3,2),(2,3,1,4),(3,2,4,1)
1,4,2,3),(4,1,3,2),(3,2,1,4), (2,3,4,1)
1,4,2,3),(2,3,1,4),(3,1,4,2), (4,2,3,1)), 202:
) A ) )
A A ) )
) A ) )
A A ) )
A A ) )
) A ) )
) A ) )
) A ) )
A ) ) )
) A ) )
A A ) )
A A ) )
) A ) )
) A ) )
A A ) )
) ) ) )
A A ) )
) A ) )
) ) ) )
A A ) )
) A ) )
A A ) )
) A ) )
) A ) )
A A ) )
A A ) )

1,4,2,3),(2,3,1,4),3,2,4,1),(4,1,3,2 04:

4

1,4,2,3),(2,3,4,1),(4,1,3,2),(3,2,1,4 06:

7

1,4,2,3),(3,2,1,4),(4,1,3,2),(2,3,4,1)), 208:
1,4,2,3),(3,2,4,1),(2,1,3,4),(4,3,1,2 0:

4

1,4,2,3),3,2,4,1),(2,3,1,4),(4,1,3,2

7

1,4,2,3),(4,2,3,1),(3,1,4,2),(2,3,1,4

7

1,4,2,3),(4,3,1,2),(2,1,3,4),(3,2,4,1)),

1,4,3,2),2,1,4,3),(3,2,1,4),(4,3,2,1
1,4,3,2),(3,1,2,4),(2,3,4,1),(4,2,1,3

18:

4

20:

7

1,4,3,2),(4,1,2,3),(2,3,1,4),(3,2,4,1 22:

7

1,4,3,2),(4,1,2,3),(3,2,1,4),(2,3,4,1

{
{
(
(
{
(
(
{
(
(
{
{
(
{ 24:
1,4,3,2),(2,3,1,4),(4,1,2,3),(3,2,4,1

(

(

{

(

(

{

(

(

(

{

(

(

{

{

2
2
20
21
212
214
216
2
2
2

)2
, 226

1,4,3,2),(2,3,4,1),(3,1,2,4), (4,2,1,3)), 228:

1,4,3,2),(2,3,4,1),(3,2,1,4), (4,1,2,3)), 2

1,4,3,2),(3,2,1,4),(2,1,4,3), (4,3,2,1)), 2

1,4,3,2),(3,2,1,4),(2,3,4,1), (4,1,2,3)), 2

1,4,3,2),(3,2,4,1),(4,1,2,3), (2,3,1,4)), 2

1,4,3,2),(4,2,1,3),(3,1,2,4), (2,3,4,1)), 2

1,4,3,2),(4,3,2,1),(2,1,4,3), (3,2,1,4)), 2

4,1,2,3),(1,2,3,4,(2,3,4,1),(3,4,1,2)), 2

4,1,2,3),(1,3,4,2),(3,2,1,4),(2,4,3,1)), 2

4,1,2,3),(1,4,3,2),(2,3,1,4),(3,2,4,1)), 2

4,1,2,3),(1,4,3,2),(3,2,1,4),(2,3,4,1)), 2

4,1,2,3),(2,3,1,4),(1,4,3,2),(3,2,4,1)), 2

4,1,2,3),(2,3,4,1),(1,2,3,4),(3,4,1,2)), 2

4,1,2,3),(2,3,4,1), (3,2,1,4), (1,4,3,2)), 2

30:
32:
34:
36:
38:
40:
42:
44:
46:
48:
50:
52:
54:

4

7

7

7

4

7

7

4

7

7

7

7

7

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
{
(
{
{
(
H
o
6: (
(
(
(
(
(
{
(
(
{
(
(
(
(
(
(
{
(
(
{

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

3,1,2,4),(1,3,4,2),(2,4,3,1),(4,2,1,3
3,1,2,4),(1,3,4,2),(4,2,3,1),(2,4,1,3
3,1,2,4),(1,4,3,2), (4,2,1,3), (2,3,4,1
3,1,2,4),(2,3,4,1),(4,2,1,3),(1,4,3,2
3,1,2,4),(2,4,1,3), (4,2,3,1),(1,3,4,2
3,1,2,4),(2,4,3,1),(1,3,4,2), (4,2,1,3
3,1,2,4),(2,4,3,1),(4,3,1,2),(1,2,4,3
3,1,2,4),(4,2,1,3),(1,4,3,2),(2,3,4,1
3,1,2,4),(4,2,1,3),(2,4,3,1),(1,3,4,2
3,1,2,4),(4,2,3,1),(2,4,1,3),(1,3,4,2
3,1,2,4),(4,3,1,2),(2,4,3,1),(1,2,4,3
3,1,4,2),(1,2,3,4),(4,3,2,1),(2,4,1,3
3,1,4,2),(1,3,2,4),(2,4,3,1), (4,2,1,3
3,1,4,2),(1,3,2,4),(4,2,3,1),(2,4,1,3
3,1,4,2),(1,4,2,3),(4,2,3,1),(2,3,1,4
3,1,4,2),(2,3,1,4), (4,2,3,1),(1,4,2,3
3,1,4,2),(2,4,1,3),(1,3,2,4), (4,2,3,1
3,1,4,2),(2,4,1,3), (4,3,2,1),(1,2,3,4
3,1,4,2),(2,4,3,1),(4,2,1,3),(1,3,2,4
3,1,4,2),(4,2,1,3),(2,4,3,1),(1,3,2,4
3,1,4,2),(4,2,3,1),(1,4,2,3),(2,3,1,4
3,1,4,2),(4,2,3,1),(2,4,1,3),(1,3,2,4
3,1,4,2),(4,3,2,1),(2,4,1,3),(1,2,3,4
1,4,2,3),(2,1,3,4),(4,3,1,2),(3,2,4,1
1,4,2,3),(3,1,4,2),(4,2,3,1),(2,3,1,4
1,4,2,3),(4,1,3,2),(2,3,4,1),(3,2,1,4
1,4,2,3),(4,1,3,2),(3,2,4,1),(2,3,1,4
1,4,2,3),(2,3,1,4),(4,1,3,2),(3,2,4,1

A ) )
1,4,2,3),(2,3,4,1),(3,2,1,4), (4,1,3,2
1,4,2,3),(3,2,1,4),(2,3,4,1), (4,1,3,2
1,4,2,3),(3,2,4,1),(4,1,3,2),(2,3,1,4
1,4,2,3),(3,2,4,1),(4,3,1,2),(2,1,3,4
1,4,2,3),(4,2,3,1),(2,3,1,4),(3,1,4,2
1,4,2,3),(4,3,1,2),(3,2,4,1),(2,1,3,4
1,4,3,2),(2,1,4,3),(4,3,2,1),(3,2,1,4
1,4,3,2),(3,1,2,4),(4,2,1,3),(2,3,4,1
1,4,3,2),(4,1,2,3),(2,3,4,1),(3,2,1,4
1,4,3,2),(4,1,2,3),(3,2,4,1),(2,3,1,4
1,4,3,2),(2,3,1,4),(3,2,4,1),(4,1,2,3
1,4,3,2),(2,3,4,1),(4,1,2,3),(3,2,1,4
1,4,3,2),(2,3,4,1),(4,2,1,3),(3,1,2,4
1,4,3,2),(3,2,1,4),(4,1,2,3),(2,3,4,1
1,4,3,2),(3,2,1,4),(4,3,2,1),(2,1,4,3
1,4,3,2),(3,2,4,1),(2,3,1,4),(4,1,2,3
1,4,3,2),(4,2,1,3),(2,3,4,1),(3,1,2,4
1,4,3,2),(4,3,2,1),(3,2,1,4),(2,1,4,3
4,1,2,3),(1,2,3,4), (3,4,1,2), (2,3,4,1
4,1,2,3),(1,3,4,2),(2,4,3,1),(3,2,1,4
4,1,2,3),(1,4,3,2),(2,3,4,1),(3,2,1,4
4,1,2,3),(1,4,3,2), (3,2,4,1),(2,3,1,4
4,1,2,3),(2,3,1,4), (3,2,4,1),(1,4,3,2
4,1,2,3),(2,3,4,1),(1,4,3,2),(3,2,1,4

A ) )

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
{
(
(
(
(
(
(
{
(
<<
1,4,2,3),(2,3,1,4),(4,2,3,1), (3,1,4,2
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
E
4,1,2,3),(2,3,4,1),(3,4,1,2),(1,2,3,4

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)



Entropy 2022, 24, 928 25 of 33

255: ((4,1,2,3),(3,2,1,4), (1,3,4,2), (2,4,3,1)), 256: ((4,1,2,3),(3,2,1,4), (1,4,3,2), (2,3,4,1))
257: ((4,1,2,3),(3,2,1,4), (2,3,4,1), (1,4,3,2)),258: ((4,1,2,3),(3,2,1,4), (2,4,3,1),(1,3,4,2))
259: ((4,1,2,3),(3,2,4,1),(1,4,3,2),(2,3,1,4)),260: ((4,1,2,3),(3,2,4,1),(2,3,1,4), (1,4,3,2))
261: ((4,1,2,3),(2,4,3,1),(1,3,4,2),(3,2,1,4)),262: ((4,1,2,3),(2,4,3,1),(3,2,1,4), (1,3,4,2))
263: ((4,1,2,3),(3,4,1,2), (1,2,3,4), (2,3,4,1)), 264: ((4,1,2,3),(3,4,1,2), (2,3,4,1),(1,2,3,4))
265: ((4,1,3,2),(1,2,4,3),(2,3,1,4), (3,4,2,1)), 266: ((4,1,3,2),(1,2,4,3), (3,4,2,1), (2,3,1,4))
267: ((4,1,3,2),(1,3,2,4), (3,2,4,1),(2,4,1,3)),268: ((4,1,3,2),(1,3,2,4),(2,4,1,3),(3,2,4,1))
269: ((4,1,3,2),(1,4,2,3), (2,3,1,4), (3,2,4,1)), 270: ((4,1,3,2), (1,4,2,3), (2,3,4,1), (3,2,1,4))
271: ((4,1,3,2),(1,4,2,3), (3,2,1,4), (2,3,4,1)), 272: ((4,1,3,2), (1,4,2,3), (3,2,4,1), (2,3,1,4))
273: ((4,1,3,2),(2,3,1,4), (1,2,4,3), (3,4,2,1)), 274: ((4,1,3,2),(2,3,1,4),(1,4,2,3),(3,2,4,1))
275: ((4,1,3,2),(2,3,1,4), (3,2,4,1), (1,4,2,3)),276: ((4,1,3,2), (2,3,1,4), (3,4,2,1),(1,2,4,3))
277: ((4,1,3,2),(2,3,4,1), (1,4,2,3), (3,2,1,4)), 278: ((4,1,3,2),(2,3,4,1), (3,2,1,4), (1,4,2,3))
279: ((4,1,3,2), (3,2,1,4), (1,4,2,3),(2,3,4,1)),280: ((4,1,3,2),(3,2,1,4), (2,3,4,1), (1,4,2,3))
281: ((4,1,3,2),(3,2,4,1), (1,3,2,4), (2,4,1,3)),282: ((4,1,3,2), (3,2,4,1), (1,4,2,3), (2,3,1,4))
283: ((4,1,3,2),(3,2,4,1),(2,3,1,4), (1,4,2,3)), 284: ((4,1,3,2), (3,2,4,1),(2,4,1,3),(1,3,2,4))
285: ((4,1,3,2),(2,4,1,3), (1,3,2,4), (3,2,4,1)), 286: ((4,1,3,2),(2,4,1,3), (3,2,4,1),(1,3,2,4))
287: ((4,1,3,2), (3,4,2,1),(1,2,4,3),(2,3,1,4)),288: ((4,1,3,2), (3,4,2,1),(2,3,1,4), (1,2,4,3))
289: ((2,3,1,4),(1,2,4,3), (4,1,3,2), (3,4,2,1)),290: ((2,3,1,4), (1,2,4,3), (3,4,2,1), (4,1,3,2))
291: ((2,3,1,4),(3,1,4,2), (1,4,2,3), (4,2,3,1)),292: ((2,3,1,4), (3,1,4,2), (4,2,3,1),(1,4,2,3))
293: ((2,3,1,4), (1,4,2,3), (3,1,4,2), (4,2,3,1)),294: ((2,3,1,4), (1,4,2,3), (4,1,3,2),(3,2,4,1))
295: ((2,3,1,4),(1,4,2,3), (3,2,4,1), (4,1,3,2)),296: ((2,3,1,4), (1,4,2,3), (4,2,3,1),(3,1,4,2))
297: ((2,3,1,4),(1,4,3,2), (4,1,2,3), (3,2,4,1)),298: ((2,3,1,4), (1,4,3,2), (3,2,4,1), (4,1,2,3))
299: ((2,3,1,4), (4,1,2,3),(1,4,3,2),(3,2,4,1)),300: ((2,3,1,4), (4,1,2,3),(3,2,4,1), (1,4,3,2))
301: ((2,3,1,4), (4,1,3,2),(1,2,4,3), (3,4,2,1)),302: ((2,3,1,4), (4,1,3,2),(1,4,2,3),(3,2,4,1))
303: ((2,3,1,4), (4,1,3,2), (3,2,4,1),(1,4,2,3)),304: ((2,3,1,4), (4,1,3,2), (3,4,2,1), (1,2,4,3))
305: ((2,3,1,4),(3,2,4,1),(1,4,2,3), (4,1,3,2)),306: ((2,3,1,4),(3,2,4,1),(1,4,3,2), (4,1,2,3))
307: ((2,3,1,4), (3,2,4,1), (4,1,2,3),(1,4,3,2)),308: ((2,3,1,4), (3,2,4,1), (4,1,3,2), (1,4,2,3))
309: ((2,3,1,4), (4,2,3,1),(3,1,4,2), (1,4,2,3)),310: ((2,3,1,4), (4,2,3,1),(1,4,2,3),(3,1,4,2))
311: ((2,3,1,4), (3,4,2,1),(1,2,4,3), (4,1,3,2)),312: ((2,3,1,4), (3,4,2,1), (4,1,3,2), (1,2,4,3))
313: ((2,3,4,1),(1,2,3,4), (4,1,2,3), (3,4,1,2)), 314: ((2,3,4,1),(1,2,3,4), (3,4,1,2), (4,1,2,3))
315: ((2,3,4,1),(3,1,2,4), (1,4,3,2), (4,2,1,3)), 316: ((2,3,4,1), (3,1,2,4), (4,2,1,3), (1,4,3,2))
317: ((2,3,4,1), (1,4,2,3), (4,1,3,2),(3,2,1,4)), 318: ((2,3,4,1),(1,4,2,3), (3,2,1,4), (4,1,3,2))
319: ((2,3,4,1),(1,4,3,2),(3,1,2,4), (4,2,1,3)),320: ((2,3,4,1),(1,4,3,2), (4,1,2,3),(3,2,1,4))
321: ((2,3,4,1), (1,4,3,2), (3,2,1,4), (4,1,2,3)),322: ((2,3,4,1),(1,4,3,2), (4,2,1,3),(3,1,2,4))
323: ((2,3,4,1), (4,1,2,3),(1,2,3,4), (3,4,1,2)), 324: ((2,3,4,1), (4,1,2,3),(1,4,3,2),(3,2,1,4))
325: ((2,3,4,1), (4,1,2,3),(3,2,1,4), (1,4,3,2)),326: ((2,3,4,1), (4,1,2,3), (3,4,1,2), (1,2,3,4))
327: ((2,3,4,1), (4,1,3,2),(1,4,2,3),(3,2,1,4)),328: ((2,3,4,1), (4,1,3,2),(3,2,1,4), (1,4,2,3))
329: ((2,3,4,1),(3,2,1,4), (1,4,2,3), (4,1,3,2)), 330: ((2,3,4,1),(3,2,1,4),(1,4,3,2), (4,1,2,3))
331: ((2,3,4,1), (3,2,1,4), (4,1,2,3),(1,4,3,2)),332: ((2,3,4,1),(3,2,1,4), (4,1,3,2), (1,4,2,3))
333: ((2,3,4,1), (4,2,1,3), (3,1,2,4), (1,4,3,2)), 334: ((2,3,4,1), (4,2,1,3),(1,4,3,2),(3,1,2,4))
335: ((2,3,4,1),(3,4,1,2),(1,2,3,4), (4,1,2,3)), 336: ((2,3,4,1),(3,4,1,2), (4,1,2,3),(1,2,3,4))
337: ((3,2,1,4),(2,1,4,3), (1,4,3,2), (4,3,2,1)), 338: ((3,2,1,4), (2,1,4,3), (4,3,2,1), (1,4,3,2))
339: ((3,2,1,4), (1,3,4,2), (4,1,2,3), (2,4,3,1)), 340: ((3,2,1,4), (1,3,4,2),(2,4,3,1), (4,1,2,3))
341: ((3,2,1,4), (1,4,2,3), (4,1,3,2),(2,3,4,1)), 342: ((3,2,1,4), (1,4,2,3), (2,3,4,1), (4,1,3,2))
343: ((3,2,1,4), (1,4,3,2),(2,1,4,3), (4,3,2,1)), 344: ((3,2,1,4), (1,4,3,2), (4,1,2,3),(2,3,4,1))
345: ((3,2,1,4), (1,4,3,2),(2,3,4,1),(4,1,2,3)), 346: ((3,2,1,4), (1,4,3,2),(4,3,2,1),(2,1,4,3))
347: ((3,2,1,4), (4,1,2,3), (1,3,4,2), (2,4,3,1)), 348: ((3,2,1,4), (4,1,2,3), (1,4,3,2),(2,3,4,1))
349: ((3,2,1,4), (4,1,2,3),(2,3,4,1),(1,4,3,2)), 350: ((3,2,1,4), (4,1,2,3), (2,4,3,1), (1,3,4,2))
351: ((3,2,1,4), (4,1,3,2),(1,4,2,3),(2,3,4,1)),352: ((3,2,1,4), (4,1,3,2),(2,3,4,1), (1,4,2,3))
353: ((3,2,1,4),(2,3,4,1),(1,4,2,3), (4,1,3,2)), 354: ((3,2,1,4), (2,3,4,1),(1,4,3,2), (4,1,2,3))
355: ((3,2,1,4), (2,3,4,1), (4,1,2,3),(1,4,3,2)), 356: ((3,2,1,4), (2,3,4,1), (4,1,3,2), (1,4,2,3))
357: ((3,2,1,4),(2,4,3,1),(1,3,4,2), (4,1,2,3)),358: ((3,2,1,4), (2,4,3,1),(4,1,2,3), (1,3,4,2))
359: ((3,2,1,4), (4,3,2,1),(2,1,4,3),(1,4,3,2)), 360: ((3,2,1,4), (4,3,2,1),(1,4,3,2),(2,1,4,3))
361: ((3,2,4,1),(2,1,3,4), (1,4,2,3), (4,3,1,2)), 362: ((3,2,4,1),(2,1,3,4), (4,3,1,2), (1,4,2,3))
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4,2,3,1),(3,1,4,2),(1,3,2,4),(2,4,1,3
4,2,3,1),¢3,1,4,2),(2,3,1,4),(1,4,2,3

4,2,3,1),(3,1,4,2),(1,4,2,3),(2,3,1,4
4,2,3,1),(3,1,4,2),(2,4,1,3),(1,3,2,4

363: ((3,2,4,1),(1,3,2,4), (4,1,3,2), (2,4,1,3)), 364: ((3,2,4,1),(1,3,2,4),(2,4,1,3), (4,1,3,2))
365: ((3,2,4,1),(1,4,2,3),(2,1,3,4), (4,3,1,2)), 366: ((3,2,4,1),(1,4,2,3), (4,1,3,2),(2,3,1,4))
367: ((3,2,4,1),(1,4,2,3),(2,3,1,4), (4,1,3,2)), 368: ((3,2,4,1),(1,4,2,3), (4,3,1,2), (2,1,3,4))
369: ((3,2,4,1),(1,4,3,2), (4,1,2,3),(2,3,1,4)),370: ((3,2,4,1),(1,4,3,2),(2,3,1,4), (4,1,2,3))
371: ((3,2,4,1), (4,1,2,3),(1,4,3,2),(2,3,1,4)),372: ((3,2,4,1), (4,1,2,3),(2,3,1,4), (1,4,3,2))
373: ((3,2,4,1), (4,1,3,2),(1,3,2,4), (2,4,1,3)), 374: ((3,2,4,1), (4,1,3,2),(1,4,2,3),(2,3,1,4))
375: ((3,2,4,1),(4,1,3,2),(2,3,1,4),(1,4,2,3)), 376: ((3,2,4,1),(4,1,3,2),(2,4,1,3), (1,3,2,4))
377: ((3,2,4,1),(2,3,1,4), (1,4,2,3), (4,1,3,2)),378: ((3,2,4,1),(2,3,1,4), (1,4,3,2), (4,1,2,3))
379: ((3,2,4,1),(2,3,1,4), (4,1,2,3),(1,4,3,2)), 380: ((3,2,4,1),(2,3,1,4), (4,1,3,2), (1,4,2,3))
381: ((3,2,4,1),(2,4,1,3),(1,3,2,4), (4,1,3,2)), 382: ((3,2,4,1),(2,4,1,3), (4,1,3,2), (1,3,2,4))
383: ((3,2,4,1), (4,3,1,2),(2,1,3,4),(1,4,2,3)),384: ((3,2,4,1), (4,3,1,2),(1,4,2,3),(2,1,3,4))
385: ((2,4,1,3),(1,2,3,4), (3,1,4,2), (4,3,2,1)), 386: ((2,4,1,3),(1,2,3,4), (4,3,2,1), (3,1,4,2))
387: ((2,4,1,3),(1,3,2,4), (3,1,4,2), (4,2,3,1)), 388: ((2,4,1,3),(1,3,2,4), (4,1,3,2), (3,2,4,1))
389: ((2,4,1,3), (1,3,2,4), (3,2,4,1), (4,1,3,2)),390: ((2,4,1,3),(1,3,2,4), (4,2,3,1),(3,1,4,2))
391: ((2,4,1,3),(1,3,4,2), (3,1,2,4), (4,2,3,1)),392: ((2,4,1,3),(1,3,4,2),(4,2,3,1),(3,1,2,4))
393: ((2,4,1,3),(3,1,2,4), (1,3,4,2), (4,2,3,1)),394: ((2,4,1,3),(3,1,2,4), (4,2,3,1), (1,3,4,2))
395: ((2,4,1,3),(3,1,4,2),(1,2,3,4), (4,3,2,1)),396: ((2,4,1,3),(3,1,4,2),(1,3,2,4), (4,2,3,1))
397: ((2,4,1,3), (3,1,4,2), (4,2,3,1),(1,3,2,4)),398: ((2,4,1,3),(3,1,4,2), (4,3,2,1), (1,2,3,4))
399: ((2,4,1,3),(4,1,3,2),(1,3,2,4),(3,2,4,1)), 400: ((2,4,1,3), (4,1,3,2),(3,2,4,1), (1,3,2,4))
401: ((2,4,1,3),(3,2,4,1),(1,3,2,4), (4,1,3,2)), 402: ((2,4,1,3),(3,2,4,1), (4,1,3,2), (1,3,2,4))
403: ((2,4,1,3),(4,2,3,1),(1,3,2,4), (3,1,4,2)), 404: ((2,4,1,3), (4,2,3,1),(1,3,4,2),(3,1,2,4))
405: ((2,4,1,3),(4,2,3,1),(3,1,2,4), (1,3,4,2)), 406: ((2,4,1,3), (4,2,3,1),(3,1,4,2),(1,3,2,4))
407: ((2,4,1,3),(4,3,2,1),(1,2,3,4), (3,1,4,2)), 408: ((2,4,1,3),(4,3,2,1),(3,1,4,2), (1,2,3,4))
409: ((2,4,3,1),(1,2,4,3), (3,1,2,4), (4,3,1,2)), 410: ((2,4,3,1), (1,2,4,3), (4,3,1,2),(3,1,2,4))
411: ((2,4,3,1),(1,3,2,4), (3,1,4,2), (4,2,1,3)), 412: ((2,4,3,1),(1,3,2,4), (4,2,1,3), (3,1,4,2))
413 ((2,4,3,1), (1,3,4,2), (3,1,2,4), (4,2,1,3)), 414 ((2,4,3,1), (1,3,4.2), (4.1,2,3), (3,2,1,4))
415: ((2,4,3,1),(1,3,4,2), (3,2,1,4), (4,1,2,3)), 416: ((2,4,3,1), (1,3,4,2), (4,2,1,3), (3,1,2,4))
417: ((2,4,3,1),(3,1,2,4), (1,2,4,3), (4,3,1,2)), 418: ((2,4,3,1), (3,1,2,4), (1,3,4,2), (4,2,1,3))
419: ((2,4,3,1),(3,1,2,4), (4,2,1,3), (1,3,4,2)), 420: ((2,4,3,1),(3,1,2,4), (4,3,1,2), (1,2,4,3))
421: ((2,4,3,1),(3,1,4,2),(1,3,2,4), (4,2,1,3)), 422: ((2,4,3,1),(3,1,4,2), (4,2,1,3), (1,3,2,4))
423: ((2,4,3,1),(4,1,2,3), (1,3,4,2), (3,2,1,4)), 424: ((2,4,3,1), (4,1,2,3), (3,2,1,4),(1,3,4,2))
425: ((2,4,3,1),(3,2,1,4), (1,3,4,2), (4,1,2,3)), 426: ((2,4,3,1),(3,2,1,4), (4,1,2,3), (1,3,4,2))
427: ((2,4,3,1),(4,2,1,3),(1,3,2,4), (3,1,4,2)), 428: ((2,4,3,1),(4,2,1,3),(1,3,4,2), (3,1,2,4))
429: ((2,4,3,1),(4,2,1,3), (3,1,2,4), (1,3,4,2)), 430: ((2,4,3,1), (4,2,1,3), (3,1,4,2),(1,3,2,4))
431: ((2,4,3,1),(4,3,1,2), (1,2,4,3), (3,1,2,4)), 432: ((2,4,3,1), (4,3,1,2), (3,1,2,4), (1,2,4,3))
433: ((4,2,1,3),(2,1,3,4),(1,3,4,2), (3,4,2,1)), 434: ((4,2,1,3),(2,1,3,4), (3,4,2,1), (1,3,4,2))
435: ((4,2,1,3),(1,3,2,4), (3,1,4,2), (2,4,3,1)), 436: ((4,2,1,3), (1,3,2,4), (2,4,3,1), (3,1,4,2))
437: ((4,2,1,3),(1,3,4,2), (2,1,3,4), (3,4,2,1)), 438: ((4,2,1,3),(1,3,4,2), (3,1,2,4), (2,4,3,1))
439: ((4,2,1,3),(1,3,4,2), (2,4,3,1),(3,1,2,4)), 440: ((4,2,1,3),(1,3,4,2), (3,4,2,1),(2,1,3,4))
441: ((4,2,1,3),(3,1,2,4),(1,3,4,2), (2,4,3,1)), 442: ((4,2,1,3),(3,1,2,4),(1,4,3,2), (2,3,4,1))
443: ((4,2,1,3),(3,1,2,4), (2,3,4,1), (1,4,3,2)), 444: ((4,2,1,3),(3,1,2,4), (2,4,3,1),(1,3,4,2))
445: ((4,2,1,3),(3,1,4,2), (1,3,2,4), (2,4,3,1)), 446: ((4,2,1,3),(3,1,4,2), (2,4,3,1),(1,3,2,4))
447: ((4,2,1,3),(1,4,3,2),(3,1,2,4), (2,3,4,1)), 448: ((4,2,1,3),(1,4,3,2), (2,3,4,1), (3,1,2,4))
449: ((4,2,1,3),(2,3,4,1), (3,1,2,4), (1,4,3,2)), 450: ((4,2,1,3), (2,3,4,1),(1,4,3,2),(3,1,2,4))
451: ((4,2,1,3),(2,4,3,1),(1,3,2,4), (3,1,4,2)), 452: ((4,2,1,3),(2,4,3,1),(1,3,4,2), (3,1,2,4))
453: ((4,2,1,3),(2,4,3,1),(3,1,2,4), (1,3,4,2)), 454: ((4,2,1,3),(2,4,3,1),(3,1,4,2), (1,3,2,4))
455: ((4,2,1,3),(3,4,2,1),(2,1,3,4), (1,3,4,2)), 456: ((4,2,1,3), (3,4,2,1),(1,3,4,2),(2,1,3,4))
457: ((4,2,3,1),(2,1,4,3), (1,3,2,4), (3,4,1,2)), 458: ((4,2,3,1),(2,1,4,3), (3,4,1,2),(1,3,2,4))
459: ((4,2,3,1),(1,3,2,4),(2,1,4,3), (3,4,1,2)), 460: ((4,2,3,1),(1,3,2,4), (3,1,4,2), (2,4,1,3))
461: ((4,2,3,1),(1,3,2,4), (2,4,1,3), (3,1,4,2)), 462: ((4,2,3,1),(1,3,2,4), (3,4,1,2), (2,1,4,3))
463: ((4,2,3,1),(1,3,4,2), (3,1,2,4), (2,4,1,3)), 464: ((4,2,3,1),(1,3,4,2), (2,4,1,3), (3,1,2,4))
465: ((4,2,3,1),(3,1,2,4), (1,3,4,2), (2,4,1,3)), 466: ((4,2,3,1),(3,1,2,4), (2,4,1,3), (1,3,4,2))

= (( ) A ) )),468: (( A ) ) )

= ( A A ) )),470: ({ A ) A )
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571:
573:
575:

4,3,2,1),(2,4,1,3),(1,2,3,4), (3,1,4,2
4,3,2,1),(3,4,1,2),(1,2,3,4),(2,1,4,3
4,3,2,1),(3,4,1,2),(2,1,3,4),(1,2,4,3

72:
74:
76:

7

4

7

471: ((4,2,3,1),(1,4,2,3), (3,1,4,2), (2,3,1,4)), 472:
473: ((4,2,3,1),(2,3,1,4), (3,1,4,2), (1,4,2,3)), 474:
475: ((4,2,3,1),(2,4,1,3), (1,3,2,4), (3,1,4,2)), 476:
477: ((4,2,3,1),(2,4,1,3), (3,1,2,4), (1,3,4,2)), 478:
479: ((4,2,3,1),(3,4,1,2), (2,1,4,3), (1,3,2,4)), 480:
481: ((3,4,1,2),(1,2,3,4), (2,1,4,3), (4,3,2,1)), 482:
483: ((3,4,1,2),(1,2,3,4), (2,3,4,1), (4,1,2,3)), 484:
485: ((3,4,1,2),(1,2,4,3),(2,1,3,4), (4,3,2,1)), 486:
487: ((3,4,1,2),(2,1,3,4), (1,2,4,3), (4,3,2,1)), 488:
489: ((3,4,1,2),(2,1,4,3), (1,2,3,4), (4,3,2,1)), 490:
491: ((3,4,1,2),(2,1,4,3), (4,2,3,1), (1,3,2,4)), 492:
493: ((3,4,1,2),(1,3,2,4), (2,1,4,3), (4,2,3,1)), 494:
495: ((3,4,1,2),(4,1,2,3), (1,2,3,4), (2,3,4,1)), 496:
497: ((3,4,1,2),(2,3,4,1),(1,2,3,4), (4,1,2,3)), 498:
499: ((3,4,1,2),(4,2,3,1),(2,1,4,3), (1,3,2,4)), 500:
501: ((3,4,1,2), (4,3,2,1),(1,2,3,4),(2,1,4,3)), 502:
503: ((3,4,1,2),(4,3,2,1),(2,1,3,4), (1,2,4,3)), 504:
505: ((3,4,2,1),(1,2,3,4), (2,1,4,3), (4,3,1,2)), 506:
507: ((3,4,2,1),(1,2,4,3), (2,1,3,4), (4,3,1,2)), 508:
509: ((3,4,2,1),(1,2,4,3),(2,3,1,4), (4,1,3,2)), 510:
511: ((3,4,2,1),(2,1,3,4), (1,2,4,3), (4,3,1,2)), 512
513: ((3,4,2,1),(2,1,3,4), (4,2,1,3),(1,3,4,2)), 514
515: ((3,4,2,1),(2,1,4,3),(1,2,3,4), (4,3,1,2)), 516
517: ((3,4,2,1),(1,3,4,2), (2,1,3,4), (4,2,1,3)), 518:
519: ((3,4,2,1),(4,1,3,2), (1,2,4,3), (2,3,1,4)), 520:
521: ((3,4,2,1),(2,3,1,4),(1,2,4,3), (4,1,3,2)), 522:
523: ((3,4,2,1),(4,2,1,3),(2,1,3,4), (1,3,4,2)), 524:
525: ((3,4,2,1),(4,3,1,2), (1,2,3,4), (2,1,4,3)), 526:
527: ((3,4,2,1), (4,3,1,2),(2,1,3,4),(1,2,4,3)), 528:
529: ((4,3,1,2),(1,2,3,4),(2,1,4,3), (3,4,2,1)), 530:
531: ((4,3,1,2),(1,2,4,3),(2,1,3,4), (3,4,2,1)), 532:
533: ((4,3,1,2),(1,2,4,3), (2,4,3,1), (3,1,2,4)), 534:
535: ((4,3,1,2),(2,1,3,4), (1,2,4,3), (3,4,2,1)), 536:
537: ((4,3,1,2),(2,1,3,4), (3,2,4,1), (1,4,2,3)), 538:
539: ((4,3,1,2),(2,1,4,3), (1,2,3,4), (3,4,2,1)), 540:
541: ((4,3,1,2),(3,1,2,4),(1,2,4,3), (2,4,3,1)), 542:
543: ((4,3,1,2),(1,4,2,3),(2,1,3,4), (3,2,4,1)), 544:
545: ((4,3,1,2),(3,2,4,1),(2,1,3,4), (1,4,2,3)), 546:
547: ((4,3,1,2),(2,4,3,1),(1,2,4,3), (3,1,2,4)), 548:
549: ((4,3,1,2),(3,4,2,1),(1,2,3,4), (2,1,4,3)), 550:
551: ((4,3,1,2),(3,4,2,1),(2,1,3,4), (1,2,4,3)), 552:
553: ((4,3,2,1),(1,2,3,4), (2,1,4,3), (3,4,1,2)), 554:
555: ((4,3,2,1),(1,2,3,4), (2,4,1,3), (3,1,4,2)), 556:
557: ((4,3,2,1),(1,2,4,3),(2,1,3,4), (3,4,1,2)), 558:
559: ((4,3,2,1),(2,1,3,4),(1,2,4,3), (3,4,1,2)), 560:
561: ((4,3,2,1),(2,1,4,3),(1,2,3,4), (3,4,1,2)), 562:
563: ((4,3,2,1),(2,1,4,3), (3,2,1,4), (1,4,3,2)), 564:
565: ((4,3,2,1),(3,1,4,2), (1,2,3,4), (2,4,1,3)), 566:
567: ((4,3,2,1),(1,4,3,2),(2,1,4,3), (3,2,1,4)), 568:
569: ((4,3,2,1),(3,2,1,4),(2,1,4,3), (1,4,3,2)), 570:
(€ ) A A )),5
(« ) A ) )),5
(€ A A A )),5
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4,2,3,1),(1,4,2,3),(2,3,1,4), (3,1,4,2))
4,2,3,1),(2,3,1,4),(1,4,2,3), (3,1,4,2))
4,2,3,1),(2,4,1,3),(1,3,4,2),(3,1,2,4))
4,2,3,1),(2,4,1,3),(3,1,4,2), (1,3,2,4))
4,2,3,1),(3,4,1,2),(1,3,2,4),(2,1,4,3))
3,4,1,2),(1,2,3,4), (4,1,2,3), (2,3,4,1))
3,4,1,2),(1,2,3,4), (4,3,2,1),(2,1,4,3))
3,4,1,2),(1,2,4,3), (4,3,2,1),(2,1,3,4))
3,4,1,2),(2,1,3,4), (4,3,2,1),(1,2,4,3))
3,4,1,2),(2,1,4,3),(1,3,2,4), (4,2,3,1))
3,4,1,2),(2,1,4,3), (4,3,2,1),(1,2,3,4))
3,4,1,2),(1,3,2,4), (4,2,3,1),(2,1,4,3))
3,4,1,2),(4,1,2,3),(2,3,4,1),(1,2,3,4))
3,4,1,2),(2,3,4,1),(4,1,2,3),(1,2,3,4))
3,4,1,2),(4,2,3,1),(1,3,2,4),(2,1,4,3))
3,4,1,2),(4,3,2,1),(1,2,4,3),(2,1,3,4))
3,4,1,2),(4,3,2,1),(2,1,4,3), (1,2,3,4))
3,4,2,1),(1,2,3,4), (4,3,1,2),(2,1,4,3))
3,4,2,1),(1,2,4,3), (4,1,3,2),(2,3,1,4))
3,4,2,1),(1,2,4,3),(4,3,1,2), (2,1,3,4))
3,4,2,1),(2,1,3,4),(1,3,4,2), (4,2,1,3))
3,4,2,1),(2,1,3,4), (4,3,1,2),(1,2,4,3))
3,4,2,1),(2,1,4,3), (4,3,1,2), (1,2,3,4))
3,4,2,1),(1,3,4,2),(4,2,1,3),(2,1,3,4))
3,4,2,1),(4,1,3,2),(2,3,1,4),(1,2,4,3))
3,4,2,1),(2,3,1,4), (4,1,3,2), (1,2,4,3))
3,4,2,1),(4,2,1,3),(1,3,4,2),(2,1,3,4))
3,4,2,1),(4,3,1,2),(1,2,4,3),(2,1,3,4))
3,4,2,1),(4,3,1,2),(2,1,4,3),(1,2,3,4))
4,3,1,2),(1,2,3,4), (3,4,2,1),(2,1,4,3))
4,3,1,2),(1,2,4,3), (3,1,2,4), (2,4,3,1))
4,3,1,2),(1,2,4,3),(3,4,2,1),(2,1,3,4))
4,3,1,2),(2,1,3,4), (1,4,2,3),(3,2,4,1))
4,3,1,2),(2,1,3,4), (3,4,2,1),(1,2,4,3))
4,3,1,2),(2,1,4,3), (3,4,2,1),(1,2,3,4))
4,3,1,2),(3,1,2,4), (2,4,3,1),(1,2,4,3))
4,3,1,2),(1,4,2,3),(3,2,4,1),(2,1,3,4))
4,3,1,2),(3,2,4,1),(1,4,2,3),(2,1,3,4))
4,3,1,2),(2,4,3,1),(3,1,2,4), (1,2,4,3))
4,3,1,2),(3,4,2,1),(1,2,4,3),(2,1,3,4))
4,3,1,2),(3,4,2,1),(2,1,4,3), (1,2,3,4))
4,3,2,1),(1,2,3,4), (3,1,4,2), (2,4,1,3))
4,3,2,1),(1,2,3,4), (3,4,1,2),(2,1,4,3))
4,3,2,1),(1,2,4,3), (3,4,1,2),(2,1,3,4))
4,3,2,1),(2,1,3,4), (3,4,1,2),(1,2,4,3))
4,3,2,1),(2,1,4,3),(1,4,3,2),(3,2,1,4))
4,3,2,1),(2,1,4,3), (3,4,1,2), (1,2,3,4))
4,3,2,1),(3,1,4,2),(2,4,1,3),(1,2,3,4))
4,3,2,1),(1,4,3,2), (3,2,1,4),(2,1,4,3))
4,3,2,1),(3,2,1,4),(1,4,3,2),(2,1,4,3))
4,3,2,1),(2,4,1,3),(3,1,4,2),(1,2,3,4))
4,3,2,1),(3,4,1,2),(1,2,4,3),(2,1,3,4))
4,3,2,1),(3,4,1,2),(2,1,4,3),(1,2,3,4))
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Appendix B. Invalid Runs (In Decimal and Binary Forms)

Decimal and binary representations of each state are separated by “:”. Consecutive

"o

states of each run are separated by “,”. Consecutive runs are separated by |.

580: 1001000100 | 608: 1001100000 | 585: 1001001001, 868: 1101100100 | 834: 1101000010 | 656: 1010010000 | 596
1001010100 | 706: 1011000010 | 752: 1011110000 | 599: 1001010111, 875: 1101101011, 1013: 1111110101, 954: 1110111010
| 686: 1010101110 | 747: 1011101011, 821: 1100110101, 986: 1111011010 | 694: 1010110110 | 749: 1011101101, 822
1100110110 | 653: 1010001101, 774: 1100000110 | 641: 1010000001, 768: 1100000000 | 577: 1001000001, 864: 1101100000
| 589: 1001001101, 870: 1101100110 | 665: 1010011001, 780: 1100001100 | 848: 1101010000 | 602: 1001011010 | 726
1011010110 | 757: 1011110101, 826: 1100111010 | 654: 1010001110 | 739: 1011100011, 817: 1100110001, 984: 1111011000

637: 1001111101, 894: 1101111110 | 671: 1010011111, 783: 1100001111, 967: 1111000111, 931: 1110100011, 913: 1110010001,
904: 1110001000 | 632: 1001111000 | 615: 1001100111, 883: 1101110011, 1017: 1111111001, 956: 1110111100 | 859:
1101011011, 1005: 1111101101, 950: 1110110110 685: 1010101101, 790: 1100010110 | 645: 1010000101, 770: 1100000010
| 640: 1010000000 | 578: 1001000010 | 720: 1011010000 | 598: 1001010110 | 725: 1011010101, 810: 1100101010 | 650:
1010001010 | 738: 1011100010 | 760: 1011111000 | 623: 1001101111, 887: 1101110111, 1019: 1111111011, 957: 1110111101,
926: 1110011110 | 679: 1010100111, 787: 1100010011, 969: 1111001001, 932: 1110100100 | 705: 1011000001, 800: 1100100000
| 588: 1001001100 | 836: 1101000100 | 610: 1001100010 | 728: 1011011000 | 621: 1001101101, 886: 1101110110 | 669:
1010011101, 782: 1100001110 | 643: 1010000011, 769: 1100000001, 960: 1111000000 | 583: 1001000111, 867: 1101100011, 1009:
1111110001, 952: 1110111000 | 635: 1001111011, 893: 1101111101, 1022: 1111111110 | 703: 1010111111, 799: 1100011111,
975: 1111001111, 935: 1110100111, 915: 1110010011, 905: 1110001001, 900: 1110000100 | 593: 1001010001, 872: 1101101000
| 630: 1001110110 | 733: 1011011101, 814: 1100101110 | 651: 1010001011, 773: 1100000101, 962: 1111000010 | 688
1010110000 | 597: 1001010101, 874: 1101101010 | 666: 1010011010 | 742: 1011100110 | 761: 1011111001, 828: 1100111100
| 851: 1101010011, 1001: 1111101001, 948: 1110110100 | 717: 1011001101, 806: 1100100110 | 649: 1010001001, 772:
1100000100 | 584: 1001001000 | 612: 1001100100 | 832: 1101000000 | 582: 1001000110 | 721: 1011010001, 808: 1100101000
| 626: 1001110010, 732: 1011011100 | 845: 1101001101, 998: 1111100110 | 697: 1010111001, 796: 1100011100 | 849
1101010001, 1000: 1111101000 | 638: 1001111110 | 735: 1011011111, 815: 1100101111, 983: 1111010111, 939: 1110101011,
917: 1110010101, 906: 1110001010 | 674: 1010100010 | 744: 1011101000 | 622: 1001101110 | 731: 1011011011, 813:
1100101101, 982: 1111010110 | 693: 1010110101, 794: 1100011010 | 646: 1010000110 | 737: 1011100001, 816: 1100110000
| 601: 1001011001, 876: 1101101100 | 854: 1101010110 | 661: 1010010101, 778: 1100001010 | 642: 1010000010 | 736
1011100000 | 587: 1001001011, 869: 1101100101, 1010: 1111110010 | 700: 1010111100 | 843: 1101001011, 997: 1111100101,
946: 1110110010 | 684: 1010101100 | 842: 1101001010 | 658: 1010010010 | 740: 1011100100 | 833: 1101000001, 992:
1111100000 | 591: 1001001111, 871: 1101100111, 1011: 1111110011, 953: 1110111001, 924: 1110011100 | 857: 1101011001,
1004: 1111101100 | 862: 1101011110 | 663: 1010010111, 779: 1100001011, 965: 1111000101, 930: 1110100010 | 680:
1010101000 | 618: 1001101010 | 730: 1011011010 | 758: 1011110110 | 765: 1011111101, 830: 1100111110 | 655: 1010001111,
775: 1100000111, 963: 1111000011, 929: 1110100001, 912: 1110010000 | 604: 1001011100 | 837: 1101000101, 994: 1111100010
| 696: 1010111000 | 619: 1001101011, 885: 1101110101, 1018: 1111111010 | 702: 1010111110 | 751: 1011101111, 823:
1100110111, 987: 1111011011, 941: 1110101101, 918: 1110010110 | 677: 1010100101, 786: 1100010010 | 644: 1010000100
| 592: 1001010000 | 594: 1001010010 | 724: 1011010100 | 710: 1011000110 | 753: 1011110001, 824: 1100111000 | 627
1001110011, 889: 1101111001, 1020: 1111111100 | 863: 1101011111, 1007: 1111101111, 951: 1110110111, 923: 1110011011, 909:
1110001101, 902: 1110000110 | 673: 1010100001, 784: 1100010000 | 600: 1001011000 | 613: 1001100101, 882: 1101110010
| 668: 1010011100 | 841: 1101001001, 996: 1111100100 | 835: 1101000011, 993: 1111100001, 944: 1110110000 | 605:
1001011101, 878: 1101101110 | 667: 1010011011, 781: 1100001101, 966: 1111000110 | 689: 1010110001, 792: 1100011000
| 625: 1001110001, 888: 1101111000 | 631: 1001110111, 891: 1101111011, 1021: 1111111101, 958: 1110111110 | 687
1010101111, 791: 1100010111, 971: 1111001011, 933: 1110100101, 914: 1110010010 | 676: 1010100100 | 704: 1011000000
| 581: 1001000101, 866: 1101100010 | 664: 1010011000 | 617: 1001101001, 884: 1101110100 | 715: 1011001011, 805:
1100100101, 978: 1111010010 | 692: 1010110100 | 709: 1011000101, 802: 1100100010 | 648: 1010001000 | 616: 1001101000
| 614: 1001100110 | 729: 1011011001, 812: 1100101100 | 850: 1101010010 | 660: 1010010100 | 708: 1011000100 | 609:
1001100001, 880: 1101110000 | 603: 1001011011, 877: 1101101101, 1014: 1111110110 | 701: 1010111101, 798: 1100011110 |
647: 1010000111, 771: 1100000011, 961: 1111000001, 928: 1110100000 | 590: 1001001110 | 723: 1011010011, 809: 1100101001,
980: 1111010100 | 718: 1011001110 | 755: 1011110011, 825: 1100111001, 988: 1111011100 | 861: 1101011101, 1006:
1111101110 | 699: 1010111011, 797: 1100011101, 974: 1111001110 | 691: 1010110011, 793: 1100011001, 972: 1111001100
| 860: 1101011100 | 853: 1101010101, 1002: 1111101010 | 698: 1010111010 | 750: 1011101110 | 763: 1011111011, 829:
1100111101, 990: 1111011110 | 695: 1010110111, 795: 1100011011, 973: 1111001101, 934: 1110100110 | 681: 1010101001, 788:
1100010100 | 712: 1011001000 | 620: 1001101100 | 838: 1101000110 | 657: 1010010001, 776: 1100001000 | 624: 1001110000 |
595: 1001010011, 873: 1101101001, 1012: 1111110100 | 719: 1011001111, 807: 1100100111, 979: 1111010011, 937: 1110101001,
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916: 1110010100 | 716: 1011001100 | 844: 1101001100 | 852: 1101010100 | 714: 1011001010 | 754: 1011110010 | 764:
1011111100 | 847: 1101001111, 999: 1111100111, 947: 1110110011, 921: 1110011001, 908: 1110001100 | 856: 1101011000
629: 1001110101, 890: 1101111010 | 670: 1010011110 | 743: 1011100111, 819: 1100110011, 985: 1111011001, 940: 1110101100
| 858: 1101011010 | 662: 1010010110 | 741: 1011100101, 818: 1100110010 | 652: 1010001100 | 840: 1101001000 | 628:
1001110100 | 707: 1011000011, 801: 1100100001, 976: 1111010000 | 606: 1001011110 | 727: 1011010111, 811: 1100101011,
981: 1111010101, 938: 1110101010 | 682: 1010101010 | 746: 1011101010 | 762: 1011111010 | 766: 1011111110 | 767
1011111111, 831: 1100111111, 991: 1111011111, 943: 1110101111, 919: 1110010111, 907: 1110001011, 901: 1110000101, 898:
1110000010 | 672: 1010100000 | 586: 1001001010 | 722: 1011010010 | 756: 1011110100 | 711: 1011000111, 803: 1100100011,
977: 1111010001, 936: 1110101000 | 634: 1001111010 | 734: 1011011110 | 759: 1011110111, 827: 1100111011, 989:
1111011101, 942: 1110101110 | 683: 1010101011, 789: 1100010101, 970: 1111001010 | 690: 1010110010 | 748: 1011101100
| 846: 1101001110 | 659: 1010010011, 777: 1100001001, 964: 1111000100 | 611: 1001100011, 881: 1101110001, 1016
1111111000 | 639: 1001111111, 895: 1101111111, 1023: 1111111111, 959: 1110111111, 927: 1110011111, 911: 1110001111, 903:
1110000111, 899: 1110000011, 897: 1110000001, 896: 1110000000 | 579: 1001000011, 865: 1101100001, 1008: 1111110000 |
607: 1001011111, 879: 1101101111, 1015: 1111110111, 955: 1110111011, 925: 1110011101, 910: 1110001110 | 675: 1010100011,
785: 1100010001, 968: 1111001000 | 636: 1001111100 | 839: 1101000111, 995: 1111100011, 945: 1110110001, 920: 1110011000
| 633: 1001111001, 892: 1101111100 | 855: 1101010111, 1003: 1111101011, 949: 1110110101, 922: 1110011010 | 678:
1010100110 | 745: 1011101001, 820: 1100110100 | 713: 1011001001, 804: 1100100100 |

Appendix C. Enablers
Fori € {1,2,...,10}, ‘F;(0)" has been replaced by ‘F;’ for simplicity.

b R R R R R R R R s

1-Run Beginnings (2-Parallel State Transition):
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FyFyF}F,FJF, F,FsF,F,
FyFyF}F,FFe FLFsFF,
FiF,FsF}FsFsFyFg FoF)y
FyF,FsF}FLF.FFs o F)y
FyFyF3FyFFg FLFLFF,
FyFyF3FyFsFo F,E{F}F)
F\F,FsFyFLFsF,EF}F)
FiFyF3FyFsE, FyFsFoF
FyFyF}F,FLF, F)FsFoF!,
FiF,FsF}FsFL s FoF)
Fy 2 F}F,FJFs FLFsFoF
FyFyF3F}FsE, FyFsFF,
FiFyF;FyFLFsF g o F)y
FiFyF3FyFsF FyFsFoF
FyFyF3F}FLE,F,FsF,F,
FyFjF3FyFLF.F)FsFoFl,,
F\F,FsF4FLF.FsF}F}F),
FyFyF}F,FsE, FyFLFSF,
FyFyF3F,FLF, FyFsF)F,
FiF,FsF}FsFs FFFoF)y
FyF2FF,FJF, FyFsFoF
FyFoF}F, L Fg FLFsFF,
F\FyF;FyFLFs FFF)F)
FyFyF3F}FLF,FyFsFyF,
FFyF3F,FsE, FyFyFoF,
F\F,FsF}FsFLFSFF)F),
F\F,F;FyFsFs FE}FoF)

—+

+ =+ + 4+ =+ + 4+ + 4+ + + 4+ + 4+ 4+ + —+ + 4+ + + —+ + + —+ +

FyFyF;FyFsFLF,E{FF)
FyFyFsF4FLF, FJE}FoFly
FyFyFyFyFLFGFLFLFFL,
F\FyF;FyFsFs F, B} F
FyFyF}FyFLFs FyFgFoFl
FyFyF}FyFLF.F; s} F
FyFyF;FyFsFsFy g FoFl
FyFyF;FyFLF.F;E}F}Fl,
FyFyF}FyFsFs FJE{FoFl
FyFyFsFyFsF,F,E}F}F
FyFyFsF}FLF.FJE}FoFl
FyFyF4F4FLF. F, B FoFly
F\F,FsF}FsF,FE}FF,
F\FyF;FyFLFs FyFgFF
FyFyF}FyFLFs FJE}FFy
FyFyF,FyFLFsF,FLFF,
F\FyFsF}FLFsF;E}FFy
FyFyF;FyFsFLFJ g FoFl
FyFyF}F4FLF. F g FoFl
FiFyFsFyFsFLF Ry FoFl
FyFyF;FyFsFs FJE{F}F
FyFyFsF4FLF.F;E}FoFly
FyF,FsF}FLFsFy g FoF)y
FyF2F;FyFLF.F, B} Fy
FyFyFsFyFsFLF;E}FoFly
FiF,F;FyFLF,F B} FoFl
FyFyFsFyFLFsFy iy FoFl

+ 4+ + + 4+ + + + + + + + + + 4+ + + + + + + + + + —+ +

.I.

FyF2F}F,FJE,FLFyFoF,
FyFyF3FyFsFg FLELFF,
FiFyF}FyFLFs FrFLFoF
FyFyF3F,FLE,FLELF}F,
FFyF3F,FE, FyELFoF,
FyFyFyFyFLFLF)FsFF,
FyFyF3F}FsFe FLELFOF,
FyFyF}F,FsE,FLFsFJF,
FyFyFsFyFLF FyFsFF,
FiFyF}FyFsF,FyFsFo
FyFyF3FyFsE, FLELF)F,
FyFyF3F}F,Fs FLELFoF,
FiFyF}FyFsE,FrFLFoF
FyFyF3F}FsF FyFLFFL,
FyFyF}FyFLFs FLELFoF,
FyFyF3FjFLFsF,FsFFl,
FyFyF3F}FsFe FLFs FOF
FyF2F}FyFLFs FLEyFoF
FFyFsFyFF, FyRsFoF,
FyFyF3FyFJE, FyFyFFL,
FyFyF3FyFJF, FyFsFF,
FyFyFsFyFsFg FyELFoF,
F\FyF;FyFLFs FF}FoF)y
FyFyF}Fy FsFg FLFs F)F
FyFyF3FyFsF FyFyFoF,
FiFyF3FyFJFs FLFLFoF,
FyFyF3F}FsFs FLELFoF

FyFyF}FyFJF, Fy FgFoFly + Fy FyFyFy Fs FoFy Fs FyFly + FyFyFsFyFsFAFyFg Fo Fl
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2-Run Beginnings (3-Parallel State Transition):

433 e o e 3 e e o o e A A A A A A A A A A AN A A AN

“+ =+ o+ 4+ —+ + =+ + 4+ —+ + 4 + 4 —+ + —+ + 4+ 4 + 4+ + 4+ —+ + —+

F\FyFsF}FLFs F4E{F}F)
FyFyFsF}FsFLF; g FoFl
FiF,FsFyFLFs Py FoF)y
FyFyF;FyFLF.FA o Fl
FyFyFsFyFsFLFAEFoFl
FyFyF}FyFsFLFJEFoFl
FyF,FsF}FLFsF;E{FoF)y
FyFyF;F4FLF.FLE}F}F
FyFyF}FyFsFeFy g FoFl
FiF,FsF,FLF.Fy R FoF)y
FyFyFsF}FsFs F;FgF}F)
FyFyFsFyFsFLFA g F)Fly
FiF,FsFyFLFs FEFoF)y
FyFyFsF}FsFsFyFgFo Fl
FyFyFsFyFLFs FAFgF}Fly
FyFyFsFjFsF,F,FsF}Fl,
F\F,FsF,FLF.F,E{F}F,
FyFyFsF}FLFs F4FgF)Fly
FyFyF4FyFLFsFy g F)Fl
F\F,F;FyFsF,FFsFF)
FyFyF,FyFLF.F; iy} Fy
FyFyF3FyFs FeF; g} Fl
FyF,FsF}FLFs Py FoF)y
FyFyF;FyFLFsFyFgFoFl
FyFyFsFyFsFsFyFgFoFl g
FiF,FsFyFsFs Fy By F)
FyFyFsFyFsFLF, FgF)F)y
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FyFyF}F,FJE,FyFyF Frg
FyFyF}F,FLF, FLFLF Frg
FyFyF}FyFsFg Fy Fg Fy Fyg
FyF}F3F4FLELFSF4F) Fyo
FyFyF3F4FL Fg FyFgF Fig
FyFyFsF}FLF.F,F}F} Fyo
FyFy FF4FLFg FyF4F) Fyg
FyFyF3F} L Fs FLFsF Fig
FyF2FF,FF, FLFsF Fig
FyFyF}F,FsFLFyFgF) Fyg
FyFyF}FyFsFg FLFLF Frg
FyFyFsFyFLFs FyFLF, Frg
Fy Fy FF4FLFg FyFg F} Fyg

-+ =+ —+ 4+ =+ + =+ —+ + —+ + + —+

FyFyFsFyFsFLF; g} Fyg
FyFyF;F4FLF, F;FgF Fyg
F\FyF3F}FsFF,FgF}Fyg
FyFjF}F,FsF!F,FgF}Fyg
FyFyF}FyFLFs FyFg F Fyg
FyFyF3FyFLFs FJEF) Fyg
FyFyF3F}FsFsF)FgF)Fyg
Fy FyF;FyFLF.FJE{F) Fyg
FyFyFsF}FsF,FJFgF) Fyg
FyFo F}F,FLF! F;F4F) Fyg
FyFyF;FyFLF, FJFgF Fig
FyFyF}FyFs F,FJEF) Fyg
FyFyF3F}FsF.F,F}F)Fyg

+ =+ + =+ + + —+ + —+ + + -+

.I.

FyFyF3F}F,F, FyFsFFig
FyFyFsF}F,Fs FyFyF Fio
FyFy B F)FLFLFsFg F Fig
FyF}FsF)FLFsF,FgF Fig
FyFyFsFyFsFg FyFyF Frg
FyF2FFyFLF, FyFgF Fig
FyF}F3FyFsFLF4F}F, Fig
Fy 2 F}FyFLFs FyFLF Frg
FyFyFsFyFsFg FLFLF Fig
FyFjF}FyFLFs FFgF Fig
FyFyF}FyFsE,FyFyFFrg
FyFyF3F}FsFe FyFgF Fig
FyFyF3F,FLFsF4F4F) Fyo

+ =+ —+ =+ —+ 4+ —+ + =+ —+ —+ -+
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FyFyFsF}FLF.F4E{F) Fio
FyFyF3FyFs F F4Fg F) Fyg
FyFyF3F4FLFs FyFg F) Fyg
FyF}F}F4FLFs FF4F) Fyg
FyFyFsFyFLF. ;g Fyg
FyFyF3F}FsFs F;E}F) Fio
FyFyF}F4FLFs FF4F) Fyg
FyF}F3F,FsFoFyFgF)Fyg
FyFyFsF}FsFLF4F}F) Fyo
FyFyF3F} FsFs FyF,F) Fyg
FyFyFsFyFLF.F4Fg F) Fyg
Fy FyF}F4FLFs FyFgF) Fyg
Fy FyFFyFsFs FyFg F) Fyg

FyF}FsFyFsFLFLFgFyFio + Fy FyF4Fy FsFo Fy F4F) Fyo t Fy FyFs FyFs FLFy FyFS Fro t Fy By Fs FyFLFLF, F{F) Fig
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3-Run Beginnings (4-Parallel State Transition):
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FyFyF3FyFsE,FyFyFoFig
FyFyF}FyFsFe FyFyFoFrg
FyFyFF4FLF.FyF}FoFyg
FyF2FF,FJF, FLF,FoFyg
FyFyF3FyFLFg FJF,FoFyg
FyFyF3F4FsFoFyF}FoFyg

..l.

-+ =+ —+ 4+ —+

FyFyFsFyFsF,F}E}FoFyg
FyFyFsF}FLF.F;E}FoFyg
FyF2 B}, FLF! FF}FoFyg
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