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Abstract: In this article, a mixed finite element method for thermally coupled, stationary incompress-
ible MHD problems with physical parameters dependent on temperature in the Lipschitz domain
is considered. Due to the variable coefficients of the MHD model, the nonlinearity of the system is
increased. A stationary discrete scheme based on the coefficients dependent temperature is proposed,
in which the magnetic equation is approximated by Nédélec edge elements, and the thermal and
Navier–Stokes equations are approximated by the mixed finite elements. We rigorously establish the
optimal error estimates for velocity, pressure, temperature, magnetic induction and Lagrange multi-
plier with the hypothesis of a low regularity for the exact solution. Finally, a numerical experiment is
provided to illustrate the performance and convergence rates of our numerical scheme.

Keywords: magnetohydrodynamics; variable coefficients; mixed element method; uniqueness;
partial differential equations; stationary flows; error analysis

1. Introduction

In this paper, we develop a steady-state magnetohydrodynamics (MHD) system
coupling thermal problem with the physical parameters dependent on temperature in
R3 [1–3], as follows:

− div [ν(θ)∇u] + (u · ∇)u +∇p + µB× curl B− β(θ)θ = f in Ω, (1)

curl [σ(θ)curl B]− curl (u× B)−∇r = g in Ω, (2)

− div [κ(θ)∇θ] + u · ∇θ = ψ in Ω, (3)

div u = 0 in Ω, (4)

div B = 0 in Ω, (5)

u = 0, θ = 0, B× n = 0, r = 0 on ∂Ω, (6)

where n is the outer unit normal of ∂Ω, and Ω is a bounded domain with a Lipschitz
boundary ∂Ω; (u, p, B, r, θ) denote the velocity field, pressure, magnetic induction, scalar
fuction and temperature; (ν, σ, µ, κ, β) denote the kinematic viscosity, electric conductivity,
coupling number, thermal conductivity and thermal expansion coefficient; (ψ, f , g) denote
a given heat source, a forcing term for magnetic induction and the known applied current
with div g = 0. In fact, the scalar function r is a virtual function. The purpose of adding r is
related to the constraint div B = 0 [4,5].

Many numerical methods for incompressible MHD problems have been widely stud-
ied. According to our investigation, a considerable number of scholars in the literature
use continuous Lagrange finite elements to approximate velocity and magnetic induction
unknowns, see, e.g., [6–10]. However, it is well known that using continuous elements
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to approximate magnetic induction may lead to an inaccurate approximation when the
regularity of the magnetic unknown is lower than H1(Ω), cf. [11,12], which may often be
encountered in non-convex polyhedral or with a non-C1,1 boundary. A novel method to
overcome these shortcomings was put forward in [13] by using Nédélec finite elements to
approximate the magnetic unknown B. This seems attractive and has been used in [14–17]
and the references therein. In addition, the authors had proposed different formulas to
keep the magnetic solutions divergence-free in the numerical schemes in the papers [18,19].

Because of the movement of the fluid with viscosity, viscosity will produce heat.
Under the action of the external magnetic field, the incompressible MHD problem is
usually coupled with the thermal system through the famous Boussinesq approximation.
For example, Meir et al. [20,21] studied the mixed finite element method for the thermally
coupled MHD equation by adopting continuous elements to approximate the unknowns of
magnetic, fluid and thermal problems, which is pioneering work. Coupling fluid systems or
electromagnetic models with coefficients dependent on temperature face the mathematical
challenge of solving strongly nonlinear partial differential equations, as studied by some
physicists and mathematicians, see, e.g., [22–29] and the references therein. In addition, in
many practical applications of the MHD system, the change in temperature will lead to a
change in the coefficients in the fluid field and electromagnetic field. For the coupling MHD
problem whose coefficients depend on temperature, it is important to study its reliable
finite element method.

In this paper, we aim to give a rigorous well-posed analysis of the solution to the
continuous problem and error estimates for the MHD system with variable coefficients
by the finite element method. The fluid field was approximated by Taylor–Hood-type
finite elements, and the thermal system was approximated by Lagrange finite elements.
Considering the highly nonlinearity brought by the physical parameters dependent on
temperature and the Lorentz terms in the magnetic equation, as well as a possible non-
convex domain or a non-C1,1 boundary, we choose H(curl)-conforming Nédélec edge
elements to approximate the magnetic equation to capture the physical solutions. The
optimal error estimates of velocity, pressure, temperature, magnetic induction and Lagrange
multiplier are established. As far as we know, there still lacks rigorous analysis in the
literature for the error estimate of the stationary MHD thermally coupled model with
temperature-dependent coefficients.

The remaining parts of this paper are organized as follows. In Section 2, we introduce
some notations and basic finite element estimation used in the discussion and show the
uniqueness of the solution to the continuous system. In Section 3, we propose a discrete
finite element method for the variable coefficient system consisting of Equations (1)–(6).
In Section 4, we give the convergence of all variables under the slightly smooth regularity
assumption. In Section 5, we verify the effectiveness of the proposed numerical method
through a numerical experiment.

2. Notations for the Variable Coefficients Model

Firstly, we introduce some symbols that will be used throughout this article. For all
m ∈ N+, 1 ≤ p ≤ ∞, let Wm,p(Ω) denote the standard Sobolev space, and when p = 2,
it can be written as Hm(Ω). The notation (·, ·) is expressed as an inner product, namely
(φ, ψ) =

∫
Ω φψ dx, and the norm in L2(Ω) defined by ‖ · ‖0. Vector-valued quantities will

be denoted in boldface notations, such as u = (u1, u2, u3) and L2(Ω) = (L2(Ω))3. We use
C and c to denote generic positive constants independent of the mesh size h, and it may
adopt different values in different places.

To simplify, we define the following Sobolev spaces

X = H1
0 (Ω), Y = H1

0(Ω), Q =
{

q ∈ L2(Ω),
∫

Ω
q(x) dx = 0

}
,

W = {C ∈ L2(Ω), curl C ∈ L2(Ω)}, W0 = {C ∈W , C× n|∂Ω = 0}.
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The norm of the following types still need to be defined:

‖C‖W = ‖C‖H(curl;Ω) =
(
‖C‖2

0 + ‖curl C‖2
0
)1/2 ∀C ∈W .

We then set
H(div; Ω) = {b ∈ L2(Ω), div b ∈ L2(Ω)},

H(div0; Ω) = {b ∈ H(div; Ω), div b = 0}

andH(Ω) = W0 ∩ H(div; Ω), which is equipped with the following norm:

‖v‖H(Ω) =
(
‖curl v‖2

0 + ‖div v‖2
0
)1/2 ∀ v ∈H(Ω).

To facilitate our analysis, the following embedding results (see, e.g., Proposition 3.7
of [30] or [31]) are introduced here, which are also valid for the Lipschitz polyhedron domain.

Lemma 1. There exists a parameter δ1 = δ1(Ω) > 0 such that the embedding H(Ω) ↪→
L3+δ1(Ω) is compact.

In order to better demonstrate the stability of energy, the following trilinear terms
are denoted

O1(w, u, v) =
1
2

{ ∫
Ω
[(w · ∇)u] v dx−

∫
Ω
[(w · ∇)v] u dx

}
,

O3(u, θ, ϕ) =
1
2

{ ∫
Ω
(u · ∇θ)ϕ dx−

∫
Ω
(u · ∇ϕ)θ dx

}
,

for any (w, u, v) ∈ X × X × X and (θ, ϕ) ∈ (Y×Y).
Next, the definition of the weak solution to the magneto-heat coupling system with

variable coefficients (Equations (1)–(6)) is given.

Definition 1. Provided that f ∈ H−1,2(Ω), ψ ∈ H−1,2(Ω) and g ∈ W ′, where W ′ is the dual
space of W . We say (u, p, θ, B, r) ∈ X ∩ H(div0; Ω)× Q× Y ×W0 ∩ H(div0; Ω)× Y is the
weak solution of Equations (1)–(6), if there holds

A1(ν(θ), u, v) +O1(u, u, v) + µO2(B, B, v) + b(v, p)− (β(θ)θ, v) = ( f , v), (7)

A2(σ(θ), B, C)−O2(B, C, u) + a(C, r) = (g, C), (8)

A3(κ(θ), θ, ϕ) +O3(u, θ, ϕ) = (ψ, ϕ), (9)

for any (v, ϕ, C) ∈ (X ×Y×W0), where

A1(ν(θ), u, v) =
∫

Ω
ν(θ)∇u : ∇v dx, b(v, q) = −

∫
Ω

q div v dx,

A2(σ(θ), B, C) =
∫

Ω
σ(θ)curl B · curl C dx, a(C, r) = −

∫
Ω
∇r · C dx,

O2(B, C, u) =
∫

Ω
B× curl C · u dx, A3(κ(θ), θ, ϕ) =

∫
Ω

κ(θ)∇θ · ∇ϕ dx.

Remark 1. Owing to ∇φ ∈ W0 for any φ ∈ H1
0(Ω), by selecting C = ∇φ in Equation (8), it

can be derived −(∇r,∇φ) = 0. Therefore, the Lagrange multiplier r = 0 in the sense of a weak
formulation. In this case, the corresponding orthogonal decomposition is L2(Ω) = H(div0 ; Ω)⊕
∇H1

0(Ω), see [32,33].

Remark 2. The existence of a solution to the system in Equations (7)–(9) can be referred to the
work of [34] (Section 4), albeit under additional smoothness assumptions on the domain. Here, we
restrict ourselves to proving the following (more straightforward) uniqueness result.
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Uniqueness of Continuous Problems

Throughout the paper, we set that σ(θ), κ(θ), β(θ) and ν(θ) are Lipschitz continuous
and satisfy 0 < σ0 ≤ σ(θ) ≤ σ1, 0 < κ0 ≤ κ(θ) ≤ κ1, 0 < β0 ≤ β(θ) ≤ β1 and
0 < ν0 ≤ ν(θ) ≤ ν1.

Before proving the uniqueness of continuous problems, we first introduce some
basic knowledge.

Lemma 2. For any u, B and θ that satisfy Equations (7)–(9), the following estimates hold

A1(ν(θ), u, v) ≤ ν1‖∇u‖0‖∇v‖0,

A1(ν(θ), u, u) ≥ ν0‖∇u‖2
0,

A2(σ(θ), B, C) ≤ σ1‖curl B‖0‖curl C‖0,

A2(σ(θ), B, B) ≥ σ0‖curl B‖2
0,

O1(u, u, v) ≤ C∗‖∇u‖0‖∇u‖0‖∇v‖0,

O3(u, θ, ϕ) ≤ C∗‖∇u‖0‖∇θ‖0‖∇ϕ‖0,

A3(κ(θ), θ, ϕ) ≤ κ1‖∇θ‖0‖∇ϕ‖0,

A3(κ(θ), θ, θ) ≥ κ0‖∇θ‖2
0.

Further, the skew-symmetry O1(u, u, u) = 0 and O3(u, θ, θ) = 0 hold.

For the convenience of the subsequent analysis, setting

‖l‖∗ =
[
2ν−1

0 ‖ f‖2
−1,2 + 2ν−1

0 β2
1κ−2

0 ‖ψ‖
2
−1,2 + µσ−1

0 ‖g‖
2
W ′ + κ−1

0 ‖ψ‖
2
−1,2

]1/2.

The norms are defined as:

|||(u, B)||| =
(
‖∇u‖2

0 + ‖curl B‖2
0
) 1

2 ,

|||(u, B, θ)||| =
(
‖∇u‖2

0 + ‖curl B‖2
0 + ‖∇θ‖2

0
) 1

2 ,

|||(p, r)||| =
(
‖p‖2

0 + ‖∇r‖2
0
) 1

2 .

It is well known that (cf. [31,35]) both H1
0 (Ω)×Q and W × H1

0(Ω) satisfy the corre-
sponding inf-sup conditions, namely,

inf
0 6=q∈Q

sup
0 6=v∈H1

0 (Ω)

(div v, q)
‖v‖1,2‖q‖0

≥ C, (10)

and

inf
0 6=j∈H1

0 (Ω)
sup

0 6=C∈W

(∇j, C)

‖C‖H(curl;Ω)‖∇j‖0
≥ C. (11)

where the generic constant C only depends on Ω.
Before we begin the proof, the following assumptions should be given:

• |A1(ν(θ1)− ν(θ2), u, u)| ≤ Clip‖∇(θ1 − θ2)‖0‖∇u‖0,3‖∇u‖0,
• |A2(σ(θ1)− σ(θ2), B, B)| ≤ Clip‖∇(θ1 − θ2)‖0‖curl B‖0,3‖curl B‖0,
• |A3(κ(θ1)− κ(θ2), θ, θ)| ≤ Clip‖∇(θ1 − θ2)‖0‖∇θ‖0,3‖∇θ‖0,

where Clip is the Lipschitz constant.
Now, we are going to prove that the solution of the continuous problem is unique.
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Theorem 1. Suppose that there exists a sufficiently small constant γ > 0 such that max{‖∇u‖0,3,
‖curl B‖0,3, ‖∇θ‖0,3} ≤ γ (A precise condition on γ can be found in Equation (19)), then the
solution of Equations (7)–(9) is well-posed. In addition,

|||(u, B, θ)||| ≤ ‖l‖∗
min{ν0, µσ0, κ0}

. (12)

Proof. Taking ϕ = 2θ in Equation (9), we can deduce that

2κ(θ)‖∇θ‖2
0 = 2(ψ, θ) ≤ κ(θ)‖∇θ‖2

0 + κ−1
0 ‖ψ‖

2
−1,2,

this implies

‖∇θ‖2
0 ≤ κ−2

0 ‖ψ‖
2
−1,2. (13)

Setting v = 2u, C = 2µB in Equations (7) and (8), we have

2A1(ν(θ), u, u) + 2µ(σ(θ)curl B, curl B) = 2( f , u) + 2(β(θ)θ, u) + 2µ(g, B),

combining with Equation (13), there holds

ν0‖∇u‖2
0 + µσ0‖curl B‖2

0 ≤ 2ν−1
0 ‖ f‖2

−1,2 + 2ν−1
0 β2

1κ−2
0 ‖ψ‖

2
−1,2 + µσ−1

0 ‖g‖
2
W ′ ,

which implies that
min{ν0, µσ0}|||(u, B)||| ≤ ‖l‖∗. (14)

Then, the following estimation is valid

|||(u, B, θ)||| ≤ ‖l‖∗
min{ν0, µσ0, κ0}

. (15)

Now, we start to demonstrate the uniqueness of the solution for the problem in
Equations (7)–(9). Suppose that (u1, p1, B1, r1, θ1) and (u2, p2, B2, r2, θ2) are two arbitrary
solution of Equations (7)–(9), for any (v, C, ϕ) ∈ X ×W0 ×Y such that

A1(ν(θ1), u1, v) +O1(u1, u1, v) + µ(B1 × curl B1, v)

− µ(u1 × B1, curl C) + µ(σ(θ1)curl B1, curl C)

+A3(κ(θ1), θ1, ϕ) +O3(u1, θ1, ϕ) + b(v, p1)

+ µ a(C, r1) = ( f , v) + (β(θ1)θ1, v) + µ(g, C) + (ψ, ϕ)

(16)

and

A1(ν(θ2), u2, v) +O1(u2, u2, v) + µ(B2 × curl B2, v)

− µ(u2 × B2, curl C) + µ(σ(θ2)curl B2, curl C)

+A3(κ(θ2), θ2, ϕ) +O3(u2, θ2, ϕ) + b(v, p2)

+ µ a(C, r2) = ( f , v) + (β(θ2)θ2, v) + µ(g, C) + (ψ, ϕ).

(17)
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By subtracting Equation (17) from Equation (16), we obtain

A1(ν(θ1)− ν(θ2), u1, v) +A1(ν(θ2), u1 − u2, v)

+O1(u2, u1 − u2, v) +O1(u1 − u2, u1, v)

+ µ(B2 × curl [B1 − B2], v) + µ([B1 − B2]× curl B1, v)

− µ(u1 × [B1 − B2], curl C)− µ([u1 − u2]× B2, curl C)

+ µ([σ(θ1)− σ(θ2)]curl B1, curl C) + µ(σ(θ2)curl [B1 − B2], curl C)

+A3(κ(θ1)− κ(θ2), θ1, ϕ) +A3(κ(θ2), θ1 − θ2, ϕ)

+O3(u2, θ1 − θ2, ϕ) +O3(u1 − u2, θ1, ϕ) + b(v, p1 − p2)

+ µ a(C, r1 − r2) = ([β(θ1)− β(θ2)]θ1, v) + (β(θ2)[θ1 − θ2], v).

(18)

Taking (v, C) = (u1 − u2, B1 − B2) ∈ X ∩ H(div0; Ω) ×W0 ∩ H(div0; Ω), applying
O1(u2, u1 − u2, u1 − u2) = 0, there hold

A1(ν(θ1)− ν(θ2), u1, u1 − u2) +A1(ν(θ2), u1 − u2, u1 − u2)

+O1(u1 − u2, u1, u1 − u2) + µ([B1 − B2]× curl B1, u1 − u2)

− µ(u1 × [B1 − B2], curl [B1 − B2]) + µ([σ(θ1)− σ(θ2)]curl B1, curl [B1 − B2])

+ µ(σ(θ2)curl [B1 − B2], curl [B1 − B2]) +O3(u1 − u2, θ1, θ1 − θ2)

+A3(κ(θ1)− κ(θ2), θ1, θ1 − θ2) +A3(κ(θ2), θ1 − θ2, θ1 − θ2)

= ([β(θ1)− β(θ2)]θ1, u1 − u2) + (β(θ2)[θ1 − θ2], u1 − u2),

which means that

min{ν0, µσ0, κ0}|||(u1 − u2, B1 − B2, θ1 − θ2)|||2

≤−A1(ν(θ1)− ν(θ2), u1, u1 − u2)−O1(u1 − u2, u1, u1 − u2)

− µ([B1 − B2]× curl B1, u1 − u2) + µ(u1 × [B1 − B2], curl [B1 − B2])

− µ([σ(θ1)− σ(θ2)]curl B1, curl [B1 − B2])−A3(κ(θ1)− κ(θ2), θ1, θ1 − θ2)

−O3(u1 − u2, θ1, θ1 − θ2) + ([β(θ1)− β(θ2)]θ1, u1 − u2) + (β(θ2)[θ1 − θ2], u1 − u2)

≤max{1, µ}|||(u1 − u2, B1 − B2, θ1 − θ2)|||2
( ‖l‖∗

min{ν0, µσ0, κ0}

+ Clip(‖∇u1‖0,3 + ‖curl B1‖0,3 + ‖∇θ1‖0,3)
)

.

Thus, if γ satisfies

3Clipγ <
min{ν0, µσ0, κ0}

max{1, µ} − ‖l‖∗
min{ν0, µσ0, κ0}

, (19)

where max{‖∇u1‖0,3, ‖curl B1‖0,3, ‖∇θ1‖0,3} ≤ γ, we can deduce |||(u1 − u2, B1 − B2, θ1 −
θ2)|||2 ≤ 0, and it is easy to check (u1, B1, θ1) = (u2, B2, θ2).

Putting (u1, B1, θ1) = (u2, B2, θ2) in Equation (18), we have

b(v, p1 − p2) + µ a(C, r1 − r2) = 0,

∀ (v, C) ∈ X ×W0. Combining with Conditions (10) and (11), we can arrive at (p1, r1) =
(p2, r2). We prove that the system in Equations (7)–(9) has a unique solution. This yields
the conclusion.

3. Finite Element Analysis for Magneto-Heat Coupling System

In this section, we introduce a mixed finite element approximation of the MHD system
coupled thermal problem in Equations (7)–(9). The approximation is based on the Nédélec
first family of elements for the discretization of the magnetic induction.
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Throughout, the domain Ω is partitioned into a finite number of open non-overlapping
subdomains with regular and quasi-uniform meshes Th of mesh-size h that partition Ω into
tetrahedra K. Each tetrahedron K is supposed to be the image of a reference tetrahedron K̂
under an affine map FK. Pk(K) and P̃k(K) represent the space of polynomials of the total
degree at most k ≥ 0 and homogeneous polynomials k on K, respectively.

Given the generalized Taylor–Hood element (Xk
h , Qk−1

h ) with k ≥ 2, where Xk
h is the k

order vectorial Lagrange finite element subspace of X, and Qk−1
h is the k− 1 order scalar

Lagrange finite element subspace of Q. For k = 1, the velocity and pressure pair can be
approximated by the well-known stable mini-elements, cf. [31,35,36]. Furthermore, Yk

h is
the k order scalar Lagrange finite element subspace of Y, refer to [31,35].

For Dk(K), it denotes the polynomials q in P̃k(K) that satisfy q(x) · x = 0 on K. Define
the following space

Nk(K) = Pk−1(K)⊕Dk(K).

where 1 ≤ k. Using Nédélec H(curl)-conforming finite element space (see [33,37])

W k
h = {C ∈W0, C|K ∈ Nk(K) ∀K ∈ Th}

to approximate the magnetic induction.
Setting Sk

h = {C ∈ H1(Ω) ∩ L2
0(Ω), C ∈ Pk(K), ∀K ∈ Th}, and we can define the

following weakly divergent space

W k
0h = {C ∈W k

h , (C,∇S) = 0 ∀ S ∈ Sk
h}.

In addition, the following discrete Poincaré–Friedrichs inequality is established

‖ch‖0 ≤ Cp‖curl ch‖0 ∀ ch ∈W k
0h, (20)

with a constant Cp > 0 independent of the mesh size h.
The link between the spaces W k

0h andW(Ω) is accomplished by the Hodge mapping
Z : H(curl; Ω) →W(Ω)—refer to [12]—whereW(Ω) = {C ∈ H(Ω), div C = 0 in Ω}
such that

curlZ(C) = curl C ∀C ∈W .

Furthermore, there exists l = l(Ω) > 0,

‖Ch −Z(Ch)‖0 ≤ ch
1
2+l‖curl Ch‖0 ∀Ch ∈W k

0h. (21)

In addition, the discrete kernel space of the divergence operator is given by

Xk
0h = {vh ∈ Xk

h ; b(vh, qh) = 0 ∀qh ∈ Qk−1
h }.

On a quasi-uniform mesh, there holds (see Theorem 3.2.6 of [38])

‖vh‖m,q ≤ Cinvhı−m+3(1/q−1/p)‖vh‖ı,p ∀ vh ∈ Xk
h , (22)

where Cinv > 0 is a generic constant independent of the mesh size h, ı and m are two real
numbers with 0 ≤ ı ≤ m ≤ 1, and p and q are two integers with 1 ≤ p ≤ q ≤ ∞.

The following discrete inf-sup conditions (see Chapter 2 of [36] or [12]) are founded

inf
0 6=q∈Qk−1

h

sup
0 6=v∈Xk

h

(q, div v)
‖v‖1,2‖q‖0

≥ β∗, (23)

inf
0 6=j∈Sk

h

sup
0 6=C∈W k

h

(∇j, C)

‖C‖H(curl;Ω)‖j‖1,2
≥ β∗, (24)
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where β∗ is a generic positive constant depending on the domain Ω.
For k ≥ 1, our goal is to find {(uh, ph, θh, Bh, rh) ∈ Xk

h × Qk−1
h × Yk

h ×W k
0h × Sk

h}, ∀
{(v, q, ϕ, C) ∈ Xk

h ×Qk−1
h ×Yk

h ×W k
h } such that

A1(ν(θh), uh, v) +O1(uh, uh, v)− (β(θh)θh, v)

+ µO2(Bh, Bh, v) + b(v, ph) = ( f , v), (25)

b(uh, q) = 0, (26)

A2(σ(θh), Bh, C)−O2(Bh, C, uh) + a(C, rh) = (g, C), (27)

A3(κ(θh), θh, ϕ) +O3(uh, θh, ϕ) = (ψ, ϕ). (28)

Remark 3. The temperature-dependent coefficients will greatly enhance the nonlinearity of the
problem and make the analysis more complicated. The existence of a solution to Equations (25)–(28)
can be displayed by Brouwer’s fixed point theorem—for details, refer to Section 4.3 of [39].

Remark 4. For all sh ∈ Sk
h, by selecting C = ∇sh in Equation (27), it can be derived−(∇rh,∇sh) =

(g,∇sh). Thus, for a solenoidal source term g, it is natural to deduce rh = 0.

In order to estimate the error in the next section, the stability of the numerical scheme
in Equations (25)–(28) should be given here.

Theorem 2. Let (uh, θh, Bh) be the solution of scheme (25)–(28). Then, it satisfies the follow-
ing stability:

|||(uh, Bh, θh)||| ≤
‖l‖∗

min{ν0, µσ0, κ0}
. (29)

Proof. The proof is parallel to that of Theorem 1.

4. Convergence Analysis of the Magneto-Heat Coupling Problem

In this section, the convergence of the MHD system coupled the heat equation with
variable coefficients is considered by employing the finite element method. We strictly
establish optimal error estimates of velocity, pressure, temperature, magnetic induction
and Lagrange multiplier under the assumption that the exact solution has low regularity.

Here, it is necessary to make the following regularity assumptions for the weak
solution of Equations (7)–(9), which will facilitate the error estimate of the discrete solution.

Assumption 1. Assum that the solution (u, p, B, θ, r) satisfies the following regularity:

u ∈ Hs+1(Ω), p ∈ Hs(Ω), θ ∈ H1+s(Ω),

B ∈ Hs(Ω), curl B ∈ Hs(Ω), r ∈ Hs+1(Ω),

where the exponent s > 1/2 depends on Ω.

For the convenience of the subsequent analysis, we will assume there exists a constant
C f depending on f , g, ψ and Ω such that

‖u‖1+s,2 + ‖p‖s,2 + ‖curl B‖s,2 + ‖θ‖1+s,2 + ‖∇r‖s,2 ≤ C f . (30)

Let ` = min{k, s}, for k ≥ 1 and s > 1/2, with the help of [31,40], then we have the
following approximation properties:
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inf
v∈Xk

h

‖∇(u− v)‖0 + inf
q∈Qk−1

h

‖p− q‖0 ≤ Ch`
[
‖u‖1+`,2 + ‖p‖`,2

]
inf

C∈W k
h

‖curl (B− C)‖0 + inf
j∈Sk

h

‖∇(r− j)‖0 ≤ Ch`
[
‖curl B‖`,2 + ‖r‖1+`,2

]
,

inf
ϕ∈Yk

h

‖∇(θ − ϕ)‖0 ≤ Ch`‖θ‖`+1,2,

(31)

where k and s are the order index of the finite element spaces and the regularity of the exact
solution, respectively.

Let (eu, ep, eθ , eB, er) = (u − uh, p − ph, θ − θh, B − Bh, r − rh). A combination of
Equations (7)–(9) and Equations (25)–(28) yields the following truncation error equations:

A1(ν(θh), eu, v) +A1(ν(θ)− ν(θh), u, v) + b(v, ep)

+O1(uh, eu, v) +O1(eu, u, v) + µO2(Bh, eB, v) + µO2(eB, B, v)

− (β(θh)eθ , v)− ([β(θ)− β(θh)]θ, v) = 0, (32)

A3(κ(θh), eθ , ϕ) +A3(κ(θ)− κ(θh), θ, ϕ) +O3(uh, eθ , ϕ) +O3(eu, θ, ϕ) = 0, (33)

A2(σ(θh), eB, C) +A2(σ(θ)− σ(θh), B, C)

−O2(eB, C, uh)−O2(B, C, eu) + a(C, er) = 0. (34)

With the preparations of the above work, we now begin to study the optimal error
estimation of each variable.

Theorem 3. Provided that

max{1, µ, Clip, µClip, β1}
min{ν0, µσ0, κ0}

max
{ ‖l‖∗

min{ν0, µσ0, κ0}
, C f

}
< 1 (35)

is satisfied. Then, the weak formulation made up of Equations (7)–(9) and the discretization scheme
in Equations (25)–(28) has a unique solution (u, p, θ, B, r) ∈ X × Q× Y ×W0 × H1

0(Ω) and
(uh, ph, θh, Bh, rh) ∈ Xk

h ×Qk−1
h ×Yk

h ×W k
0h × Sk

h, respectively, which satisfies

|||(u− uh, B− Bh, θ − θh)||| ≤C inf
(v,C,ϕ)∈Xk

h×W k
h×Yk

h

|||(v− u, C− B, ϕ− θ)|||

+ C inf
(q,j)∈Qk−1

h ×Sk
h

|||(p− q, r− j)|||.

Proof. As a first step, the test functions of the momentum and magnetic equations are
constrained in the discrete kernel space. Let (v, C) ∈ Xk

0h ×W k
0h. Using the orthogonality

property, with Equation (32), we have

A1(ν(θh), v− uh, v− uh) +A1(ν(ϕ)− ν(θh), u, v− uh)

+O1(uh, v− uh, v− uh) +O1(v− uh, u, v− uh)

+ µ(Bh × curl [C− Bh], v− uh) + µ([C− Bh]× curl B, v− uh)

− (β(θh)[ϕ− θh], v− uh)− ([β(ϕ)− β(θh)]θ, v− uh)

=A1(ν(θh), v− u, v− uh) +A1(ν(ϕ)− ν(θ), u, v− uh)− b(v− uh, p− ph)

+O1(uh, v− u, v− uh) +O1(v− u, u, v− uh)

+ µ(Bh × curl [C− B], v− uh) + µ([C− B]× curl B, v− uh)

− (β(θh)[ϕ− θ], v− uh)− ([β(ϕ)− β(θ)]θ, v− uh).

(36)
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According to Lemma 1 and the property of Hodge mapping (Equation (21)), by setting
1/(3 + δ1) + 1/(6− δ2) = 1/2, it is easy to see that∣∣µ(Bh × curl [C− Bh], v− uh)

∣∣
=
∣∣µ([Bh −Zh(Bh)]× curl [C− Bh], v− uh)

+ µ(Zh(Bh)× curl [C− Bh], v− uh)
∣∣

≤µ‖Bh −Zh(Bh)‖0‖curl [C− Bh]‖0‖v− uh‖0,∞

+ µ‖Zh(Bh)‖0,3+δ1‖curl [C− Bh]‖0‖v− uh‖0,6−δ2

≤µCinvhl‖curl Bh‖0‖curl [C− Bh]‖0‖v− uh‖0,6

+ µ‖curl Bh‖0‖curl [C− Bh]‖0‖v− uh‖0,6−δ2 ,

and similarly ∣∣µ([C− Bh]× curl B, v− uh)
∣∣

=
∣∣µ([C− Bh −Zh(C− Bh)]× curl B, v− uh)

+ µ(Zh(C− Bh)× curl B, v− uh)
∣∣

≤µCinvhl‖curl [C− Bh]‖0‖curl B‖0‖v− uh‖0,6

+ µ‖curl [C− Bh]‖0‖curl B‖0‖v− uh‖0,6−δ2 .

As a consequence of the previous calculation, we can estimate Equation (36) as follows[
ν0 − Clip‖∇u‖0,3 − C∗‖∇u‖0 − µ(Cinvhl + 1)

[
‖curl Bh‖0 + ‖curl B‖0

]
− β1 − Clip‖θ‖0,3

][
‖∇(v− uh)‖2

0 + ‖∇(ϕ− θh)‖0‖∇(v− uh)‖0

+ ‖curl [C− Bh]‖0‖∇(v− uh)‖0

]
≤A1(ν(θh), v− uh, v− uh) +A1(ν(ϕ)− ν(θh), u, v− uh)

+O1(v− uh, u, v− uh)

+ µ(Bh × curl [C− Bh], v− uh) + µ([C− Bh]× curl B, v− uh)

− (β(θh)[ϕ− θh], v− uh)− ([β(ϕ)− β(θh)]θ, v− uh).

(37)

Since v− uh belongs to kernel space Xk
0h, we deduce b(v− uh, p− ph) = b(v− uh, p− q)

for any q ∈ Qk−1
h . The right-hand side of Equation (36) has the following estimate

A1(ν(θh), v− u, v− uh) +A1(ν(ϕ)− ν(θ), u, v− uh)− b(v− uh, p− ph)

+O1(uh, v− u, v− uh) +O1(v− u, u, v− uh)

+ µ(Bh × curl [C− B], v− uh) + µ([C− B]× curl B, v− uh)

− (β(θh)[ϕ− θ], v− uh)− ([β(ϕ)− β(θ)]θ, v− uh)

≤ν1‖∇(v− u)‖0‖∇(v− uh)‖0 + Clip‖∇u‖0,3‖ϕ− θ‖0,6‖∇(v− uh)‖0

+ β∗‖∇(v− uh)‖0‖p− q‖0 + C∗
[
‖∇u‖0 + ‖∇uh‖0

]
‖∇(v− u)‖0‖∇(v− uh)‖0

+ µ(Cinvhl + 1)
[
‖curl Bh‖0 + ‖curl B‖0

]
‖curl [C− B]‖0‖v− uh‖0,6

+ β1‖ϕ− θ‖0‖v− uh‖0 + Clip‖θ‖0,3‖ϕ− θ‖0,6‖v− uh‖0.

(38)

Using Equation (33), we can arrive at

A3(κ(θh), ϕ− θh, ϕ− θh) +A3(κ(ϕ)− κ(θh), θ, ϕ− θh)

+O3(uh, ϕ− θh, ϕ− θh) +O3(v− uh, θ, ϕ− θh)

=A3(κ(θh), ϕ− θ, ϕ− θh) +A3(κ(ϕ)− κ(θ), θ, ϕ− θh)

+O3(uh, ϕ− θ, ϕ− θh) +O3(v− u, θ, ϕ− θh).

(39)
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The left-hand side of Equation (39) has the following estimate[
κ0 − Clip‖∇θ‖0,3 − C∗‖∇θ‖0

][
‖∇(ϕ− θh)‖2

0 + ‖∇(ϕ− θh)‖0‖∇(v− uh)‖0
]

≤A3(κ(θh), ϕ− θh, ϕ− θh) +A3(κ(ϕ)− κ(θh), θ, ϕ− θh) (40)

+O3(v− uh, θ, ϕ− θh).

The right-hand side of Equation (39) has the following estimate

A3(κ(θh), ϕ− θ, ϕ− θh) +A3(κ(ϕ)− κ(θ), θ, ϕ− θh)

+O3(uh, ϕ− θ, ϕ− θh) +O3(v− u, θ, ϕ− θh)

≤κ1‖∇(ϕ− θ)‖0‖∇(ϕ− θh)‖0 + Clip‖∇θ‖0,3‖ϕ− θ‖0,6‖∇(ϕ− θh)‖0

+ C∗
[
‖∇uh‖0‖∇(ϕ− θ)‖0 + ‖∇θ‖0‖∇(v− u)‖0

]
‖∇(ϕ− θh)‖0.

(41)

Using Equation (34), we derive

A2(σ(θh), C− Bh, C− Bh) +A2(σ(ϕ)− σ(θh), B, C− Bh)r

− (uh × [C− Bh], curl [C− Bh])− ([v− uh]× B, curl [C− Bh])

=A2(σ(θh), C− B, C− Bh) +A2(σ(ϕ)− σ(θ), B, C− Bh)

− (uh × [C− B], curl [C− Bh])− ([v− u]× B, curl [C− Bh])

+ (∇er, C− Bh).

(42)

The left-hand side of Equation (42) has the following estimate[
σ0µ− Clipµ‖curl B‖0,3 − µ(Cinvhl + 1)(‖∇uh‖0 + ‖curl B‖0)

][
‖curl (C− Bh)‖2

0 + ‖∇(ϕ− θh)‖0‖curl (C− Bh)‖0

+ ‖∇(v− uh)‖0‖curl (C− Bh)‖0
]

≤µA2(σ(θh), C− Bh, C− Bh) + µA2(σ(ϕ)− σ(θh), B, C− Bh)

− µ(uh × [C− Bh], curl [C− Bh])

− µ([v− uh]× B, curl [C− Bh]).

(43)

Since C− Bh belongs to the kernel space W k
0h, we have (∇er, C− Bh) = (∇(r− j), C− Bh)

for any j ∈ Sk
h. The right-hand side of Equation (42) has the following estimate

µA2(σ(θh), C− B, C− Bh) + µA2(σ(ϕ)− σ(θ), B, C− Bh)

− µ(uh × [C− B], curl [C− Bh])

− µ([v− u]× B, curl [C− Bh]) + µ(∇er, C− Bh)

≤σ1µ‖curl (C− B)‖0‖curl (C− Bh)‖0

+ Clipµ‖curl B‖0,3‖ϕ− θ‖0,6‖curl (C− Bh)‖0

+ µ
[
Cinvhl‖∇uh‖0‖curl (C− B)‖0

+ ‖curl B‖0‖∇(v− u)‖0
]
‖curl (C− Bh)‖0

+ µβ∗‖curl (C− Bh)‖0‖∇(r− j)‖0.

(44)
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Combining Equations (37), (40), (43), (38), (41) and (44), together with (32)–(34), it can be
checked that[

min{ν0, µσ0, κ0} −max{1, µ, Clip, µClip, β1}max{ ‖l‖∗
min{ν0, µσ0, κ0}

, C f }
]

(
‖∇(v− uh)‖2

0 + ‖∇(ϕ− θh)‖0‖∇(v− uh)‖0 + ‖curl (C− Bh)‖0‖∇(v− uh)‖0

+ ‖∇(ϕ− θh)‖2
0 + ‖curl (C− Bh)‖2

0 + ‖∇(ϕ− θh)‖0‖curl (C− Bh)‖0

)
≤C
[
‖∇(v− u)‖0‖∇(v− uh)‖0 + ‖∇(ϕ− θ)‖0‖∇(v− uh)‖0

+ ‖p− q‖0‖∇(v− uh)‖0 + ‖curl (C− B)‖0‖∇(v− uh)‖0

+ ‖∇(ϕ− θ)‖0‖∇(ϕ− θh)‖0 + ‖∇(v− u)‖0‖∇(ϕ− θh)‖0

+ ‖curl (C− B)‖0‖curl (C− Bh)‖0 + ‖∇(ϕ− θ)‖0‖curl (C− Bh)‖0

+ ‖∇(v− u)‖0‖curl (C− Bh)‖0 + ‖curl (C− Bh)‖0‖∇(r− j)‖0

]
.

Since

min{ν0, µσ0, κ0} −max{1, µ, Clip, µClip, β1}max{ ‖l‖∗
min{ν0, µσ0, κ0}

, C f } > 0,

this means that

|||(v− uh, C− Bh, ϕ− θh)|||2

≤C|||(v− uh, C− Bh, ϕ− θh)|||
[
|||(v− u, C− B, ϕ− θ)|||

+ ‖p− q‖0 + ‖∇(r− j)‖0
]
.

By the triangle inequality, there holds

|||(u− uh, B− Bh, θ − θh)||| ≤C
[
|||(v− u, C− B, ϕ− θ)|||

+ ‖p− q‖0 + ‖∇(r− j)‖0
]
,

(45)

for all (v, C) belongs to the discrete kernel space (Xk
0h, W k

0h), ϕ ∈ Yk
h , q ∈ Qk−1

h and j ∈ Sk
h.

In the next step, let (v, C) ∈ Xk
h ×W k

h be arbitrary. Suppose that (w, d) ∈ Xk
h ×W k

h is
a solution of

b(q, w) + a(d, j) = b(q, u− v) + a(B− C, j),

for any (q, j) ∈ Qk−1
h × Sk

h.
From the inf-sup condition and the continuity of b(·, ·) and a(·, ·), there exists a solution

to this problem that satisfies

|||(w, d)||| ≤ C|||(u− v, B− C)|||. (46)

See [36] for more details. Then, (w+ v, d+B) ∈ Xk
0h×W k

0h can be inserted into Equation (45).
With the triangle inequality, we deduce

|||(u− uh, B− Bh, θ − θh)||| ≤C
[
|||(v− u, C− B, ϕ− θ)|||

+ |||(w, d)|||+ ‖p− q‖0 + ‖∇(r− j)‖0
]
.

(47)

Applying Equations (46) and (47) shows that the proof is completed.

In addition, by using the inf-sup condition (Equation (23)), we obtain the following
estimates for pressure and the Lagrange multiplier.
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Theorem 4. Suppose that Assumption 1 and Theorem 3 are satisfied. The continuous system of
Equations (7)–(9) and the numerical scheme in Equations (25)–(28) has the unique solution (p, r)
and (ph, rh), respectively, which satisfies

‖p− ph‖0 + ‖∇(r− rh)‖0 ≤C inf
(v,C,ϕ)∈Xk

h×W k
h×Yk

h

|||(v− u, C− B, ϕ− θ)|||

+ C inf
q∈Qk−1

h

‖p− q‖0 + C inf
j∈Sk

h

‖∇(r− j)‖0.

Proof. From Equations (32) and (34), we know

‖p− ph‖0 + ‖∇(r− rh)‖0 ≤C|||(u− uh, B− Bh, θ − θh)|||
(

ν1 + Clip‖∇u‖0,3

+ Clip‖curl B‖0,3 + |||(u, B, θ)|||+ |||(uh, Bh)|||+ β1

)
.

Combining Assumption 1 and Theorem 3, we can conclude Theorem 4.

With the help of (31), the following theorem draws the conclusion of this paper.

Theorem 5. Suppose that Assumption 1, Theorem 3 and Theorem 4 are satisfied. With ` =
min{s, k}, we have

‖∇(u− uh)‖0 + ‖p− ph‖0 + ‖curl (B− Bh)‖0

+ ‖∇(r− rh)‖0 + ‖∇(θ − θh)‖0

≤Ch`
(
‖u‖`+1,2 + ‖p‖`,2 + ‖curl B‖`,2 + ‖θ‖`+1,2 + ‖∇r‖`,2

)
.

5. Numerical Experiment

In this section, we consider a numerical experiment to test the convergence rate of
the numerical scheme proposed in Section 3. The parallel code is developed based on the
finite element package Parallel Hierarchical Grids (PHG), cf. [41,42]. The computations are
carried out on the LSSC-IV Cluster of the State Key Laboratory of Scientific and Engineering
Computing, Chinese Academy of Sciences. The domain is Ω = (0, 1)3, and the finite
element mesh is obtained by a uniform tetrahedral partition. Let Ti, i = 0, 1, 2, 3 be four
successively refined meshes listed in Table 1.

Example 1. This example is to verify the convergence rate of the finite element solution. Given
ν(θ) = 1, σ(θ) = θ, κ(θ) = θ, µ = 1 and β(θ) = (0, 0,−1). The exact solution is selected as

u = (sin(y), sin(z), 0), p = sin(x)− sin(y),

B = (cos(y), cos(z), 0), r = 0, θ = sin(x).

From Tables 2 and 3, we find that the convergence rates for uh, ph, Bh and θh are given by

‖u− uh‖1,2 ∼ O(h2), ‖u− uh‖0 ∼ O(h3), ‖p− ph‖0 ∼ O(h2),

‖B− Bh‖H(curl;Ω) ∼ O(h), ‖B− Bh‖0 ∼ O(h2),

‖θ − θh‖1,2 ∼ O(h2), ‖θ − θh‖0 ∼ O(h3).

Here, the velocity u and the temperature θ are discretized by using the continuous P2 finite
elements, the pressure p is discretized by using the continuous P1 finite elements and the magnetic
induction B is discretized by using the first-order edge elements method. This means that optimal
convergence rates are obtained for all variables.



Entropy 2022, 24, 912 14 of 16

Table 1. Numbers of DOFs on four successively refined meshes.

Grid h DOFs for
(uh, ph)

DOFs for
(Bh, rh)

DOFs for
(θh)

Ndofs

T0 0.866 402 321 125 848
T1 0.433 2312 1937 729 4978
T2 0.217 15,468 13,281 4913 33,662
T3 0.108 112,724 97,985 35,937 246,646

Table 2. Convergence rates in energy norms.

h ‖u− uh‖1,2 order ‖p− ph‖0 order

0.866 1.136 × 10−2 - - 1.187 × 10−2 - -
0.433 2.745 × 10−3 2.0488 2.496 × 10−3 2.2501
0.217 6.766 × 10−4 2.0271 5.774 × 10−4 2.1189
0.108 1.686 × 10−4 1.9919 1.377 × 10−4 2.0545

h ‖B−
Bh‖H(curl;Ω)

order ‖θ − θh‖1,2 order

0.866 1.405 × 10−1 - - 7.545 × 10−3 - -
0.433 6.873 × 10−2 1.0315 1.837 × 10−3 2.0384
0.217 3.382 × 10−2 1.0263 4.456 × 10−4 2.0500
0.108 1.677 × 10−2 1.0057 1.089 × 10−4 2.0194

Table 3. Convergence rates in L2(Ω)—norms.

h ‖u− uh‖0 Order ‖θ− θh‖0 Order ‖B− Bh‖0 Order

0.866 9.095 × 10−4 - - 5.995 × 10−4 - - 1.851 × 10−2 - -
0.433 1.136 × 10−4 3.0010 7.494 × 10−5 2.9999 4.977 × 10−3 1.8950
0.217 1.442 × 10−5 2.9883 9.376 × 10−6 3.0088 1.268 × 10−3 1.9794
0.108 1.950 × 10−6 2.8671 1.142 × 10−6 3.0169 3.178 × 10−4 1.9830
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