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Abstract: Aiming to resolve the problem of redundant information concerning rolling bearing
degradation characteristics and to tackle the difficulty faced by convolutional deep learning models
in learning feature information in complex time series, a prediction model for remaining useful life
based on multiscale fusion permutation entropy (MFPE) and a multiscale convolutional attention
neural network (MACNN) is proposed. The original signal of the rolling bearing was extracted and
decomposed by resonance sparse decomposition to obtain the high-resonance and low-resonance
components. The multiscale permutation entropy of the low-resonance component was calculated.
Moreover, the locally linear-embedding algorithm was used for dimensionality reduction to remove
redundant information. The multiscale convolution module was constructed to learn the feature
information at different time scales. The attention module was used to fuse the feature information
and input it into the remaining useful life prediction module for evaluation. The appropriate
network structure and parameter configuration were determined, and a multiscale convolutional
attention neural network was designed to determine the remaining useful life prediction model. The
results show that the method demonstrates effectiveness and superiority in degrading the feature
information representation and improving the remaining useful life prediction accuracy compared
with other models.

Keywords: multiscale fusion permutation entropy; multiscale convolutional attention neural
network; resonance sparse decomposition method; remaining useful life prediction; rolling bearing

1. Introduction

With the rapid development of the Industrial Internet of Things, the explosive growth
of monitoring data brings new opportunities and challenges for predictions of the remaining
useful life of rolling bearings. The data-driven remaining useful life prediction method
can learn the degradation characteristics of rolling bearings from the massive monitoring
data and build a corresponding remaining useful life prediction model. Therefore, it has
received increasing attention in research surrounding remaining useful life prediction [1].

Data-driven methods for remaining useful life prediction based on data typically
involve three steps, including degradation feature construction, degradation trend learning,
and remaining useful life estimation [2]. In the task of rolling bearing remaining useful
life prediction, the trend of rolling bearing remaining useful life degradation over time
needs to be better evaluated. Therefore, increasingly time-sensitive features need to be
extracted. Degradation feature construction uses a priori knowledge of rolling bearing
performance to extract sensitive degradation features from the monitoring data obtained.
At the current stage, rolling bearing vibration signal feature-extraction methods mainly
remove the signal features reflecting time, and remove the frequency domain waveform
characteristics from signals from the time and frequency domains. The methods also
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utilize other basic processes, such as root mean square and kurtosis. Although these
signal features can reflect the fault information in a bearing signal [3], they still have a
problem: insensitivity to the trend of decline of rolling bearings over time. The resonance
sparse decomposition method is a signal processing method proposed by Selesnick [4]
in 2011. The periodic vibration components generated by the regular bearing operation,
and the periodic shock component developed by the bearing failure, can correspond well
to high-resonance and low-resonance components generated under the decomposition of
bearing vibration signals by the resonance sparse decomposition algorithm. Compared
with the signal enhancement method, based on the vibration signal spectrum, the resonance
sparse decomposition algorithm can directly extract low-resonance components. These
contain more fault information from the vibration signal, avoid the limitation of spectrum
analysis, and are more suitable for processing nonlinear signals. Permutation entropy is a
method proposed by Bandt et al. [5] to detect the randomness and kinetic mutation of time
series, and it has good anti-transformation properties for mutated, non-smooth signals.
Mengjie Liu et al. [6] demonstrated that permutation entropy has an excellent ability to
characterize different faults occurring in rolling bearings by comparing the performance
of permutation entropy, approximate entropy, and Lempel–Zi complexity in bearing fault
diagnosis. However, permutation entropy can only evaluate the characteristic information
of the signal from a rolling bearing vibration on a single time scale, which may cause the
critical, distinct information to be insignificant. At this stage, the rolling bearing vibration
signal is complex, and an evaluation only from a single time scale can no longer reflect
its complete characteristic information. Ge et al. [7] proposed multiscale permutation
entropy combined with robust principal component analysis (RPCA), which can reflect
deeper features of the signal by setting different scale factors [8,9]. The diagnosis of bearing
faults can effectively detect and locate bearing faults. Ye et al. [10] proposed a feature-
extraction method, VMD-MPE. They demonstrated that MPE could represent the feature
information of rolling bearings by comparing experiments with VMD-MSE, VMD-MFE,
EMD-MPE, and WT-MPE. Du et al. [11] used MPE to extract fault features and combined it
with a self-organizing fuzzy classifier based on the harmonic mean difference (HMDSOF)
to classify the fault feature. The results confirmed the superiority of MPE. Not all the
feature information of the rolling bearing vibration signal is sensitive to the tendency
of the remaining useful life to decline over time. When using multiscale arrangement
entropy as an evaluation feature, the dimensionality of the multiscale permutation entropy
value increases as the scale factor increases. There will inevitably be insensitive feature
information in the multiscale arrangement entropy value, which affects the accuracy of the
remaining useful life prediction of the subsequent rolling bearing. Therefore, the multiscale
permutation entropy features extracted from the low-resonance component must be fused
to remove the redundant insensitive feature information. To change this situation, new
features must be designed to improve the accuracy of the remaining useful life prediction
of rolling bearings.

Deep learning has made a qualitative leap in feature learning and fitting capabilities
compared with machine learning algorithms in the context of big data. It can be relatively
easy to update model parameters in a real time according to the object being tested. Thus,
more accurate performance-degradation tracking can be achieved [12]. Based on deep
learning, algorithmic models which can predict remaining useful life, such as various
neural networks and their extensions, can theoretically be fitted with two layers of neural
networks to approximate arbitrary functions. Deep learning techniques such as deep belief
networks (DBNs) [13], recurrent neural networks (RNNs) [14], and convolutional neural
networks (CNNs) [15] have more powerful representational learning capabilities. They
have an ability to learn complex functions that map inputs to outputs directly from raw data
without relying entirely on hand-crafted features. Babu et al. [16] proposed a CNN-based
method for the RUL prediction of turbofan engines and demonstrated its superiority by
comparing it with traditional machine learning methods. Hinchi et al. [17] used CNNs and
long short term memory; in the study, CNNs were first used to extract local features from
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vibration signals, then LSTM networks were used for RUL prediction. Zhang et al. [18]
proposed a multiobjective DBN integration and used it to estimate the RUL of turbofan en-
gines. Zhu et al. [19] combined wavelet transforms and CNNs to predict the bearing RUL.
Yang Yu et al. [20] put forward a DCNN-based method to localize damages of smart build-
ing structures exposed to external harmful excitations. Ince et al. [21] used one-dimensional
CNNs for the real-time monitoring of motor faults. With complex and multisource-bearing
signals, the convolutional neural network feature-extraction operation cannot fully exploit
the feature information of a movement at a single time scale. The problem of information
loss may occur in convolutional neural networks during pooling, and this problem will be
further aggravated if the feature information extraction is incomplete. Therefore, feature
information needs to be extracted at more scales, and should make full use of the multiscale
feature information. Li et al. [22] proposed a fault diagnosis method based on the MPE and
the multichannel fusion convolutional neural network (MCFCNN). They verified that the
technique has high diagnostic accuracy, stability, and speed. Zhang et al. [23] proposed an
early fault detection method for rolling bearings based on a multiscale convolutional neural
network and a gated circular unit network (MCNN-AGRU), with an attention mechanism
which uses a multiscale data-processing method to make the features extracted by CNN
more robust. Hou et al. [24] proposed a multiscale convolutional neural network bearing
fault diagnosis method based on wavelet transform and a one-dimensional convolutional
neural network. Lv D et al. [25] proposed a rolling bearing fault diagnosis method based on
a multiscale convolutional neural network (MCNN) and decision fusion. Zhuang et al. [26]
proposed a rolling bearing fault diagnosis model based on one-dimensional multiscale deep
convolutional neural network. This can broaden and deepen the neural network, enabling
it to learn better and have more robust feature representations, while reducing network
parameters and the training time. Han et al. [27] proposed a multiscale convolutional
neural network (MSCNN) for rolling bearing fault feature extraction. They experimentally
demonstrated that MSCNN could learn more robust features than traditional CNN through
multiscale convolution operation expressions, reducing the number of parameters and the
training time. When feature information is extracted in a convolutional neural network, it
is generally fed into the fully connected layer for outputting the final result after simple
splicing. This operation weakens the correlation between the features and results in less
information for the model to learn. The attention mechanism [28] was proposed by the
Google team in 2017 to improve the learning ability of a model when the input sequence is
too long. The attention mechanism can attach great importance to the essential features so
that the model can focus more on the essential features and improve the model’s learning
ability. The attention mechanism can also improve the correlation of multiscale features.
The attention mechanism can also explore the correlation of multiscale features, enhance
the expression ability of the fused features, and improve the accuracy of the prediction of
the remaining useful life of rolling bearings.

In summary, feature extraction is a crucial step in predicting the remaining useful
life of rolling bearings. Improving the ability of features to express the declining trend
of the remaining useful life of rolling bearings over time is an effective way to improve
prediction accuracy. Therefore, resonant sparse decomposition and multiscale permutation
entropy methods are used to extract features that can accurately reflect the declining trend
of the remaining useful life of rolling bearings. The remaining life prediction model is
the main part of the prediction of the residual useful life of rolling bearings; learning the
degradation characteristics at a single scale can no longer meet the needs of current rolling
bearing residual life prediction demand. Therefore, a multiscale feature learning module
was added to the convolutional neural network to enhance the feature learning ability of
the model, and the attention mechanism was added to fuse the multiscale degradation
feature information, retain the correlation between the degradation feature information in
different time scales, and improve the model prediction accuracy.

Feature extraction is the key to predicting the remaining life of rolling bearings. Due to
the weak features of early-failure signals, it is challenging to extract sensitive information
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which reflects the bearings’ decline in performance, which affects the evaluation of the
health status of rolling bearings. This method can improve the sensitivity of features to
the decline trend of remaining useful life and predict the remaining life of rolling bearings
in advance, thus improving the prediction accuracy of the model. It provides an effective
technical means for the predictive maintenance of machines.

The main contents are as follows: Section 2 presents a multiscale fusion permuta-
tion entropy feature-extraction method; Section 3 presents a MACNN remaining useful
life prediction model; Section 4 presents our experimental validation; Section 5 presents
our conclusions.

2. Multiscale Fusion Permutation Entropy Feature Extraction

The MFPE-based bearing vibration signal feature-extraction method constructs a high-
dimensional, entropy-valued feature matrix by calculating the multiscale permutation
entropy values of the low-resonance components of rolling bearings. It fully reflects
the complexity and instability of the signals from multiple dimensions. The local linear
embedding (LLE) algorithm further removes redundant information. The overall method
makes up for the imperfect reflection of the characteristics extracted at a single scale on the
local trend of rolling bearing life decline and can better improve the prediction accuracy of
the remaining useful life of rolling bearings.

2.1. Resonance Sparse Decomposition Method

The resonance sparse decomposition method can analyze the resonance properties
of a signal. The wavelet basis function library was constructed by an adjustable quality
factor wavelet transform approach. The call was sparsely represented by the wavelet basis
function library according to the morphological analysis method, and the quality factor, Q,
was used as the evaluation method to separate the different components of the signal from
each other. When the quality factor, Q, was more extensive, it indicated that the movement
bandwidth was narrower, and the movement was in the form of high-resonance periodic
vibration. When the quality factor, Q, was smaller, it indicated that the bandwidth of the
movement was more expansive, and the movement was in the form of low-resonance
transient shock.

The high-resonance element corresponded to the component of continuous oscillation
in the movement, that is, the regular vibration movement generated when the bearing ran
smoothly. The low-resonance component corresponded to the regular shock component
in the movement, that is, the regular shock movement generated when the bearing had
regular failures. The low-resonance component can adequately reflect the characteristic
information in the movement caused by the fault.

The specific calculation steps of the resonance sparse decomposition algorithm are
as follows.

(1) Assume that the input movement is X = X1 +X2. Set the resonant sparse decom-
position parameters quality factor, Q1 and Q2, redundancy factor, r1 and r2, and
decomposition level, J1 and J2, according to the movement characteristics, and con-
struct the wavelet basis function library, S1 and S2.

(2) Select appropriate weighting coefficients, λ1 and λ2, according to the signal-to-noise
ratio index so that the different components in the signal can be separated effectively.
Set the optimization target as shown in Equation (1).

J(ω 1,ω2) =argmin
ω1,ω2

{‖X− S1ω1 − S2ω2‖+λ1‖ω1‖1+λ2‖ω2‖1} (1)

whereω1 andω2 are the matching coefficients of wavelet bases S1 and S2.
(3) The best-matching coefficientsω∗1 andω∗2 are obtained by solving the optimization

problem of Equation (1), and the high-resonance component X1 and the low-resonance
component X2 are obtained by combining the best-matching coefficientsω∗1 andω∗2
with the wavelet basis function library for calculation.
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2.2. Multiscale Permutation Entropy

Multiscale permutation entropy avoids the limitation of the permutation entropy
to evaluate the information of temporal characteristics of signals from a single scale by
coarsening the input signal, τ = 2. The coarse granulation treatment at the time is shown
in Figure 1.
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The specific calculation steps for multiscale permutation entropy are as follows.

(1) Suppose the input signal sequence is XN = {x1, x2, · · · , xN} Coarse granulation is
shown in Equation (2).

y(τ)
j =

1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N
τ

. (2)

where τ is the scale factor; y(τ)
j is the coarse-graining sequence.

(2) The coarse-grained sequence y(τ) phase space is reconstructed to obtain the multiscale
sequence, as shown in Equation (3).

Y(τ)
i =

{
y(τ)

i+1, y(τ)
i+s, · · · , y(τ)

i+(m−1)s

}
(3)

where Y(τ)
i is the multiscale sequence; m is the embedding dimension; s is the time

delay sparsity.
(3) Arrange the multiscale time series Y(τ)

i in ascending order and record the index
θj = {j1, j2, · · · , jm} of each short time series after the ascending order. There are m!
permutations of each short time series. Count the number of occurrences of each
permutation Nl and calculate the frequency of each permutation, as shown in Equation
(4).

P(τ)
l =

Nl
N/τ −m + 1

(4)

(4) The multiscale permutation entropy is obtained by calculating the permutation en-
tropy of the multiscale time series, as shown in Equation (5) [29].

MPE(τ)= −
m!

∑
l=1

P(τ)
l lnP(τ)

l (5)

2.3. Multiscale Fusion Permutation Entropy

The multiscale permutation entropy reconstructs the movement by coarse granulation
and phase space reconstruction operations. It can obtain the feature information of the
movement on different time scales. The problem of incomplete feature information on a
single dimension was improved. It can improve the accuracy of the remaining useful life
prediction. Due to the use of the sliding window slicing processing method to construct
the short time series matrix, a partial overlap of the movement was caused. Although this
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operation can enrich the feature information in the signal, it can also cause the redundancy
of features in the signals that are insensitive to the decline trend of the remaining useful
life of the rolling bearing. In turn, this causes feature redundancy in the high-dimensional,
multiscale permutation entropy feature matrix. Therefore, dimensionality reduction is
needed to retain the primary feature information in the high-dimensional feature matrix.

The specific steps of the multiscale fusion permutation entropy feature-extraction
method are shown below:

(1) The input data are known to comprise a multiscale permutation entropy matrix
MPEM =[E1, E2, · · · , Ez], which contains z-dimensional multiscale permutation en-
tropy vectors, and the objective is to reduce the multiscale permutation entropy matrix
to d dimensions. The k nearest neighbors of an entropy value ei(ei ∈ Ei) are found
according to the Euclidean distance. The linear relationship between the entropy
value ei and the k nearest neighbors are established after the k nearest neighbors are
found. The loss function is shown in Equation (6).

J(ω) =
m

∑
i=1

∥∥∥∥∥ei − ∑
j∈K(i)

ωijej‖2
2 (6)

where K(i) denotes the k nearest neighbor samples with an entropy value ei; ωij is
the linear weight coefficient, which is generally normalized to satisfy the condition
shown in Equation (7). For the entropy value of the k nearest neighbor samples that
are not in the entropy value ei, the weight coefficient will be made to be 0, and the
weight coefficient will be extended to the dimensionality of the whole dataset.

∑
j∈K(i)

ωij = 1 (7)

(2) Calculate the covariance matrix Zi in the space of k nearest neighbor samples, as
shown in Equation (8), and find the corresponding vector of weight coefficients Wi,
as shown in Equation (9).

Zi =
(
xi − xj

)(
xi − xj

)T (8)

Wi =
Z−1

i 1k

1t
kZ−1

i 1k
(9)

where 1k is a vector with the k-dimensional value of 1.
(3) The weight coefficient vector W is constructed as the weight coefficient matrix Wi,

from which the conditioned matrix M is calculated as shown in Equation (10).

M =(I−W)(I−W)T (10)

where I is the constraint that ensures that the entropy value retains the original feature
information as much as possible after dimensionality reduction. I = 1

s ∑s
i=1 yiy

T
i ; yi is

the fusion entropy value obtained after dimensionality reduction.
(4) Compute the first d + 1 eigenvalues of the conditional matrix M and compute the

eigenvector
{

y1, y2, · · · , yd+1
}

corresponding to these d + 1 eigenvalues.
(5) The matrix consisting of the second eigenvector y2 to the d + 1st eigenvector is the

multiscale fusion permutation entropy matrix, MFPE =
{

y2, y3, · · · , yd+1
}

, obtained
by dimensionality reduction.

3. MACNN Remaining Useful Life Prediction Model

The MACNN remaining useful life prediction model consists of a multiscale convo-
lutional learning module and a remaining useful life forecast module. In the MACNN
model, the multiscale fusion permutation entropy feature matrix was used as the input.
The detailed data were automatically learned and detected by constructing the multiscale
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convolutional learning module. The primary information for determining the remaining
useful life was fused and highlighted by a self-attentive mechanism and input into the
module for remaining useful life prediction.

3.1. Multiscale Convolution Module

A convolutional neural network is a feed-forward neural network, and the main
structure of a convolutional neural network is shown in Figure 2.
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(1) Convolutional layer:

Through feature extraction in the convolutional layer, a convolutional neural network
can capture the deep features of interconnections between the input data. In the conven-
tional layer, multiple convolution kernels are passed that are updated with model training.
The output feature matrix of the convolution layer is obtained by performing dot product
operations between convolution kernels and corresponding elements of the feature matrix
covered by convolution kernels. Each output feature matrix is calculated from multiple
input feature matrices of the previous convolutional layer. The output value al

j of the j-th
cell of the convolution layer l is shown in Equation (11), and the convolution calculation is
shown in Figure 3 [30].

al
j= f

bl
j + ∑

i∈Ml
j

al−1
j ∗k

l
ij

 (11)

where bl
j is the bias, k is the convolution kernel, and the parameters are updated when

feedback updates are performed after each round of model training.
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There are two problems in the convolution calculation process.

(1) The output feature matrix size declines after each convolution computation compared
with the input feature matrix. When the input feature matrix has a small size, or
multiple consecutive convolution calculations are executed, the amount of information
in the output feature matrix will be minimal, resulting in the loss of useful information
and altering the reliability of subsequent tasks.

(2) Edge features of the input feature matrix. The number of calculations is less, which
means that the edge information in the input feature matrix will be less involved in
the analysis of the final output result. It causes the edge information of input features
to be lost.

To solve these two problems, the input feature matrix is usually padded, and the main
padding operations are valid padding and same padding. Valid padding is used directly to
convolve the image with the convolution kernel of the input feature matrix. It is used when
the input feature matrix size is significant and needs to be reduced. The same padding
is used to restore the original size of the output feature matrix by padding 0. The output
feature matrix, after filling with valid and same padding, is shown in Figure 4.
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(2) ReLU layer:

It is essential to add an activation function after the convolutional layer to enhance the
nonlinear expression ability of the input movement and make the learned features more
distinguishable. In recent years, rectified linear unit (ReLU), which is the most widely
used activation unit, has been applied to CNNs to accelerate the convergence. Combined
with the backpropagation learning method to adjust parameters, the ReLU makes shallow
weights more trainable [31]. The ReLU function is calculated as shown in Equation (12),
and the function image is shown in Figure 5.

f(x)= max(0, x) (12)

The ReLU activation function has the following advantages:

(1) Smaller computation: Because the ReLU function does not involve complex operations,
it can save a lot of computation time and can improve the efficiency of the overall
network model.

(2) Prevent gradient decay: When the result of the activation function is small, training
parameters are updated to a lesser extent or are not updated. In contrast, the ReLU
function has a result of 1 in the activation function interval, avoiding this phenomenon.

(3) The overfitting phenomenon is mitigated, as shown in Figure 5. When the feature
value obtained after the calculation is less than zero, the ReLU activation function
will be assigned to zero. Although this may cause information loss, it also increases
the sparsity of the model, reduces the learning ability of the model, and enhances the
generalization ability of the model.
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The ReLU activation function performs poorly for data with more negative values in
input features. In the continuing life forecast for rolling bearings, the input data used are
all positive, and output target values are all greater than, or equal to, zero. Consequently, if
initialization weight parameters of the control model are more significant than zero, the
shortcomings of the ReLU activation function can be prevented, and the computational
efficiency and accuracy of the model can be improved.

(3) Pooling layer:

The pooling layer and the convolutional layer form the feature-extraction module.
The pooling layer can reduce the redundancy of the feature matrix and alleviate the
overfitting phenomenon. The activation value al

j in pooling layer l is calculated as shown
in Equation (13).

al
j= f

(
bl

j+β
l
jdown(a l−1

j , Ml
))

(13)

where bl
j is the bias; βl

j is the multiplicative remaining useful; Ml is the pooling window size;
down() denotes the pooling function; the commonly used pooling function is calculated as
shown in Figure 6.
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(4) Flatten layer:

The flatten layer converts the feature matrix output from the feature-extraction mod-
ule into a one-dimensional feature vector so that the features meet the input dimension
requirements of the subsequent, fully connected layers.

(5) Fully connected layer:

In a convolutional neural network, after feature-extraction operations such as convo-
lution and pooling, the output feature matrix is converted into a one-dimensional feature
vector by the flatten layer, which is input to the fully connected layer for classification
or prediction tasks. The fully connected layer in a convolutional neural network is the
same as a multilayer perceptron. The fully connected layer discovers the local information
contained in features. The structure of the fully connected layer is shown in Figure 7 and is
calculated as shown in Equation (14).

hn= ω1xn+bn
yn= f(ω2hn+bn)

(14)

whereω is the weight between each hidden layer, b is the bias, and f() is the activation function.

Entropy 2022, 24, x FOR PEER REVIEW 10 of 33 
 

 

3 6

4 7

1 4

7 8

2 2

2 4

1 2

3 4

Maximum value 

pooling 7 8

4 4

Average pooling 5 5

2.5 2.5

Probability matrix

0.2 0.3

0.2 0.4

0.1 0.2

0.4 0.4

0.2 0.2

0.2 0.4

0.1 0.4

0.3 0.4

Random pooling 6 8

2 3

 

Figure 6. Different pooling function calculation methods. 

(4) Flatten layer: 

The flatten layer converts the feature matrix output from the feature-extraction mod-

ule into a one-dimensional feature vector so that the features meet the input dimension 

requirements of the subsequent, fully connected layers. 

(5) Fully connected layer: 

In a convolutional neural network, after feature-extraction operations such as convo-

lution and pooling, the output feature matrix is converted into a one-dimensional feature 

vector by the flatten layer, which is input to the fully connected layer for classification or 

prediction tasks. The fully connected layer in a convolutional neural network is the same 

as a multilayer perceptron. The fully connected layer discovers the local information con-

tained in features. The structure of the fully connected layer is shown in Figure 7 and is 

calculated as shown in Equation (14). 

x1

x2

x3

x4

xn

h1

h2

h3

hn···

···

1 y1

y2

y3

y4

yn

···

2

 

Figure 7. The fully connected layer structure. Figure 7. The fully connected layer structure.

In the task of predicting the continuing life of bearings, the input is a one-dimensional
feature vector. So, a one-dimensional convolutional neural network model is used as
the base model for remaining useful life prediction. The one-dimensional convolutional
neural network convolution process is illustrated in Figure 8. Convolutional kernels of
dimensions (1, 4) and (1, 3) are used to convolve the input sequence under the condition of
the concurrent length of the same value, respectively. The input sequence is an ascending
sequence with fluctuations in the middle. From the convolution results, feature sequences
calculated by convolution kernels of different scales reflect the feature trends of the input
sequence differently. The feature sequence extracted from the convolution kernel of size (1,
4) reflects the increasing trend of the input sequence well but does not reflect the fluctuation
trend in the input sequence. The feature sequence extracted from the convolutional kernel
of size (1, 3) reflects the rising and fluctuating trends of the input features but does not
reflect either direction significantly.
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Figure 8. The one-dimensional convolutional neural network convolution process.

Convolutional neural networks often do not reflect the feature information well when
the feature extraction is performed on input features at a single scale. Therefore, a multiscale
convolutional module is proposed for feature learning, which consists of four conventional
modules with different convolution kernel sizes in parallel. Each convolutional module
consists of three layers, two ReLU activation layers, one BN layer, and one pooling layer [32],
as shown in Figure 9. With the multiscale convolution module, the resolution of the features
can be improved, which improves the remaining useful life prediction accuracy.
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Suppose xl−1 ∈ RH×1×C and kl ∈ RF×1×C×N denote the input vector and the
learnable convolutional kernel, respectively, where H denotes the input vector length, C
denotes the number of input channels, 1× F represents the size of the convolutional kernel,
and 1× F represents the number of convolutional kernels. Then, the n-th feature vector of
the l-th convolutional layer is shown in Equations (15) and (16).

xl
n = σ

(
ul

n

)
(15)

ul
n= kl

n∗xl−1+bl
n =

C

∑
c=1

kl
n,c∗xl−1

c +bl
n (16)

where σ(·) denotes the Relu activation function, ul
n denotes the output of the convolutional

layer, ∗ denotes the convolutional computation, kl
n denotes the n-th convolutional kernel of

the l-th convolutional layer, and bl
n denotes the bias.

In the multiscale convolution module, the pooling layer is set after the third convo-
lution layer. The main feature information learned is obtained by the maximum pooling
operation after passing through the convolution layer, as shown in Equation (17).

yl
n= Maxpooling

(
yl−1

n , p, s
)

(17)

where yl−1
n is the output of the n-th feature map, Maxpooling(·) denotes the maximum

pooling function, p denotes the pooling layer size, and s denotes the number of steps.
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3.2. Attentional Mechanisms

The attention mechanism is an algorithm inspired by the human visual attention
mechanism, which assigns different attention weights to each feature, thus allowing the
model to focus more on more critical features, as shown in Figure 10.
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The commonly used weight calculation methods in the attention mechanism are addi-
tive, dot product, and scaled dot product bilinear calculations, as shown in Equation (18).

Point product calculation s(K i , Q) = ki
Tq (18)

where Q is the state of the last time step when the model performs time series prediction. K
is the state of each time step when the model performs time series prediction. s(Ki, Q) is
the attention weight calculation mechanism that calculates the correlation between Q and
K. d is the dimensionality of the data in the time step. αi is the estimated attention weight,
which suggests the importance of the time step to the overall time series feature expression
importance; V is the same as K, which suggests the state of each time step when the model
performs time series prediction.

3.3. Remaining Useful Life Prediction Module

The remaining useful life prediction module consists of the attention module and
the fully connected neural network. The attention module is constructed to effectively
fuse the feature information learned by the multiscale convolutional module and highlight
the part of it that is relevant to the remaining useful life. As shown in Figure 11, features
extracted by the multiscale convolution module are used as the input of the remaining
useful life prediction module, assuming that zl

n ∈ RI×1×J denotes the input feature vector;
αl ∈ RI×1×J indicates the attention weight, where I is the length of the feature vector;
J = N × C indicates the number of feature vectors. The attention module features are
fused, as shown in Equation (19).

z̃l= αl ⊗ zl−1= Φ
(

zl−1
)
⊗ zl−1 (19)
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where ⊗ denotes the corresponding element multiplication operation in the matrix,
z̃l ∈ RI×1×J is the fused eigenvector, φ(·) indicates the attention weight calculation function,
and the scaled dot product calculation function is used in this paper.
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Finally, the fused feature vectors are input to the fully connected neural network for
remaining useful life prediction. The fully connected neural network in this paper contains
two hidden layers containing 64 and 128 nodes, respectively. The fully connected neural
network prediction is calculated in Equation (20).

hn
m= ωn

nz̃l+bm

yp= f(ωn
nhn

m+bm

) (20)

whereωn
m denotes the weight of the n-th node of the m-th hidden layer, hn

m is the output
of the n-th node of the m-th hidden layer, f(·) represents the activation function after the
hidden layer, and yp is the final predicted output.

3.4. Model Parameters and Structure

The MACNN remaining useful life prediction model of rolling bearings is built on
a multiscale feature-extraction module with an attention mechanism. The overall model
first uses a convolution kernel of size (1, 1) to extract the shallow features of the input data.
Then, four convolution modules are used to remove the deep features at different scales,
respectively. Because of the large number of parameters in the overall model, to prevent the
model from overfitting, the remaining join is used to stitch the shallow features with the
extracted deep features. Spliced multiscale features are input into the attention fusion layer
to obtain the fused attention feature vector, which is input to the fully connected layer to
obtain the final prediction results. The specific parameters of the overall model are shown
in Table 1, and the model structure is shown in Figure 12.

Table 1. MACNN structural parameters.

Layer Name Convolution Kernel Size Number of
Convolution Kernels Layer Name Convolution Kernel Size

Convolutional layer 1 1 × 1 1 Convolutional layer 3–2 2 × 2
Convolutional layer 2–1 2 × 2 1 Convolutional layer 3–3 3 × 3
Convolutional layer 2–2 3 × 3 1 Convolutional layer 3–4 4 × 4
Convolutional layer 2–3 4 × 4 1 Convolutional layer 3–5 5 × 5
Convolutional layer 2–4 5 × 5 1
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3.5. Overall Methodology Flow

The rolling bearing remaining useful life prediction model using the MFPE–MACNN
adequately reflects the complexity and instability of the movement from multiple dimen-
sions. The overall method makes up for a defect: the features extracted at a single scale
do not fully reflect the local trend of decline of the life of rolling bearings. It can improve
the accuracy of the remaining useful life prediction for rolling bearings. Based on the
construction of the multiscale fusion permutation entropy with low-resonance components
as features for assessing the bearing life decline trend, the multiscale feature-extraction
module and the attention mechanism are added to the one-dimensional convolutional
neural network to enhance the learning ability of the model for multiscale features. A
multiscale attentional convolutional neural network rolling bearing remaining useful life
prediction model is built. The overall method flow chart is shown in Figure 13, and the
specific steps are as follows.
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Step 1: The resonant sparse decomposition of the input movement sequence as
XN = {x1, x2, · · · , xN} yields the high-resonance component and the low-resonance component.

Step 2: The short time series multiscale permutation entropy values are calculated to
the entropy matrix MPEM =[E1, E2, · · · , Ez] for the low-resonance components.

Step 3: Find the nearest neighbor with entropy value k and calculate the covariance
matrix Zi and the corresponding weight coefficient vector Wi in the sample space of the k
nearest neighbors.

Step 4: Construct the weight coefficient vector Wi into the weight coefficient matrix W,
and use it to calculate the conditioned matrix M.

Step 5: Calculate the first d + 1 eigenvalues of the conditioned matrix M and calculate
the eigenvector

{
y1, y2, · · · , yd+1

}
corresponding to these d + 1 eigenvalues.

Step 6: The matrix consisting of the second eigenvector y2 to the d + 1st eigenvector is
the multiscale fusion permutation entropy matrix MFPE =

{
y2, y3, · · · , yd+1

}
obtained by

dimensionality reduction.
Step 7: Determine the size of multiple convolutional kernels, select the loss function,

select the activation function, and determine the number of layers of the multiscale convolu-
tional kernel for the remaining useful life prediction model of the multiscale convolutional
neural network.

Step 8: Incorporate the attention mechanism into the remaining useful life prediction
model of the multiscale convolutional neural network to form the remaining useful life
prediction model of the multiscale convolutional attention neural network.

Step 9: The extracted feature matrix MFPE =
{

y2, y3, · · · , yd+1
}

of the training set is
input to the remaining useful life prediction model of the multiscale convolutional attention
neural network to obtain the output error, and the error is backpropagated to update the
prediction model parameters.
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Step 10: After the parameters of the prediction model are updated to reach the opti-
mal requirements, the test set is input to the MACNN prediction model to complete the
prediction of the remaining useful life of the rolling bearing.

4. Experiments
4.1. Simulation Experiment Validation

To verify the effectiveness of the proposed feature enhancement and feature-extraction
method, a feature extraction simulation experiment was set up. The simulation movement
was composed of the superimposed shock movement and the modulated movement.
The sub-constructions of the shock movement and the modulated movement are shown
in Equations (21) [33] and (22). To simulate the failure of the bearing under operating
conditions in order to find the best method for extracting the bearing vibration signal
features, the sampling frequency was set to 8192 Hz, and the number of sampling points
was set to 4096.

y = y0e−2πgfnt0 sin

(
πfn

√
(1− g 2

)
(t 0 − KT)

)
(21)

x =(1 + cos(2πfrt)) cos(2πfzt) (22)

where y0 is the displacement constant, set to 5; g is the damping coefficient, set to 0.5; fn
is the intrinsic frequency, set to 1000 Hz; t0 is the single-cycle sampling interval; K is the
number of repetitions of the shock movement; T is the repetition period, set to 0.025 s; fr is
the amplitude modulation frequency, set to 70 Hz; fz is the carrier frequency, set to 560 Hz.

The time and frequency domain diagrams of the shock movements are shown in
Figures 14 and 15, respectively.
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Figure 15. Shock signal spectrogram.

The time domain diagram and envelope spectrum of the synthesized original data are
shown in Figures 16 and 17.
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Figure 18. High-resonance component of the simulated signal. 

Figure 17. Simulated signal envelope spectrum.

The sparse decomposition high-resonance quality factor, Q1, was set to 3; redundancy,
r1, was set to 3; the number of decomposition layers, J1, was set to 27; the low-resonance
quality factor, Q2, and the redundancy, r2, were set to 3; the number of decomposition
layers, J2, was set to 7 [34]. The high-resonance component retrieved after decomposition
and the moderate-resonance components are depicted in Figures 18 and 19, respectively.
As shown in Figure 18, the high-resonance component is mainly the periodic oscillation
component in the simulated signal. As shown in Figure 19, the low-resonance component
principally contains the shock features in the simulated signal.
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Figure 20. High-resonance component envelope spectrum. 

Figure 19. Low-resonance component of the simulated signal.

The envelope spectra of the high-resonance component and the low-resonance compo-
nent are analyzed as shown in Figure 20. The overall trend of the envelope spectrum of
the high-resonance component is no different compared to the simulated signal envelope
spectrum, except for a slight decrease in amplitude. The overall amplitude of the shock
component in the low-frequency band is not prominent, and features reflecting the decline
in the remaining useful life of the bearing cannot be better extracted in the subsequent
feature extraction. As shown in Figure 21, the overall amplitude of the low-resonance com-
ponent envelope spectrum decreases compared with the broad simulated signal envelope
spectrum. However, the fault shock component in the low-frequency band of the envelope
spectrum is more evident in the low-frequency band.
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Figure 21. Low-resonance component envelope spectrum.

The multiscale permutation entropy matrix of signals with low-resonance components
was calculated, and the obtained multiscale permutation entropy matrix is shown in
Figure 22.
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Figure 22. Simulated signal multiscale permutation entropy matrix.

Using the locally linear embedding algorithm, the high-dimensional multiscale align-
ment entropy value matrix is downscaled to a one-dimensional vector. The multiscale fused
permutation entropy feature vector reflecting the remaining useful life decline trend is
obtained, as shown in Figure 23. The red curve facilitates the observation of the multiscale
fusion permutation entropy trend feature curve. The envelope of the multiscale fusion
alignment entropy characteristic curve is drawn. With the occurrence of bearing failure,
the remaining useful life of the bearing declines over time. The overall multiscale fusion
permutation entropy value shows an increasing trend and negatively correlates with the
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remaining useful life. Due to the more intensive frequency of the impact fault signal in the
simulation signal, the multiscale fusion alignment entropy value fluctuates more.
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4.2. Cincinnati Data Validation

To verify the proposed method effectiveness, the Cincinnati open data were used
as experimental data [35]. Features were extracted as input using the multiscale fusion
alignment entropy feature-extraction method. Then, degradation features among them
were removed by the depth of the convolution module in each scale of the model. Bearing
degradation features were received by the attention fusion. Finally, the life prediction
results were received by the fully connected layer. The test stand was fitted with four
Rexford ZA-2115 bearings, each with 16 rollers in the raceway. The roller diameter was
0.331 cm, the pitch diameter was 2.815 cm, the contact angle was 15.17◦, the speed was
2000 r/min, and the radial load was 26.66 KN. One acceleration sensor was installed on
the axial and radial direction of each bearing, and the sampling frequency was 20 kHz, as
shown in Figure 24.
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According to characteristics of the input data, the parameters of this experiment were
set as shown in Table 2.
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Table 2. Experimental validation of model parameter settings.

Parameter Name Parameter Value Parameter Name Parameter Value

Input layer size (1, 12) Loss function MSE
Output layer size (1, 4096) Optimizer Adam
Training set size (123, 1, 12) Dropout layers 1

Test Set Size (256, 1, 12) Number of training sessions 100
Number of hidden layers 1 Batch size 12

Learning Rate 0.005 Activation function ReLU

Only the No. 3 and No. 4 bearings were destroyed in the first experimental data stage
in Cincinnati: the No. 3 bearing was destroyed in the inner ring, and the No. 4 bearing was
destroyed in the rolling element. Therefore, in this paper, the No. 3 bearing was chosen
to analyze the time domain and frequency domain plots to verify the effectiveness of the
proposed RUL prediction method. The time domain and spectrum plots are shown in
Figure 25.
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Figure 25. No. 3 bearing time and frequency diagram. (a) Time domain diagram of bearing No. 3;
(b) bearing No. 3 spectrogram.

The resonance showed sparse decomposition after preprocessing the vibration data of
the No. 3 bearing. The low-resonance component, containing more impact fault informa-
tion, was selected for the subsequent feature-extraction operation, as shown in Figure 26a,b.
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Figure 26. Resonant sparse decomposition results for bearing No. 3. (a) No. 3 bearing high-resonance
fraction; (b) No. 3 bearing low-resonance component.
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After decomposing to obtain low-resonance components, the calculation of multiscale
permutation entropy was performed. The multiscale permutation entropy feature matrix
was obtained, as shown in Figure 27. The LLE was used to reduce and fuse the high-
dimensional entropy matrix to obtain multiscale fused permutation entropy values, as
shown in Figure 28.

Entropy 2022, 24, x FOR PEER REVIEW 23 of 33 
 

 

Figure 26. Resonant sparse decomposition results for bearing No. 3. (a) No. 3 bearing high-reso-

nance fraction; (b) No. 3 bearing low-resonance component. 

After decomposing to obtain low-resonance components, the calculation of mul-

tiscale permutation entropy was performed. The multiscale permutation entropy feature 

matrix was obtained, as shown in Figure 27. The LLE was used to reduce and fuse the 

high-dimensional entropy matrix to obtain multiscale fused permutation entropy values, 

as shown in Figure 28. 

 

2
1000

3

4

15

E
nt

ro
p

y

5

Time

6

500 10

Scale factor

7

5

0 0

3

3.5

4

4.5

5

5.5

6

 

Figure 27. Multiscale permutation entropy feature matrix of No. 3 bearing. 

 

0 100 200 300 400 500 600 700 800 900 1000
Time

5.3

5.32

5.34

5.36

5.38

5.4

5.42

E
nt

ro
p

y 

 

Figure 28. No. 3 bearing: MFPE feature. 

The MACNN-based bearing life model was built, and the MFPE feature matrix size 

was reconstructed to (992, 1, 12) to meet the model input and training needs. MFPE fea-

tures were input into the built MACNN life prediction model, and the prediction results 

were obtained, as shown in Figure 29a. The prediction results of the CNN model, MCNN 

model, and attention–CNN model are shown in Figure 29b–d, respectively. Since the bear-

ing life was not given in the Cincinnati dataset, the normalized remaining useful life was 

used to represent the remaining useful life. 

Figure 27. Multiscale permutation entropy feature matrix of No. 3 bearing.

Entropy 2022, 24, x FOR PEER REVIEW 23 of 33 
 

 

Figure 26. Resonant sparse decomposition results for bearing No. 3. (a) No. 3 bearing high-reso-

nance fraction; (b) No. 3 bearing low-resonance component. 

After decomposing to obtain low-resonance components, the calculation of mul-

tiscale permutation entropy was performed. The multiscale permutation entropy feature 

matrix was obtained, as shown in Figure 27. The LLE was used to reduce and fuse the 

high-dimensional entropy matrix to obtain multiscale fused permutation entropy values, 

as shown in Figure 28. 

 

2
1000

3

4

15

E
nt

ro
p

y

5

Time

6

500 10

Scale factor

7

5

0 0

3

3.5

4

4.5

5

5.5

6

 

Figure 27. Multiscale permutation entropy feature matrix of No. 3 bearing. 

 

0 100 200 300 400 500 600 700 800 900 1000
Time

5.3

5.32

5.34

5.36

5.38

5.4

5.42

E
nt

ro
p

y 

 

Figure 28. No. 3 bearing: MFPE feature. 

The MACNN-based bearing life model was built, and the MFPE feature matrix size 

was reconstructed to (992, 1, 12) to meet the model input and training needs. MFPE fea-

tures were input into the built MACNN life prediction model, and the prediction results 

were obtained, as shown in Figure 29a. The prediction results of the CNN model, MCNN 

model, and attention–CNN model are shown in Figure 29b–d, respectively. Since the bear-

ing life was not given in the Cincinnati dataset, the normalized remaining useful life was 

used to represent the remaining useful life. 

Figure 28. No. 3 bearing: MFPE feature.

The MACNN-based bearing life model was built, and the MFPE feature matrix size
was reconstructed to (992, 1, 12) to meet the model input and training needs. MFPE features
were input into the built MACNN life prediction model, and the prediction results were
obtained, as shown in Figure 29a. The prediction results of the CNN model, MCNN model,
and attention–CNN model are shown in Figure 29b–d, respectively. Since the bearing life
was not given in the Cincinnati dataset, the normalized remaining useful life was used to
represent the remaining useful life.
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Figure 29. Prediction results of different models, (a) MACNN model prediction results; (b) CNN model
prediction results; (c) MCNN model prediction results; (d) attention–CNN model prediction results.

The prediction results shown in Figure 29 show that the overall life prediction per-
formed by the MACNN model was better. The general trend was the same as the actual
life curve, and the life prediction value deviated less from the actual value. Compared with
the MACNN life prediction model, the MCNN model deviated from the predicted trend
at the end of the bearing life, and the overall model deviated from the actual value. The
CNN model and attention–CNN model failed to reflect the actual bearing life trend at the
end of the bearing life, and the overall life prediction value deviated from the actual value.
The life prediction result comparison between different models showed that the overall
performance of the CNN model was improved by adding the multiscale feature-extraction
module. The attention mechanism can bring the life prediction results closer to the actual
values and improve the accuracy of life prediction.

Three metrics, MAE, RMSE, and model score, were used to quantitatively analyze
the model prediction results, as shown in Table 3 and Figure 30. It can be seen that the
MACNN model improved by 12.47%, 39.07%, and 22.54% in total score compared with
the MCNN model, CNN model, and attention–CNN model, respectively. It shows that
the MACNN model had better prediction accuracy and comprehensive performance in
life prediction. The MAE evaluation index and the MSE evaluation index were reduced
by 45.31%, 57.94%, and 52.86% compared with those of the MCNN model, the CNN
model, and the attention–CNN model. These data show that the MACNN model has better
generalization ability.
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Table 3. Predictive performance metrics for different models.

Models MAE RMSE Score

MACNN 0.05361817 0.06643362 102.16
MCNN 0.10571001 0.12147898 90.83
CNN 0.14271978 0.15796721 73.46

Attention–CNN 0.12339631 0.14092635 83.37
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4.3. XJTU-SY Bearing Data Validation

The XJTU-SY bearing dataset [36] was used for the experimental validation. This
empirical dataset was collected by the empirical bench shown in Figure 31. The empirical
bench mainly contained a motor speed controller, an acceleration sensor, a hydraulic loading
system, the AC motor, and other components. The experimental bench can simulate various
working conditions by adjusting the load and the speed.
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As shown in Figure 32, in the experiment, the bearing data were collected by the
acceleration sensors in horizontal and vertical directions. Two PCB 352C33 accelerometers
were positioned at 90◦ to monitor the degradation of the bearings. The sampling frequency
was set to 25.6 kHz, the sampling interval was set to 1 min, and the duration of each
sampling was 1.28 s.
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Figure 32. Vibration signal sampling settings.

The experimental bearings were LDK UER204 rolling bearings, whose relevant pa-
rameters are shown in Table 4. The failure locations were labeled on different bearings.
The experiments were designed with three types of working conditions, containing four
types of faults, as shown in Figure 33, with five bearings under each kind of working
condition. The specific experimental data are shown in Table 5. Bearing1_1 data were used
as the model validation set, and Bearing1_2 data were used as the model training set in the
experimental validation.

Table 4. LDK UER204 bearing parameters.

Parameter Name Numerical Value Parameter Name Numerical Value

Inner ring raceway
diameter—mm 29.30 Ball diameter—mm 7.92

Outer ring raceway
diameter—mm 39.80 Number of balls 8

Bearing mid
diameter—mm 34.55 Contact angle—(◦) 0

Basic dynamic load
rating—N 12820 Basic static load

rating—KN 6.65
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Table 5. XJTU-SY bearing data information list.

Work Conditions Dataset Total Number
of Samples L10 Actual Life

Span

1

Bearing1_1 123

5.600~9.677 h

2 h 3 min
Bearing1_2 161 2 h 41 min
Bearing1_3 158 2 h 38 min
Bearing1_4 122 2 h 2 min
Bearing1_5 52 52 min

2

Bearing2_1 491

6.786~11.726 h

8 h 11 min
Bearing2_2 161 2 h 41 min
Bearing2_3 533 8 h 53 min
Bearing2_4 42 42 min
Bearing2_5 339 5 h 39 min

3

Bearing3_1 2538 8.468~14.632 h 42 h 18 min
Bearing3_2 2496 41 h 36 min
Bearing3_3 371 data 6 h 11 min
Bearing3_4 1515 data 25 h 15 min
Bearing3_5 114 data 1 h 54 min

The feature-extraction operation was performed on the collected data. Firstly, the data
resonance sparse decomposition was processed, as shown in Figure 34a,b.
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Figure 34. Bearing1_1 resonant sparse decomposition results: (a) Bearing1_1 high-resonance frac-
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Figure 34. Bearing1_1 resonant sparse decomposition results: (a) Bearing1_1 high-resonance fraction;
(b) Bearing1_1 low-resonance component.

From Figure 35a,b, it can be seen that the characteristic information in the low-
resonance component is more prominent. Although the overall amplitude of the low-
resonance components obtained after the resonance sparse decomposition decreased, the
feature information in the signal was more prominent. The ratio of frequency components
from the 200 Hz–1000 Hz frequency interval to the highest frequency component became
smaller, and the feature information in these frequency bands can be better extracted.

The low-resonance component of the resonance sparse decomposition was selected,
and the multiscale permutation entropy value of the low-resonance component was cal-
culated. The multiscale permutation entropy matrix was obtained, as shown in Figure 36.
As the remaining useful life of the bearing declined, the multiscale permutation entropy
value showed a significant upward trend. Additionally, the corresponding amplitude in
the bearing vibration signal rose stepwise. This reflects the occurrence of severe bearing
degradation well.
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features occurred when the bearing was severely degraded. 

Figure 36. Multiscale permutation entropy matrix.

MFPE features were obtained by fusing the high-dimensional entropy matrix using
the LLE dimensionality reduction algorithm, as shown in Figure 37. MFPE features can
reduce the feature redundancy while retaining the primary remaining useful life trend
information in the multiscale permutation entropy matrix. The same step-up in the MFPE
features occurred when the bearing was severely degraded.
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Figure 37. MFPE feature curve.

The MACNN-based bearing life prediction model was constructed, and the MFPE fea-
ture matrix size was reconstructed to (992, 1, 12) to meet the model input and training needs.
The MFPE features were input into the MACNN life prediction model, and the prediction
results were obtained as shown in Figure 38a. The prediction results of the CNN model,
the MCNN model, and the attention–CNN model are shown in Figure 38b–d, respectively.

From the life prediction results, it can be seen that the general life prediction of the
MACNN model was better. The overall trend was the same as the actual life curve, and
the life prediction value deviated less from the actual value. Compared with the MACNN
life prediction model, the MCNN model deviated from the predicted trend at the end
of the bearing’s life, and the overall variation of the model from the actual value was
more significant. The CNN model and the attention–CNN model failed to reflect the
actual bearing life trend at the end of the bearing’s life, and the overall life prediction
value deviated from the actual value. A comparison of the life prediction results between
the different models showed that the overall performance of the CNN model improved
with the addition of the multiscale feature-extraction module. The attention mechanism
can bring life prediction results closer to the real values and improve the accuracy of the
life prediction.

Three metrics, MAE, RMSE, and model score, were used to quantitatively analyze the
models’ prediction results, as shown in Table 6 and Figure 39. From Table 6, it can be seen
that the MACNN model improved by 13.17%, 51.01%, and 25.36% in total score compared
with the MCNN model, the CNN model, and the attention–CNN model, respectively. These
data show that the MACNN model has better accuracy and comprehensive performance in
predictions of remaining useful life. Compared with the MCNN model, the CNN model,
and the attention–CNN model, the MAE evaluation index was reduced by 9.91%, 37.41%,
and 32.5%, respectively. These data show that the MACNN model has a better fitting ability.
In the RMSE evaluation index, it was reduced by 15.03%, 41.98%, and 38.02% compared
with the MCNN model, the CNN model, and the attention–CNN model, respectively.
These data show that the MACNN model has better generalization ability.
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Figure 38. Prediction results of remaining useful life of bearings for different models: (a) MACNN
model prediction results; (b) CNN model prediction results; (c) MCNN model prediction results; (d)
attention–CNN model prediction results.

Table 6. Predictive performance metrics for different models.

Models MAE RMSE Score

MACNN 5.47256352 6.60530615 112.56
MCNN 6.07436166 7.77735746 99.46
CNN 8.74338361 11.38403952 74.54

Attention–CNN 8.10761687 10.65662429 89.79

To further demonstrate the effectiveness of the proposed method, the method was
compared and validated with different RUL methods from three studies. The specific
results are shown in Table 7.

Table 7. Comparison of different RUL models.

Author Method MAE

This paper MFPE−MACNN 5.47256
Xiaodong Yang et al. [37] Fusion–CNN 8.5176
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Figure 39. Graphical representation of prediction performance indicators of different models.

As presented in Table 7, a fused CNN-based method for predicting the remaining
life of rolling bearings was proposed in [37], and the MAE was 8.5176 by studying the
accelerated life dataset from a test of XJTU-SY rolling bearings. This study used the MFPE
combined with resonant sparse decomposition, then used the MACNN prediction model
for the remaining useful life, and the MAE was 5.47256. Compared with other methods,
the MFPE–MACNN model has improved fitting ability and prediction accuracy.

5. Conclusions

In this paper, an MFPE–MACNN model was proposed for the prediction of the remain-
ing useful life of rolling bearings. This study solved the problem posed by the fact that the
convolution-based deep learning model complicates the extraction of feature information
from complex time series. The problem of redundant information concerning rolling bear-
ing recession features was removed. The prediction accuracy of the rolling bearing life was
improved. The multiscale fusion permutation entropy-based feature-extraction method ex-
tracts the MFPE features with low-resonance components, quantifies the evaluation signal
time complexity, and reflects the decline trend of the remaining useful life. The remaining
useful life prediction model for rolling bearings, based on the multiscale convolutional
attention neural network, can extract the feature information of MFPE features at different
time scales, fuse multiscale features, improve the fitting ability of the model, and reduce
the prediction bias. The XTJU-SY rolling bearing complete lifecycle dataset was used for
experimental validation and compared with other remaining useful life prediction models.
Compared with the MCNN model, the CNN model, and the attention–CNN model, the
MAE evaluation index was reduced by 9.91%, 37.41%, and 32.5%, respectively. The RMSE
evaluation index was reduced by 15.03%, 41.98%, and 38.02% compared with the MCNN
model, the CNN model, and the attention–CNN model, respectively, indicating that the
MACNN model has improved fitting ability and generalization ability. The prediction
error of the MACNN model occurs within 5 min, which means that researchers can better
capture the information of life decline characteristics, with suitable accuracy for remaining
useful life prediction.

The limitation of this article is that the overall effect of the proposed feature extraction
fluctuates wildly when the bearing operating conditions are more complex, which may lead
to significant deviations in the prediction of subsequent remaining useful life prediction
models. In future research, a more stable feature-extraction method will be investigated to
evaluate the remaining useful life of rolling bearings. Another shortcoming is that the pro-
posed prediction model for the remaining useful life of rolling bearings has more training
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parameters and the model training time is longer. The model needs to be retrained after
changing the bearing type or working conditions. In future research, the migration learning
method will be used to solve this problem, and to improve the overall generalization and
prediction efficiency of the model.
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