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Abstract: The connection between users in social networks can be maintained for a certain period
of time, and the static network structure formed provides the basic conditions for various kinds
of research, especially for discovering customer groups that can generate great influence, which
is important for product promotion, epidemic prevention and control, and public opinion super-
vision, etc. However, the computational process of influence maximization ignores the timeliness
of interaction behaviors among users, the screened target users cannot diffuse information well,
and the time complexity of relying on greedy rules to handle the influence maximization problem
is high. Therefore, this paper analyzes the influence of the interaction between nodes in dynamic
social networks on information dissemination, extends the classical independent cascade model to
a dynamic social network dissemination model based on effective links, and proposes a two-stage
influence maximization solution algorithm (Outdegree Effective Link—OEL) based on node degree
and effective links to enhance the efficiency of problem solving. In order to verify the effectiveness of
the algorithm, five typical influence maximization methods are compared and analyzed on four real
data sets. The results show that the OEL algorithm has good performance in propagation range and
running time.

Keywords: influence maximization; dynamic social networks; effective link; independent cascade
model

1. Introduction

With the rapid development of social networks, more and more people use Weibo,
WeChat, Twitter, Facebook and other social software to carry out information exchange,
product promotion [1], public opinion propaganda [2] and other activities, which bring
great convenience to people’s productive life. Viral marketing [3], which is carried out
especially in social networks using the word-of-mouth effect, can quickly enable a large
number of customers to learn about and buy products through social connections, maximiz-
ing the benefits for businesses. The core problem of this process is to find the target group
with good communication characteristics, and with the help of the relationship network
formed among users, more and more users receive the product and achieve the maximum
promotion of the product, and this process is the problem of maximizing influence.

Currently, the main approach to influence maximization problem research is to abstract
social networks as static structures, ignoring the fact that the interactions between users
change over time. In particular, in some special network structures, such as telephone
communication, email transmission, and transportation networks, users do not maintain
connections with each other all the time, but only connect at a certain moment or time
period, which fully demonstrates that the connection between users in social networks is
time sensitive. As a result, the traditional research methods cannot be applied to influence
maximization in dynamic social networks, and the research on such problems will face the
following challenges.
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• The traditional propagation models mainly focus on the study of information diffusion
in static networks, which cannot reflect the changes of node interaction in dynamic
social networks well;

• The spread of influence should conform to the timeliness of the connection between
users in social networks, and the diffusion mechanism can only play a role in the
effective stage;

• The weight indicator to measure the mutual influence among users in social networks
should be combined with the time factor.

In view of the above problems, the main contributions of this paper include the
following aspects.

1. The functions of out-degree neighbors and in-degree neighbors in social networks
are refined, and the influence probability between users is reset according to the
topological relationship between users’ direct neighbors and indirect neighbors;

2. The traditional independent cascade model is improved by taking dynamic social
networks as the research object, and the time-based propagation model is proposed
by combining the effective number of connections between users;

3. A two-stage influence maximization algorithm, Outdegree with Effective Link (OEL),
is proposed to solve the problem of selecting seed nodes on dynamic social networks
by combining submodular properties;

4. The effectiveness of the OEL algorithm is verified by experimental comparison.

The rest of the article is organized as follows: In Section 2, we discuss some of
the work related to maximizing influence. In Section 3, related concepts, propagation
models and setting methods of influence probability among users of social networks are
introduced around dynamic social networks. In Section 4, we first propose a time-series
based propagation model to measure the process of information transmission in dynamic
social networks. Secondly, a two-stage dynamic social network influence maximization
algorithm, OEL, is developed to achieve target seed node screening. In Section 5, we
use the proposed algorithm on real data sets to realize the selection of seed nodes in the
influence maximization problem. Through comparative analysis with other methods, we
demonstrate the advantages of the algorithm in the propagation range and time efficiency.
Finally, in Section 6, we summarize the work and propose the research plan for the next step.

2. Related Works

Domingos and Richardson [4] analyzed the characteristics of information transmission
in social networks for the first time and proposed the issue of influence maximization.
Kempe [5] defined the influence maximization problem as a discrete optimization prob-
lem and proved that the influence maximization problem is an NP-hard problem in the
Independent Cascade (IC) model and Linear Threshold (LT) model. A greedy algorithm is
proposed to solve this kind of problem, and an approximate optimal solution of 1-1/e-ε can
be obtained. Because a greedy algorithm needs Monte Carlo simulation for many times,
the algorithm runs for a long time. In order to improve the operating efficiency of the
algorithm, Leskovec et al. [6] proposed the CELF (cost-effective lazy-forward) algorithm to
reduce the number of Monte Carlo simulations using the submodular property, and the
experimental results proved that the speed was nearly 700 times faster than the greedy
algorithm. In addition, many researchers have proposed heuristic algorithms [7–11], which
further improve the efficiency of the algorithm. The two representative approaches are
the degree centrality algorithm [12] and the betweenness centrality algorithm [13]. These
two algorithms analyze the importance of nodes in social networks from the global scope
and the local scope, respectively. The degree centrality algorithm ignores the difference
of directly adjacent nodes and only pays attention to their number, which leads to the
inability to distinguish important nodes well, such as nodes with the same degree, and
it is more important to include nodes with greater propagation ability in the neighbors.
Because the degree attribute of the nodes in the social network exhibits the characteristics
of power-law distribution, the nodes with a high number of heights are distributed in a
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concentrated manner, which leads to the centrality algorithm not being able to deal with
the overlapping influence problem well. The betweenness centrality algorithm analyzes
the importance of nodes in the process of information dissemination from the global scope
according to the number of shortest paths passing through nodes in the network. However,
the algorithm restricts the information to be propagated through the shortest path, which
does not conform to the law of social network information propagation, and the calculation
process requires knowledge of the overall network structure information, resulting in low
computational efficiency and is unsuitable for large-scale social networks. In order to
avoid the drawbacks of the above methods, many heuristic methods have been proposed
from different perspectives, including a heuristic algorithm based on k-kernel proposed
by Cao Jiuxin et al. [14]. It improves the operation efficiency and covers many important
nodes, but the operation effect is sometimes not ideal. Li Minjia et al. [15] proposed a
maximization algorithm (SHDD) based on structural hole and degree discount, which
integrated the structural hole idea and centrality idea into the influence maximization
problem. J Zhao et al. [16] discussed the identification of influential nodes in unweighted
networks, and proposed a measure of node importance, which not only considers its own
node importance, but also the influence of other connected nodes. The algorithm conducts
propagation experiments on the SI model and obtains a similar effect to the Closeness
Centrality algorithm. Han Zhongming et al. [17] proposed an effective node influence
measurement model (local triangle centrality—LTC) based on the triangle structure be-
tween nodes and neighboring nodes, and carried out experiments on several real, complex
networks, indicating that the LTC algorithm can measure the propagation influence of
nodes more accurately. E Yu et al. [18] believe that the mutual influence between nodes
is the key factor for information dissemination. By reordering existing methods, a new
algorithm named RINF is proposed. The algorithm was evaluated using the SIR model.
Experimental results show that the RINF algorithm identifies influential nodes in a social
network with lower time complexity compared to the benchmark methods. Lv Zhiwei
et al. [19] analyzed the shortcomings and limitations of existing methods for identifying
influential nodes based on local and global features. They propose an average shortest
path centrality metric to identify influential nodes across the network. This metric takes
into account the relative change in the average shortest path across the network after
each node is removed. To evaluate the performance, the SIR model was used to simulate
the performance of the method. The experimental results demonstrate that the proposed
method has good performance.

Although the methods mentioned above can better identify influential nodes in social
networks, they are all aimed at static social networks and cannot reflect the dynamic and
time-sensitive characteristics of social networks. In order to better analyze the rules and
characteristics of information transmission in dynamic social networks, some researchers
improved the influence maximization algorithm of static social networks and put forward
a transmission model and related algorithms suitable for dynamic social networks.

According to the dynamic characteristics of social networks, Tong et al. [20] dispersed
the time constraint to each step of seed selection and achieved the goal of maximizing
influence under the given time constraint by making each step of seed selection subject
to budget constraint. Liu Bo et al [21] illustrated that the time-constrained influence max-
imization problem is NP-hard and proved the monotonicity and submodularity of the
time-constrained influence propagation function. On this basis, they proposed two heuris-
tics based on influence diffusion paths. The validity of the methods is verified on four
real data sets. Wei Chen [22] et al. conducted a study around the property that the social
network influence maximization problem has a delayed diffusion process and extended the
independent cascade model and the linear threshold model to incorporate the time delay
of influence diffusion between nodes in social networks. It is proven that the time-critical
influence maximization under the extended IC and LT models maintains the submodular
properties. To overcome the inefficiency of greedy algorithms, two heuristic algorithms are
designed to solve the dynamic social network influence maximization problem with time
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delays. Yunfang Chen et al. [23] analyzed the problem that the traditional independent
cascade model is only adapted to static networks and has a fixed activation probability
between nodes. A dynamic social network influence diffusion model with a decay factor is
proposed to calculate the activation probability between nodes based on affinity propaga-
tion. In order to apply to dynamic social networks, the social network is dynamically sliced
according to time slices, so that the activation probabilities can be effectively correlated
in different time slices. The experimental results show that the seed node in the model
has more chances to activate its neighbor nodes, which can more accurately represent the
influence spreading process. Wu Anbiao et al. [24] proposed a propagation model based on
the temporal graph by improving the independent cascade model. The propagation proba-
bility between nodes is calculated by combining the number of connections between nodes
and the PageRank algorithm. Based on this, a two-stage calculation method was proposed
to determine the nodes with the greatest influence by optimizing the node marginal effects.
Chen Jing et al. [25] proposed an IWCM model applicable to temporal social networks
based on temporal graphs for the temporal relationships existing in nodes in dynamic
social networks, and based on this, proposed an algorithm including a temporal heuristic
phase and a temporal greedy phase to solve for nodes that maximize influence. The method
combines the advantages of a heuristic algorithm and greedy algorithm and substantially
improves the operation efficiency of the algorithm, but the propagation probability of infor-
mation between nodes in social networks by the IWCW model only relies on the number of
contacts between nodes and cannot accurately measure the influence relationship between
nodes in social networks.

In order to better match the propagation characteristics of influence in dynamic social
networks, this paper improves the traditional IC model, resets the activation probability
among nodes, and constructs a two-stage algorithm to find the set of seed nodes in dynamic
social networks according to the ideas in the literature [24,25] to improve the efficiency of
solving the influence maximization problem.

3. Problem Definition

This section analyzes the working principle of the independent cascade model and
explains the characteristics of the model and defines the related concepts of influence
maximization in dynamic social networks. In order to explain the problem conveniently,
the symbols and their meanings involved in the paper are given in Table 1.

Table 1. Symbol Description.

Notations Definition

GT(V, E, TE) Dynamic social network
pu,v Activation probability of node u to v in static network
p∗u,v Activation probability of node u to v in dynamic network
Γout

u Out edge neighbor of node u
Γin

u In edge neighbor of node u
t(u, v) The set of effective contact times between node u and node v
γ Tuning coefficient
D Similarity threshold between two nodes
β Activation threshold
θ Activation times
αk Number of alternative seed nodes
k Number of seed nodes

In GT(V, E, TE), V denotes the set of nodes in the social network, E denotes the set of
connected edges between nodes, and TE represents the set of connected moments between
nodes in the network. In a dynamic social network, interaction between nodes can only
occur at a given time of contact. For example, in Figure 1, t(e, c) = {3, 5} between node
e and node c, it means that node e will contact node c only at time three and time five,
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and there will be no interactive operation in the rest of the moments although there is a
topological connection relationship.
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Figure 1. Effective connection diagram of eight nodes.

3.1. Basic Definitions

Definition 1. Influence maximization in dynamic social networks. In a given dynamic social
network, a node set of size k (S∗ ⊂ V) is found through the corresponding propagation model to
maximize the influence range of the set S∗. This problem can be expressed by Equation (1), and
σT(S) shows the scope of influence of seed set S.

S∗ = argmax|S|=K,S⊂VσT(S) (1)

Definition 2. Node similarity. An evaluation index that can measure the degree of similarity
between adjacent nodes. In this paper, the Jaccard similarity coefficient is used to define the similarity
of node u and node v, and its form is shown in Equation (2).

Du,v =

∣∣∣Γin
u ∩ Γin

v

∣∣∣∣∣∣Γin
u ∪ Γin

v

∣∣∣ (2)

where, Γin
u and Γin

v represent the in-degree of nodes u and v, respectively, and the similarity has a
strong correlation with the trust degree between nodes.

Definition 3. Marginal gain. For set functions gain: 2V → R , a subset S ⊆ V, and an element
e ∈ V in the set, not gain(u) = Spread(S∪ {e})− Spread(S) as the marginal gain resulting from
adding element e to set S.

Definition 4. Effective connections. We stipulate that the connection between nodes in a social
network is not maintained constant, and only at a particular point in time can the connection
between neighboring nodes be realized. It includes the effective ties of edges and effective ties
of nodes.

The effective ties of edges represent the set of time points at which actual interactions
occur between any nodes, denoted by t(u, v) = |{t1, t2, · · · tn}|, and ti denotes the time
points at which interactions occur between nodes. The effective ties of nodes denote the
sum of the effective connections between the target node and its direct neighbors, denoted
by Tu, and the relationship between them is shown in Equation (3).

Tu = ∑
v∈Γout

u

t(u, v) (3)

Γout
u denotes the out-degree neighbor of node u. The efficient linkage satisfies the

characteristics of discrete and independent. Whether any node u can activate its neighbor
node v must satisfy two conditions. First, the activation operation on the adjacent node
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v can be effective only when the node u is in the active state. Secondly, the activation
process of node u to node v must consider the sequence of time points contained in the
valid connection of edges. For nodes x ∈ Γin

u and v ∈ Γout
u , node v can be activated only

when the case of ∀ti ∈ t(x, u), ∀tj ∈ t(u, v) and ∃ti < tj is satisfied.

Definition 5. Impact probability. An evaluation index that measures the degree of interaction
between adjacent nodes, the commonly used setting method is to set a random number between zero
and one independently for the edge connection between any nodes in the social network, or directly
take the reciprocal of the number of the edge connection between affected nodes as the standard to
evaluate the influence ability of nodes.

In social networks, the importance of a node can be measured based on the number of
directly adjacent users of the node, but there are differences in the influence generated by
out-degree neighbors and in-degree neighbors [26]. In order to better reflect the influence
of the topology structure and interaction between nodes in the social network on users, this
paper refines the influence of out-degree neighbors and in-degree neighbors of nodes on
influence propagation according to the method of [27], and introduces scale factor x and y
to generate the direct adjacency dku of the node in the form shown in Equation (4).

dku = xkin
u + ykout

u (4)

kin
u and kout

u represent the number of in-degree neighbors and out-degree neighbors of
node u respectively. The scale factor satisfies x + y = 1.

Since the influence of nodes in the process of information diffusion will gradually
decay with the propagation process, the influence is mainly concentrated in the two-hop
range [28–30], in order to further accurately assess the influence ability of nodes, we extend
the direct adjacency of nodes to the two-hop range to form the indirect adjacency Iku,
whose form is shown in Equation (5).

Iku = x ∑v∈Γin
u

dkv + y ∑v∈Γout
u

dkv (5)

where, Γin
u and Γout

u represent the neighbor set of in-degree and out-degree of node u,
respectively. According to the literature [27], the scale factor x = 0.75 is set in this paper. In
Figure 2, dkd = xkin

d + ykout
d = 2x + y = 1.75. Similarly, dke = 0.75, dka = 1.5, dkg = 0.75,

dkh = 0.75. Indirect neighbor degree, Ikb = x(dkd + dke) + y
(
dka + dkg + dkh

)
=

x(1.75 + 0.75) + y(1.5 + 0.75 + 0.75) = 2.625.
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Figure 2. Example network. Figure 2. Example network.

The interaction between nodes is carried out in the local topology scope of the target
node, we use the importance proportion of the target node in its adjacent nodes to measure
the degree of mutual influence between nodes, thus introducing the indirect adjacency de-
gree, which represents the sum of the importance of all adjacent nodes of a node. Therefore,
we define the influence probability between nodes as Equation (6).
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pu,v = dku/Ikv, v ∈ Γu (6)

For example, in Figure 2, the influence probability of node d on node b is
pdb = dkd/Ikb ≈ 0.67. In static social networks, connections between nodes are considered
to be constant based on topological relations, which is inconsistent with the dynamic char-
acteristics of actual social networks, the actual situation is that the nodes may be connected
several times in a certain period of time, and the process is discrete and independent.

Definition 6. Propagation probability in dynamic social networks. The influence probability
between any node pairs in dynamic social networks is based on the local topological connection
relationship formed by nodes, which describes a relationship of mutual influence between nodes in
the effective connection process based on time series. Use p∗u,v, and define the form as Equation (7).

p∗u,v =

{
1−

(
1− pu,v

)θ
s.t. θ ∈ [1, |T(u, v)|]

(7)

pu,v represents the influence probability of node u on node v. |T(u, v)| represents the number
of effective connections between nodes in a dynamic social network. θ indicates that node u tries to
activate node v for the θth time, the propagation probability increases with the number of activations.

3.2. Independent Cascade Propagation Model

The propagation model is used to simulate the process of information transmission in
the real world, it is generally divided into a linear threshold model (LT), an independent
cascade model (IC) [2], an infectious disease model [31], etc. Since the research work in this
paper is based on the independent cascade model, the working principle of the independent
cascade model is mainly introduced here.

In the independent cascade model, social networks are modeled as directed graphs
G = (V, E), where V represents the node set of users, and E represents the set of directed
edges of the link relationship between users. Each edge (u, v) ∈ E is assigned a probability
of influence pu,v ∈ [0, 1], if there is no connection between nodes, then p = 0.

The independent cascade model classifies the state of each node into active and inactive
states, at step t = 0, given node set S (defined as seed set) in an active state. Any node
u ∈ S has only one chance to influence its unactivated neighbor node v with probability p,
regardless of whether v can be activated, node u will not attempt to activate this neighbor
node in the subsequent process. If node u successfully activates neighbor node v at time t,
node v becomes active at time t + 1, and it will continue to try to activate other neighboring
nodes in an inactive state. If multiple neighbors of v are activated at time t at the same time,
the order in which they try to activate v is arbitrary, and the activation process between
each pair of nodes is independent of each other. The process is repeated for each active
node until there are no active nodes in the network.

4. Model and Algorithm
4.1. Propagation Model Based on Effective Link

In the independent cascade with effective link (ICEL) model, the network is modeled
as GT(V, E, TE), where TE represents the set of time when there is connection between nodes
in the network. In this model, each edge (u, v) ∈ E is assigned an influence probability p∗u,v,
which reprsents the influence of node u on node v in a dynamic social network. This value
is related to the number of interactions between nodes, and indicates that if two nodes
interact frequently, information is more likely to be transmitted between them [32], which
means that the influence process between nodes may occur multiple times.

Just like in the IC, the seed set S is set to an active state during the initial stage of
propagation. In the step t ≥ 1, any node u ∈ S can independently activate its inactive
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neighbor node v with probability p∗u,v on the premise of satisfying the effective relation
between neighboring nodes (input-degree neighbor and output-degree neighbor). If the
activation process is completed at the first time point in the edge efficient linkage, node v
will change to the active state at step t and continues to propagate the influence at step t + 1.
If u fails to activate node v successfully for the first time, node u will activate v again in the
subsequent process according to the similarity between nodes until node v is activated or
all the time points in the edge effective connection are exhausted. The diffusion process
stops when all active nodes have activated their neighbors and no new nodes are activated.

It should be noted that the ICEL model degenerates into an independent cascade
model when the effective connection between any nodes in a social network is maintained
continuously. In the original independent cascade model, it is believed that as long as there
is a connection relationship between nodes, the activation process will occur. However,
the limited activation is constituted as one time. Therefore, if we only consider the overall
impact in operation, there is no need to introduce a valid linkage. However, if the sequen-
tial relation and effective relation between nodes are considered, satisfying the effective
connection is an important factor to determine the seed set.

In this paper, the similarity between nodes is used to measure the change of activation
probability with activation times when node u tries to activate node v several times. Given
a similarity threshold D, if the similarity between nodes u and v is Du,v > D, it is considered
that the activation probability increases with the activation times. Du,v = D is considered
the activation probability that does not change with the number of activations. Du,v < D is
considered the activation probability that decreases with the increase in activation times.

When node u attempts to activate node v, node u first deactivates node v with proba-
bility p∗u,v = 1− (1− pu,v)

1, if node v is not activated successfully for the first time, and
there is still a moment when u contacts v, then the similarity is judged. If the similarity is
less than or equal to the given threshold D, it is impossible for node u to activate node v
thereafter. Therefore, node u will no longer try to activate node v at subsequent contact
moments. If the similarity is greater than the given threshold D, node u deactivates node v
with probability p∗u,v = 1− (1− pu,v)

2 again, and the process continues until there is no
longer an effective connection between node u and node v.

As shown in Figure 2, when node c attempts to deactivate node d, the earliest time
when node c itself may be activated is considered first. The minimum contact time between
node c and its in-degree neighbor node e is three, so it is said that node c may be activated
by node e at time three at the earliest, so the only valid contact moments between node
c and node d are moments six and seven. Node c deactivates node d at time six with the
propagation probability p∗c,d = 1− (1− pc,d)

1 = 0.7059, if node d is not activated, judge
whether node c is similar to node d. If not, node c will not try to activate node d at moment
seven. Otherwise, node c deactivates node d again at time seven with the propagation
probability p∗c,d = 1− (1− pc,d)

2 = 0.9135. The execution process of the ICEL model is
shown in Algorithm 1.

Step (1) calculate the probability that node u activates node v for the first time. Step (2)
to Step (3) indicates that node u activates node v for the first time and the activation
succeeds; Step (4) calculates the similarity between the two nodes. Step (5) to Step (9)
indicates that node u fails to activate node v for the first time, and the similarity between
the two nodes needs to be judged, if the similarity is greater than the similarity threshold
D, node u deactivates node v with a certain probability again. Step (10) indicates that node
u fails to activate node v after multiple attempts.
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Algorithm 1. The work principle of ICEL model

Input: Activation threshold β, Node u and Node v, Similarity threshold D
Output: If node u activates node v, return true; otherwise, return false

(1) Calculate the probability p∗u,v = 1−
(

1− pu,v

)1
that node u activates v

(2) if p∗u,v ≥ β
(3) return true
(4) Calculate Du,v according to Equation (2)
(5) if Du,v > D
(6) for θ = 2 to |T(u, v)| do

(7) p∗u,v = 1−
(

1− pu,v

)θ
(8) if p∗u,v ≥ β
(9) return true
(10) return false

4.2. Characteristics of the ICEL Model

Because the ICEL model is a special case of the independent cascade model, the prob-
lem of maximizing influence with the ICEL model also belongs to the NP-hard problem [2].
In this part, we introduce the properties of the σT(S) function of the problem of maximizing
influence using the ICEL model in dynamic social networks, and prove that the approxi-
mate optimal solution of 1-1/e-ε can be obtained by using a greedy algorithm to solve this
kind of problem.

Theorem 1. The influence function σT(S) in the ICEL model satisfies monotonicity and sub-model.

Proof. In the ICEL model, each social network can be regarded as a random graph. Each
edge (u, v) ∈ E in the figure is endowed with the influence probability pu,v formed by
the topological relationship between nodes. Here, pu,v controls the possibility that node
u activates v, each node u ∈ V has a distributed Tu with effective connection with its
neighbors and controls the number of interactions between node u and its neighbors.
Let X represent all probability spaces composed of all influence propagation graphs. By
flipping a coin for each edge (u, v) ∈ E, it is determined whether the edge is affected by the
influence probability pu,v and the effective connection distribution Tu, which exists in the
influence propagation diagram. Thus, we construct σT(S) = ∑x∈χ p(x)σT,x(S), where p(x)
represents the probability of determining the propagation graph x, and σT,x(S) represents
that in the determined propagation graph x, set S can affect the number of nodes through
effective connections.

For any deterministic impact graph x ∈ X, σT,x(S) is equivalent to starting from
set S, and the length of at least one path formed through effective connection is less
than the number of impact nodes that can be reached on the path of η ∈ R. σT,x(S) ≤
σT,x(S∪ {u}) is easy to find, so σT,x(S) is monotonic. Because of σT(S) = ∑x∈χ p(x)σT,x(S)
and p(x) ∈ (0, 1], σT(S) satisfies monotonicity, which is proven.

Let S ⊆ T ⊆ V, any node u ∈ V. We first consider determining the graph x ∈ X.
σT,x(S∪ {u})− σT,x(S) refers to the number of nodes included in the impact subgraph
starting from node u and the path length is η, rather than starting from set S, the impact path
length is the number of η impact nodes. σT,x(S∪ {u})− σT,x(S) ≥ σT,x(T∪ {u})− σT,x(T)
exists because of S ⊆ T. Therefore, σT,x(S) is submodular, especially σT(S) is a nonnegative
linear combination of submodular function σT,x(S), so σT(S) is submodular, and the proof
is completed. �

4.3. OEL Algorithm

Degree centrality is one of the most common heuristic methods. It measures the
importance of nodes from the perspective of local topology according to the number of
directly adjacent nodes. In a directed graph, degree centrality refers specifically to the
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out-degree neighbors of nodes. The higher the number of out-degree neighbors, the more
important the nodes are in the process of information diffusion. However, in dynamic
social networks, the connections between nodes does not play a role all the time, and the
transmission of information is accomplished only through a limited connection. Therefore,
degree centrality cannot be used to measure the influence ability of nodes in dynamic
social networks. For example, in the directed network shown in Figure 1, node a has
three out-degree neighbor nodes and has one effective connection with each node. Node b
has two out-degree neighbor nodes and can make three effective connections with each
out-degree neighbor. Only from the perspective of degree centrality, does node a play
a greater role in information dissemination. However, the connection process between
nodes does not remain unchanged. Although there is a connection relationship on the
network topology, the number of effective connections is small. Only at t = 2, there is an
incentive effect on adjacent nodes, while at other times, there is no impact on adjacent
nodes, and the information cannot be effectively diffused. It can be seen that the effective
connection between nodes can effectively promote the dissemination of information in
social networks. On the other hand, the influence ability of a node cannot only consider
the effective connection. In Figure 1, node c has only one out-degree neighbor node
d, and the effective connection between it and node d is Tc = t(c, d) = 5. The out-
degree neighbors of node a are e, f, g, and the effective connection times of this node are
Ta = t(a, e) + t(a, f) + t(a, g) = 3. It can be seen from the figure that Tc > Ta at this time.
Since the out-degree degree of node d is 0, node c can affect at most one node, while node
a has the potential ability to influence at least three nodes. It can be seen that the above
methods cannot accurately measure the influence of nodes in dynamic social networks.

In this paper, we build a dynamic social network node influence evaluation algorithm
named outdegree effective link (OEL) by integrating the two factors of degree centrality and
effective connection. The algorithm includes the heuristic stage and the greedy stage. In
the heuristic stage, we screen the top αk(αk ≥ k) nodes with the largest OEL(·) according
to Formula (8), to form a set of potential influence nodes. α is the regulation factor, and the
value is empirical. It is necessary to determine the value of α according to the results of the
OEL algorithm running on the dataset.

OEL(u) = γ×
∣∣Γout

u
∣∣+ (1− γ)× Tu (8)

where,
∣∣Γout

u
∣∣ denotes the outdegree of node u, which represents the inherent attribute

of the node, and is the upper limit of the local influence of the node. Tu is the effective
connection between nodes of u, which indicates the degree of effort that the node tries to
influence other nodes and determines whether the node influence can reach the upper limit.
γ is a tuning coefficient used to adjust the proportion of two types of attributes in node
influence. αk and k represent the size of potential influence set and seed set respectively.

In the greedy stage, we look for the node that can produce the greatest influence in the
potential influence set, apply the greedy algorithm to calculate the influence range gain of
each node in the set in turn, and select the node with the largest gain to be selected into
the seed set until the number of selected seed nodes reaches k. We use submodularity to
screen the seed nodes in the greedy phase [4], which drastically reduces the problem of low
running efficiency caused by the greedy Algorithm 2.

During the execution of the OEL algorithm, Step (1) indicates that the initialization
seed set s and the candidate seed set S1 are empty sets. Step (2) to Step (5) take the OEL
value as the standard to measure the importance of nodes and filter the top αk nodes to
build an alternative seed set. Step (6) to step (11) means that the marginal benefits of each
node in the alternative seed set are calculated and sorted in turn, and the node with the
largest marginal benefits is added to the seed set; Step (12) to Step (25) use the k-1 seed
nodes after sub model selection. Finally, the seed set s is returned.

During the operation of the algorithm, the nodes in the candidate seed set always
maintain the descending order of influence gain. x = S1.pop(0) indicates that the node
with the maximum marginal gain is ejected from the candidate seed set.
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Algorithm 2. OEL algorithm

Input: GT(V,E,TE), Seed size k, Threshold of activation β, Alternative seed set S1, Regulatory
factors α
Output: Seed set S
(1) Initialize S = ∅, S1 = ∅
(2) For i = 1 to αk do
(3) v = max{Oct(u) |u ∈ V\S1};
(4) S1 = S1 ∪ v;
(5) Endfor
(6) For u in S1 do
(7) gain(u) = Spread(S∪ {u})− Spread(S);
(8) Endfor
(9) Sorted S1 according gain(·) in descending
(10) x = S1.pop(0);
(11) S = S∪ x;
(12) For i = 2 to k do
(13) gain(S1[0]) = Spread(S∪{S1[0]})− Spread(S);
(14) if(gain(S1[0]) > gain(S1[1]))
(15) x = S1.pop(0);
(16) S = S∪ x;
(17) else
(18) For u in S1 do
(19) gain(u) = Spread(S∪ {u})− Spread(S);
(20) Endfor
(21) Sorted S1 according gain(·) in descending;
(22) x = S1.pop(0);
(23) S = S∪ x;
(24) Endif
(25) Endfor
(26) Return S

4.4. Time Complexity Analysis

We analyze the running time of the OEL algorithm. In the heuristic phase of the algo-
rithm, we need to calculate OEL values for all nodes in turn. Since OEL values are only re-
lated to the out-degree of nodes and the effective connection of nodes, their time complexity
is constant, represented by O

(
NC
)
, C represents the average effective connection of nodes

and N represents the number of nodes. At this stage, αk candidate nodes should be selected
from the whole social network as candidate seed sets. The time complexity is O(αk ∗N)
so the total time complexity of the heuristic stage is O

(
NC
)
+ O(αk ∗N). Step (6)~step (9)

calculate the gain of each node in the alternative seed set and arrange it in descending order.
The time complexity is O(klogk). Step (12)–step (25) realize the screening of seed nodes in
the greedy stage. Compared with the greedy algorithm, it is not necessary to calculate the
impact gain of all nodes in the social network in turn, reduce the investigation space to the
alternative seed set, and further shorten the running time of the algorithm in combination
with the secondary model. The time complexity of this part is O(αk2C). Therefore, the
total time complexity of the algorithm is O(NC) + O(αk ∗N) + O(klogk) + O(αk2C).

5. Experiment and Evaluation

All experiments in this paper are run on the same PC with the following configuration:
Intel(R) Core(TM), 1.60 GHz, memory 8.00 GB, Windows10 operating system. All the codes
involved in the experiment were implemented in Python language on PyCharm.

5.1. Experimental Data

In order to verify the effectiveness of the method, we carried out experiments on
four real data sets of different sizes, which were dolphins, ca-netscience, netscience
and p2p-Gnutella08. The four data sets all came from http://networkrepository.com

http://networkrepository.com
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on 15 February 2009. Among them, dolphins were made by Lusseau and others in New
Zealand, to observe the living habits of 62 wide kiss dolphins for a long time. They found
that the interaction of these dolphin showed a specific mode, and they also built a social
network with 62 node. ca-netscience which was known as the network of scientists. When
an article was finished by several scientists together, they formed a connection. Netscience
was a network created by both network theory and experimental scientists. p2p-Gnutella08
was a scientific cooperation between the scientific research articles on the category of gen-
eral principles of gravity and the category of electronic universe. If the author i and the
author j jointly write a thesis, the drawings would cover the edges from i to j. If the thesis
was jointly written by author k, a completely connected sub picture would be produced on
k node. The experimental data set was as shown in Table 2. In order to reflect the changes
of the dynamic social network, we distributed the random number of effective contacts
to all the connections of a given social network within the range of [1,10] to simulate the
effective connections between users.

Table 2. Experimental data set parameters.

Data Set M N MaxD MinD <D> T

dolphins 62 159 12 1 5 285
ca-netscience 379 914 34 1 4 2.8 K
netscience 1.6 K 2.7 K 34 0 3 11.3 K
p2p-Gnutella08 6.3 K 20.8 K 97 1 6 7.1 K

In the dataset shown in Table 2, M denotes the number of nodes, N denotes the number
of edges, MaxD denotes the maximum degree of a node, MinD denotes the minimum degree
of a node, 〈D〉 denotes the average degree values of a node, and T denotes the number of
triangles formed between nodes.

5.2. Experimental Settings

In order to verify the experimental effectiveness of the OEL algorithm on dynamic
social networks, random, degree, degreediscount, betweeness, and greedy are selected
as comparison algorithms in this paper. The random algorithm (random) is a method of
randomly selecting nodes in the network, which means that the set of seed nodes with the
greatest influence is randomly selected without any strategy. This method is usually used
as a benchmark comparison algorithm, formally as shown in Equation (9).

RCi = Random(G, i) (9)

The degree centrality algorithm (degree) [12] evaluates the influence ability of node
according to the number of direct adjacent nodes of node I, which is formally expressed as
Equation (10).

DCi =

(
N
2

)
∑

j∈G\i
Ai,j (10)

The j represents any node in graph G except node i. Ai,j = 1 when there is a connecting
edge between node i and node j; otherwise, Ai,j = 0. The degree centrality algorithm is
based on local topological structure. The greater the degree of nodes, the more potential
influences of their direct neighboring nodes.

The degreediscount algorithm [33] is a variant of the degree centrality algorithm. The
algorithm iteratively selects the optimal node based on degree centrality. After each round
of selection, the degreediscount operation is performed on the direct adjacent nodes of the
optimal node, formally expressed as Equation (11).

DDCi = argmax
(

DCi − 2Si − (DCi − Si)Si
β
)

(11)
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Si represents the set of activated nodes in the direct adjacent nodes of the current node
i, and β represents the activation probability between adjacent nodes. This algorithm can
effectively alleviate the evaluation error caused by influence overlap.

The betweenness algorithm [13] evaluates the influence of nodes according to the
number of shortest paths of a node in the network, which can be expressed as Equation (12).

BCi =

(
N
2

)
∑u 6=i 6=v

|pathuv(i)|
|pathuv|

(12)

|pathuv| is the number of shortest paths from node u to node v,
∣∣pathst(i)

∣∣ is the
number of shortest paths through node i, and N is the number of nodes in the network.

The greedy algorithm [2] requires that the marginal influence of all inactive nodes be
calculated every time, and the node with the maximum gain of influence is selected into
the seed node set, which is formally expressed as Equation (13).

KKi = argmax(|I(Si ∪ {u})| − |I(Si)|) (13)

I(Si) represents the influence of the current set Si, and I(Si ∪ {u}) represents the
influence after any node u joins the set Si.

In the proposed algorithm OEL, the tuning coefficient γ is set as 0.6, the similarity
threshold D is set as 0.5, and the Scale factor x is set as 0.75. In addition, in order to make the
experimental comparison effect more obvious, the inter-node activation threshold values
of the four data sets were set as 0.5, 0.1, 0.1 and 0.5 respectively after several tests.

5.3. Experiment and Result Analysis
5.3.1. Parameter Analysis of the OEL Algorithm

The OEL algorithm is divided into two phases, heuristic and greedy. The number of
nodes selected in the heuristic phase affects the quality of the seed nodes selected in the
subsequent greedy. If the number of nodes selected in the heuristic phase is too small, it
will lead to poor propagation of the final selected nodes, while too many selected nodes
will reduce the operation efficiency of the algorithm. In order to determine the proportional
relationship between the nodes selected in the heuristic stage and the greedy stage, we
conducted comparative experiments on different regulatory factors to verify the reasonable
value range of α.

In the experimental process, the number of seed nodes k was restricted to be dis-
tributed in the range of 5~50 on the four data sets, and the value space of α was set as 1~7.
The influence of regulatory factor α on the propagation range is shown in Figure 3. It can be
seen from the experimental results that on the dolphins dataset, due to the small size of the
network, the regulatory factors have little influence on the transmission range, especially
when α > 3, the change of influence tends to be stable. In the ca-NetScience, NetScience
and P2P-Gnutella08 data sets, the range of influence increased with the increase in seed set
size, and gradually stabilized after k = 40. Especially in ca-Netscience and P2P-Gnutella08
datasets. However, it can be seen from the figure that when α > 4, influence changes
without the set of scale seeds on each data set are relatively stable. In order to balance the
time efficiency of the algorithm and the spread range of influence, it is more practical to
determine α = 4, and subsequent experiments are also carried out under this condition.
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Figure 3. Influence of regulatory factors on transmission range. (a) The influence of regulatory
factor α on transmission range on dolphins dataset. (b) The influence of regulatory factor α on
transmission range on ca-netscience dataset. (c) The influence of regulatory factor α on transmission
range on netscience dataset. (d) The influence of regulatory factor α on transmission range on
p2p-Gnutella08 dataset.

5.3.2. Scope of Transmission

In this section, we compare the propagation range of the proposed algorithm OEL
with five typical algorithms. The experiment selects 5 to 50 seed nodes (step size 5) to
simulate propagation.

Figure 4 shows the comparison of the propagation influence of the six algorithms on
the four datasets, the horizontal coordinate is the number of seed nodes and the vertical
coordinate is the propagation range of the seed nodes. It can be seen that the greedy
algorithm achieves the best effect in all data sets, followed by the OEL algorithm, and
the random algorithm has the worst effect. In the dolphins data set, the OEL algorithm
proposed in this paper achieves the same effect as the greedy algorithm except that the
number of seed nodes is five. In the ca-netscience and netscience datasets, our algorithm
achieves close propagation effects to greedy. In the p2p-Gnutella08 dataset, although our
algorithm is quite different from greedy, it is still better than other algorithms except greedy.
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5.3.3. Time Comparison

In order to further verify the effectiveness of the OEL algorithm, we compared the
time efficiency of each algorithm in selecting different numbers of seed nodes. Since the
Random algorithm has a high time efficiency in seed node excavation, the running time is
not given here. The time efficiency of other algorithms is shown in Table 3.

It can be seen from Table 3 that on the dolphins and ca-netscience datasets, the operat-
ing efficiency of the OEL algorithm is weaker than that of the methods (degreediscount
algorithm and degree algorithm) that rely on local network features to identify target nodes.
However, compared with the greedy algorithm, the OEL algorithm reduces the search
space of the influence maximization problem in the heuristic stage, and combined with the
submodularity characteristics, the operating efficiency is significantly improved. In the
netscience dataset, the running efficiency of the OEL algorithm outperforms greedy and
betweeness when k is taken from 5 to 15, and only outperforms greedy after k > 15, which
indicates that the weight occupied by the greedy process by the OEL algorithm leads to
the increase in running time as the number of selected seed nodes increases. In the p2p-
Gnutella08 dataset, the OEL algorithm outperforms greedy and betweeness, indicating that
our algorithm is more suitable than betweeness for social networks with larger data sizes.
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Table 3. Comparison of algorithm running time.

Data Set Number of Seeds
Algorithm Running Time (Seconds)

OEL Betweeness DegreeDiscount Degree Greedy

dolphins

k = 5 0.00298 0.00182 0.00032 0.00005 0.03191
k = 10 0.01894 0.00185 0.00038 0.00009 0.12566
k = 15 0.03092 0.00186 0.00043 0.00011 0.21542
k = 20 0.04092 0.00189 0.00044 0.00014 0.29721
k = 25 0.04787 0.00193 0.00049 0.00015 0.32708
k = 30 0.05485 0.00197 0.00049 0.00017 0.36907
k = 35 0.05883 0.00199 0.00051 0.00018 0.42582
k = 40 0.06383 0.00200 0.00054 0.00020 0.46381
k = 45 0.07879 0.00202 0.00062 0.00021 0.50266
k = 50 0.08076 0.00203 0.00064 0.00023 0.53354

ca-netscience

k = 5 0.03990 0.02873 0.00154 0.00034 1.01827
k = 10 0.18747 0.02881 0.00156 0.00049 3.33109
k = 15 0.39994 0.02886 0.00165 0.00071 6.94841
k = 20 0.66926 0.02901 0.00166 0.00087 10.66042
k = 25 1.10308 0.02989 0.00173 0.00098 15.06065
k = 30 1.22966 0.03007 0.00179 0.00122 18.93035
k = 35 2.15124 0.03047 0.00194 0.00134 25.21152
k = 40 2.99598 0.03089 0.00199 0.00143 29.50102
k = 45 3.59338 0.03130 0.00202 0.00161 34.58282
k = 50 4.02626 0.03175 0.00213 0.00186 41.33540

netscience

k = 5 0.04986 0.57858 0.00516 0.00141 6.41057
k = 10 0.18758 0.57941 0.00544 0.00210 23.41469
k = 15 0.50365 0.58139 0.00559 0.00272 47.60400
k = 20 0.90489 0.58219 0.00560 0.00352 73.26150
k = 25 1.59267 0.58240 0.00572 0.00411 109.89939
k = 30 2.92622 0.58416 0.00591 0.00480 142.60642
k = 35 3.62019 0.58432 0.00603 0.00554 194.50416
k = 40 4.41875 0.58439 0.00615 0.00612 223.39536
k = 45 5.28926 0.58608 0.00620 0.00674 264.54489
k = 50 6.62509 0.58975 0.00649 0.00757 320.53333

p2p-Gnutella08

k = 5 0.06084 65.30030 0.03375 0.00722 53.91473
k = 10 0.12068 66.15388 0.03440 0.01075 207.79511
k = 15 0.51766 66.58277 0.03485 0.01340 463.83709
k = 20 0.73904 66.98780 0.03491 0.01636 846.52928
k = 25 1.00833 66.99675 0.03512 0.01938 1280.93165
k = 30 1.26561 67.00286 0.03541 0.02290 1745.55211
k = 35 1.76430 67.02671 0.03574 0.02579 2256.53356
k = 40 2.01059 67.06866 0.03607 0.02986 2791.33391
k = 45 2.45837 67.18037 0.03656 0.03130 3371.98843
k = 50 2.81152 67.38176 0.03780 0.03610 4015.44560

In conclusion, applying the OEL algorithm to search for seed sets for influence propa-
gation in dynamic social networks can achieve a similar effect to that of greedy algorithm,
which is significantly higher than other heuristic algorithms. Compared with the greedy
algorithm, the OEL algorithm has a significantly reduced running time and is more suitable
for exploiting seed node sets in larger social networks.

6. Summary

In this paper, we study the influence maximization problem in dynamic social net-
works. By improving the classical independent cascade propagation model, we take the
local topological relationship between nodes and effective links as the influence probability
between nodes in dynamic social networks. In addition, we also propose a two-stage
influence maximization algorithm, OEL, based on degree centrality and effective link. The
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algorithm forms a candidate seed set according to the OEL value in the heuristic stage,
which reduces the optimization space of the algorithm. In the greedy stage, the influence
gain generated by each node is determined by combining the submodularity characteristics,
and the efficiency of the algorithm is improved. Through simulations on real data sets, we
find that the proposed OEL algorithm is more effective than other heuristic methods to
discover the seed set that maximizes influence in dynamic social networks. Compared with
the greedy algorithm, the OEL algorithm has better time efficiency.

In the future, we will carry out further research in the following aspects:

1. On the basic dynamic social networks, in order to avoid the problem of influence
overlap, construct new metrics to explore the seed set of influence maximization;

2. Modeling of the influence maximization problem in a time-constrained and cost-
constrained dynamic network, so as to better measure the information dissemination
process in a dynamic social network.
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