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Abstract: Community detection and structural hole spanner (the node bridging different commu-
nities) identification, revealing the mesoscopic and microscopic structural properties of complex
networks, have drawn much attention in recent years. As the determinant of mesoscopic structure,
communities and structural hole spanners discover the clustering and hierarchy of networks, which
has a key impact on transmission phenomena such as epidemic transmission, information diffusion,
etc. However, most existing studies address the two tasks independently, which ignores the structural
correlation between mesoscale and microscale and suffers from high computational costs. In this arti-
cle, we propose an algorithm for simultaneously detecting communities and structural hole spanners
via hyperbolic embedding (SDHE). Specifically, we first embed networks into a hyperbolic plane, in
which, the angular distribution of the nodes reveals community structures of the embedded network.
Then, we analyze the critical gap to detect communities and the angular region where structural
hole spanners may exist. Finally, we identify structural hole spanners via two-step connectivity.
Experimental results on synthetic networks and real networks demonstrate the effectiveness of our
proposed algorithm compared with several state-of-the-art methods.

Keywords: complex networks; hyperbolic embedding; community detection; structural hole spanner

1. Introduction

From transportation to information diffusion, networked systems provide an effective
way to describe these real-world behaviors [1–5]. A significant part of network analysis,
especially social network analysis, is based on network structure [6]. Community struc-
tures that can be regarded as clustering with linkage are of commonness in networks [7,8],
and the structural hole spanner (SHS), the node bridging different communities, is often
accompanied by community structures. Community detection and structural hole spanner
identification, the two flourishing topics in network science, help us to understand the
structural mechanism of networked systems, such as social networks, information diffu-
sion networks, etc. In the contact tracing and control of epidemics such as COVID-19,
community detection and structural hole spanner identification play a very important
role collectively. The restraint of contagions generally focuses on individual behaviors,
but collective guidance is also very important. Guiding collective behaviors is less imple-
mented since most studies neglect the mesoscopic structure of transmission networks [9].
Finding the community structure and SHS contributes to the understanding of epidemic
spreading in the inner community and the inter community, which is helpful in restraining
the further spread. In the process of a pandemic, epidemic diseases spread first within
the community and then across the community, which is determined by human behavior
patterns. Based on human interactions in physical space and cyberspace, the analysis of
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social networks is conducive to contact tracing. As shown in Figure 1a, with a network
structure such as hierarchy and community, we can first detect these susceptible people
with direct contact (“level 1” in the epidemic network) and their direct contacts (“level 2”
in the epidemic network), which may help us to contain the spread of infection. In the
information diffusion network, information such as rumors is usually formed in a local
subnetwork and then spread among different communities. As shown in Figure 1b, in-
formation transmission consists of inner-community spread and cross-community spread.
If the path of cross-community transmission can be found and controlled as soon as pos-
sible, further spreading will be effectively contained. In other words, if we can quickly
detect the community structure and identify the intermediary nodes between different
communities of the diffusion network, we may effectively prevent the further spread of
rumors [10].

(a) (b)

Level 1
Contact tracing

Level 2
Contact tracing

Level 2
Contact tracing

Figure 1. Diffusion networks. (a) Epidemic network. Blue nodes represent the susceptible, yellow
nodes represent the exposed, and red nodes represent the infected. Directed edges represent the
potential transmission path of the contact network. The dotted circle indicates the potential transmis-
sion community. (b) Information diffusion network. Directed edges indicate the repost (retweet) path
of social platforms such as Weibo. Different colored areas represent different communities.

The above applications show the significant importance of community detection
and structural hole spanner identification. From the perspective of network structure,
the community is defined from the mesoscopic structure, and SHS is an important node
described at the microscale level. Microscopic structural features coexist with mesoscopic
structural features in real-world networked systems [11]. To some extent, mesoscopic
and microscopic properties of networks are able to determine the dynamics of complex
networks collectively [12].

However, most existing research on these two issues has been performed separately,
which has ignored the structural correlation between mesoscale and microscale. In topolog-
ical space, the network modeling approach is intrinsically constrained by the fact that it
can only account for pairwise interactions, which makes the structural relation between
mesoscale and microscale elusive. As a result, some existing methods suffer from low
accuracy and high computational costs. To solve this problem, we use network representa-
tion learning (NRL) to embed the network into the geometric space for analysis. NRL is
conducted to represent the node or the linkage of a network in low-dimensional spaces [13].
In geometric space, the relationship between nodes or edges of a network can be measured
by a certain distance, which may provide metrics to detect communities and structural hole
spanners simultaneously.

In recent years, research on hyperbolic spaces has gained much attention in network
science [14–17]. Hyperbolic space is a geometry space of constant negative curvature
that can be used to represent the generation of scale-free networks [18]. A common
characteristic of many real-world networks is that their degree distributions fit a power-law
distribution [19–21], which is the premise of embedding networks into hyperbolic space.
Hyperbolic embeddings are able to preserve the linkage structure of a scale-free network in
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a low-dimensional space, especially for hierarchical networks with community structures.
On the one hand, in geometric networks, the similarity or distance between nodes can be
used for the purpose of measuring community structures. Communities and structural
hole spanners are related to the representation of similarity. Hyperbolic embedding can
represent the similarity in a very low dimension. Hence, we may address these two tasks
on the Poincare disk simultaneously after hyperbolic embedding. On the other hand,
hyperbolic embedding makes it possible to represent a complex network through efficient
and simple visualization.

In the paper, we propose an efficient algorithm SDHE for simultaneously detecting
community structures and structural hole spanners of scale-free networks. Specifically, we
use the Poincaré disk model, a model of a two-dimensional hyperbolic plane, to embed
high-dimensional networks into low-dimensional hyperbolic space, in which, the angular
distribution of nodes reveals their communities. Then, the critical gap, which is conducive
to obtaining the angular region of structural hole spanners, is analyzed to detect commu-
nities of the network in the hyperbolic plane. Moreover, we study the link relationship
between the community and structural hole spanners in hyperbolic space. Finally, we
identify structural hole spanners via two-step connectivity. The main contributions of this
article are highlighted as follows:

• We analyze mesoscopic and microscopic structural features of scale-free networks and
study the inter-community connection probability, which is described as the distance
between the mesoscopic communities and the microscopic SHS in hyperbolic space.

• By analyzing community structure and structural hole spanners bridging different
communities in hyperbolic space, we find that low-dimensional similarity can be
used to measure the community and SHS of networks. We obtain the critical gap
for detecting communities and the angular region where structural hole spanners
may exist.

• Based on the analysis of the critical gap and angular region, we propose an algorithm
SDHE for detecting communities and structural hole spanners simultaneously. Experi-
mental results on synthetic networks and real networks testify the effectiveness and
efficiency of our proposed algorithm SDHE.

The rest of the article is organized as follows. Section 2 briefly reviews related work on
community detection, SHS identification, and hyperbolic embedding. Section 3 introduces
some essential notations and definitions of the issue studied in this paper. Section 4
proposes theoretical analyses and algorithm formation. Section 5 discussed the performance
of our proposed algorithm. In Section 6, we analyze the rationale for our algorithm and
conclude the paper.

2. Related Work

In the section, we review and conclude some valid existing methods for community
detection, SHS identification, and hyperbolic embedding. In addition, we briefly discuss
features of these existing approaches and the advantage of the joint detection of community
and SHS.

2.1. Community Detection

Community structure, which describes the mesoscopic structure of the complex net-
work, is an important research content [22]. Research topics related to community structure
have always been of high concern by scholars. As a common feature in social networks,
community structure has been widely used in various fields [23,24]. How to efficiently
find the potential community structure and important nodes in the network has become
an important issue of network science research [25]. Since Girvan and Newman proposed
the concept of community detection by defining modularity [26,27], abundant community
detection algorithms have emerged. For example, spectral clustering [28] detects commu-
nities using spectrum analysis. Detection algorithms such as Copra [29] and SLPA [30]
are proposed based on a similar idea. Walktrap [31] and Infomap [32] are also typical
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algorithms based on random walk. Random walk is heuristic, so its calculation result is
unstable. In addition, some articles focus on the substructure [33] of networks and analyze
the consistency [34,35] and inconsistency [36] of networks. The main idea of these methods
is to analyze the different mesoscopic substructures of the network and distinguish them.
Moreover, some greedy algorithms, such as CNM [37], can achieve a relatively stable
hierarchy of the community. However, for an unknown network, these greedy algorithms
are time-consuming and NP-hard.

2.2. Shs Identification

The sociological concept of SHS was first proposed by Burt [38]. Some research on
social networks has taken advantage of the concept of a structural hole in order to investigate
the structure of social networks and the information diffusion of social dynamics [39–41].
Ordinarily, only when communities are interconnected can they not form structural holes.
Some “bridge” edge [42] linking two or more non-overlapping communities can avoid struc-
tural holes. However, the “bridge” edge becomes ambiguous when the network contains
overlapping communities. Hence, the application of the “bridge” node (or SHS) is more
extensive. To find SHSs in social networks, Lou [39] proposed two effective algorithms: HIS
and MaxD. The main idea of HIS is to find more nodes connected by opinion leaders in
various groups. MaxD is a structural hole spanner discovery algorithm based on maximum
flow. However, the computational complexity of their algorithms is large, and the accuracy
depends on the linkage and the number of possible SHSs participating in the final compar-
ison. Rezvani et al. [40] validate that the task of identifying top-k SHSs is of NP-hardness
and invent efficient and scalable algorithms for finding top-k SHSs. Due to the NP-hardness
of the detection of SHSs, an effective quantitative measurement is particularly important.
Xu et al. [41] have provided a method to measure the quality of SHS detection, but this
measurement method is not suitable for all networked scenarios. Detecting communities
and SHSs are two fundamental and significant tasks in the complex network. He et al. [43]
have proposed harmonic modularity to jointly detect communities and SHSs due to the
entangled topological nature of these two tasks, which is the first attempt to combine com-
munity detection and SHS identification. However, this joint method suffers from high
computational costs.

2.3. Hyperbolic Embedding

Different from Euclidean geometry, hyperbolic geometry is a geometric space of
constant negative curvature. In other words, Euclidean spaces expand polynomially,
but hyperbolic spaces expand exponentially, which appears to be inherent in many real
scale-free networks [44,45]. In hyperbolic space, large scale-free networks, which are similar
to tree-like networks, can be represented in a low-dimensional plane. There are many
hyperbolic embedding models, such as the Beltrami–Klein (BK) model [46], the hyperboloid
model [47], the Poincaré model [48], etc. The Poincaré disk model is widely used in
hyperbolic embedding. There are three main types of embedding methods. The first is
the embedding method based on maximum likelihood estimation (e.g., HyperMap [14],
efficient embedding [49], and so on). The second is the embedding method based on
machine learning (e.g., LaBNE [50], coalescent embedding [16], and so on). The last one is
the combination of the two methods (e.g., LaBNE+HM [51,52], Mercator [17], and so on).
Their features are shown in Table 1.

Whether in information diffusion or epidemic spreading, community structure and
SHS are generally important determinants of percolation processes on complex networks.
Community and SHS often coexist in networks. However, most existing studies on the two
issues have been conducted separately. In a hyperbolic embedding space, these two tasks
can be carried out simultaneously, which substantially improves the efficiency of analyzing
the network structure.
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Table 1. Comparison of some embedding methods.

Method Feature Complexity

HyperMap Based on PSO model O(|V|3)
Efficient Embedding Introducing common neighbors O(|V| · polylog(|V|))

LaBNE Based on Laplace spectral decomposition O(|V|2)

Coalescent Embedding Based on repulsion–attraction and
betweenness O(|V|2) to O(|E||V|)

LaBNE+HM Combining LaBNE with HyperMap O(|V|2) to O(|V|3)
Mercator S1 model O(|V|2)

3. Preliminaries

In this section, some main definitions and vital notations are established to simplify the
exposition in other sections. Table 2 itemizes some important notations. These definitions
and their main properties will be used to formulate the problem discussed in our paper.

Table 2. Comparison of some embedding methods.

Notation Definition

V = {vi}n
i=1 the set of nodes; vi represents the i-th node

E ⊇ V ×V the set of edges; eij = (vi, vj) represents a link
C = {Ci}

p
i=1 the set of communities whose element Ci represents community i

G(V, E) an undirected graph (network) that consists of set of nodes V and set of
edges E

|V| (or n) the total number of nodes
|E| the total number of edges
|C| the total number of communities
ri the radial coordinate of node vi in hyperbolic space
θi the angular coordinate of node vi in hyperbolic space

∆θij the angular difference of vi and vj
dij the hyperbolic distance of vi and vj
∆θc the critical gap, which is an angular gap partitioning two communities
∆θS the set of structural hole spanners’ angle difference range
inf infimum
sup supremum

Cnb(i) the number of varied communities that node vi’s neighbors belong to
ki degree of vi

wij strength weight of edge connecting vi and vj

3.1. Community

Although the definition of a community is not universally accepted, a general under-
standing is that communities refer to some dense groups in the network [26]. There is a
relatively rigorous definition of a community, which is as follows. g is set as a subgraph
of a graph G. The number of nodes of g is set as

∣∣Vg
∣∣ and that of G is set as |V|. Then,

the intra-subgraph density ρintra(g) of the g is defined as the ratio between internal edges
of g and the number of all possible edges of g:

ρintra(g) =
#internal edges of g∣∣Vg

∣∣(∣∣Vg
∣∣− 1)/2

. (1)

The inter-subgraph density ρinter(g) is defined as

ρinter(g) =
#inter-subgraph edges of g∣∣Vg

∣∣(|V| − ∣∣Vg
∣∣) . (2)

When the average link density of g is appreciably larger than ρinter(g) and much
smaller than ρintra(g), g can be considered as a community.
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To a certain extent, nodes in the same clustering usually tend to have common proper-
ties. For any node vi ∈ Cp, if all of its neighboring nodes are in the community Cp, vi is an
internal node of community Cp. A clarified community structure helps us to understand
and analyze the network structure.

3.2. SHS and Weak Tie

According to He [43], the SHS has an intuitive definition: for any node vi ∈ Cp, if its
neighbor vj ∈ Cq(p 6= q), vi is regarded as an SHS. Shown as the red node in the middle of
Figure 2, the structural hole spanner makes different communities bridge through weak ties.

Community 1

Community 2

Community 3

Strong tie
Weak tie

SHS
Internal node
Community

Figure 2. Illustration of weak ties and structural hole spanners.

To accurately quantify the SHS, we introduce the definition of the strength of ties.
Based on the frequency of interactions, the linkage between two nodes can be divided
into two types: strong ties or weak ties. Nodes that have frequent interactions with each
other tend to be linked by strong ties. The information flowing through strong ties is
usually redundant, which makes it easy for individuals connected by strong ties to form
a closed community structure. On the contrary, weak ties can transmit non-redundant
information in the process of diffusion. From the perspective of network structure, weak
ties are usually the edges connecting different communities, as shown as the dotted line in
Figure 2. In some cases, the theory of weak ties proposed by Granovetter [53] is similar to
the structural hole theory [38]. They both emphasize the positional relationship of specific
nodes in a network. From the perspective of interaction frequency, edges are divided
into the strong tie or the weak tie. Strong ties form communities or cliques, whereas
weak ties bridge these communities or cliques. If there is a weak tie, structural holes are
formed between these different communities. Nodes connected by weak ties are called
structural hole spanners. The strength of ties is often used to quantify and judge whether
an edge of nodes is a strong tie or a weak tie. In this paper, we use the strength of ties to
quantify the edges of a node and then judge whether the node belongs to the structural hole
spanners. We introduce the strength of ties in order to compare the experimental results
quantitatively [54]. In social networks, strong ties often occur within communities, whereas
weak ties occur between different communities. According to the numerical definition of
the strength of ties proposed by Zhao et al. [55], the strength of ties wij is described as:

wij =
cij

ki + k j − 2− cij
(3)

where ki and k j represent the degrees of vi and vj; cij represents common neighbors of vi
and vj. If the value of wij is small, eij tends to be a weak tie.
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4. Methods
4.1. Hyperbolic Embedding

Hyperbolic embeddings have captured much attention since some scholars have intro-
duced the embedding representation to solve some problems of machine learning [56,57].
The motivation of hyperbolic embeddings is that they can efficiently represent knowledge
graphs. The main advantage of hyperbolic embeddings is that graph structures and node
attributes can be preserved by very few dimensions.

We used the extended Poincaré disk model to achieve the two-dimensional repre-
sentation of hyperbolic space. Hyperbolic distances grow exponentially in the hyperbolic
space, which is similar to the linkage generation of scale-free networks. Nodes of complex
networks are described in the Poincaré disk by the polar coordinate system, i.e., xi = (ri, θi),
with ri ∈ [0,+∞) and θi ∈ [0, 2π) for node vi. Based on these polar coordinates, we used ge-
ometric distances to represent the similarity between two different nodes. The embeddings
of similar nodes should be close, whereas the embeddings of structurally or attributively
different nodes should be distant. Popularity and similarity are the main vital features of
the embedded networks [58]. Embedded in the Poincaré disk plane, the radial and angular
coordinates of nodes represent popularity, and similarity [59], respectively. Hyperbolic
embedding can reveal the potential hierarchical structure of scale-free networks. The pop-
ularity and the similarity of nodes in hyperbolic space are determined by the existing
structure of the network. In other words, once the network structure is given, the radial
coordinate and angular coordinate of every node are assigned, respectively. The possibility
of a connection between nodes is related to the hyperbolic distance dij, which satisfies

cosh(ζdij) = cosh(ζri) cosh(ζrj)− sinh(ζri) sinh(ζrj) cos(∆θij), (4)

where ∆θij = π −
∣∣π − |θi − θj|

∣∣ represents the angular difference of vi and vj; ri and rj
represent the radial coordinates of vi and vj, respectively; θi and θj represent the angular
coordinates of vi and vj, respectively; ζ is a constant, and, generally, ζ = 1. When ri and rj
are large, the hyperbolic distance of vi and vj can be approximated as

dij ≈ ri + rj + 2 ln sin(
∆θij

2
). (5)

If the angular coordinates of the two nodes vi and vj are very close (i.e.,
∆θij

2 is very
small), the above formula can be approximated as

dij ≈ ri + rj + 2 ln
∆θij

2
. (6)

Concretely, we used the efficient embedding (EE) method to embed networks. The EE
method can efficiently embed scale-free networks into hyperbolic space, which has achieved
a quasi-linear computational complexity [49]. Based on the Poincaré disk model, the main
idea of the EE method is to introduce common neighbors in order to obtain the community
structure and optimize the node coordinates according to the degree in turn. Specifically,
we set G(V, E) as a graph. Embedded by the modified Poincaré disk model, every node
has polar coordinates in hyperbolic space. For node vi, its radial coordinate ri satisfies

ri = min{R, 2 ln
2|V|(γ− 1)T

ki sin(πT)(γ− 2)
} (7)

and

R = 2 ln
|V|2(γ− 1)2T

|E| sin(πT)(γ− 2)2 , (8)
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where |V| represents the total number of nodes; |E| represents the total number of edges; R
represents the radius of the extended Poincaré disk; ki represents the degree; γ represents
the power-law index; T is the temperature coefficient, usually taken as 0.1.

In the EE method, the angular difference between vi and vj is obtained by calculating
their common neighbors. The likelihood estimation of angle difference is calculated as

φ(cij, ri, rj) = K · c
1

2−γ

ij · exp(−1
2

ri +
rj − R
2− 4γ

), (9)

where cij represents the number of common neighbors of vi and vj; ri and rj represent the
radial coordinates of vi and vj, respectively; R is the radius of the Poincaré disk; K is a
constant. Embedded in the hyperbolic space by the EE method, the connection possibility
pij of nodes vi and vj satisfies

pij =
1

1 + e
βζ
2 (dij−R)

, (10)

where dij represents hyperbolic distance of vi and vj; β and ζ are constant. In this paper,
β = 1

T = 1
0.1 = 10 and ζ = 1. More details about EE method can be referred to in [49].

4.2. Critical Gap of Community Structure

The critical gap in hyperbolic space indicates the angular difference, which is used for
partitioning community structures according to angular distribution. When a real network
is embedded in a Poincaré disk, the angular distribution of its nodes is not homogeneous.
Equation (9) represents that nodes of a network embedded in hyperbolic space have a
nature of clustering. The community structure of networks indicates that some densely
connected nodes are clustered into corresponding groups. The detection of the community
may be a computationally arduous task due to its NP-hardness, but the nature of hyperbolic
space contributes to detecting community structures. In hyperbolic space, a pair of nodes
with a higher connection probability is more likely to be clustered into the same community.
Based on this, a vital characteristic of hyperbolic embeddings is that nodes are considered
to belong to the same community when they are distributed in a communal angular area.

Different angular regions are partitioned by a series of critical gaps. In this paper, we
used the critical gap method (CGM) [60], a modularity maximization method, to detect
potential communities. Modularity [61] is a function measuring the partition quality of
community structure. For a particular partition of a network or subnetwork, sisj = 1 if
nodes vi and vj are in the same community; sisj = −1 if nodes vi and vj are in different
communities. Modularity is defined as

Q =
1

4|V|∑ij
(Aij −

kik j

2|V| )(sisj + 1), (11)

where |V| represents the total number of nodes; Aij represents the number of edges con-
necting nodes vi and vj; ki and k j represent the degrees of nodes vi and vj.

Specifically, the CGM detects communities by discovering the best partition of a scale-
free network in hyperbolic space [15,62]. The main idea of CGM is to find the appropriate
critical gap ∆θc that can separate two consecutive nodes with a little connection possibility.
If the angular difference ∆θij of two consecutive nodes vi and vj is more than the critical gap
∆θc, we can believe that the two nodes belong to two different communities, respectively.
We gradually increased the value of ∆θc until modularity Q no longer became larger.
The procedure of CGM is shown in Figure 3, and the pseudo code of CGM is illustrated
in Algorithm 1. It shows that a network embedded in a Poincaré disk is divided into
different communities.
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(a) (b) (c)

Figure 3. Flow chart of the critical gap method (CGM). (a) A network example. (b) The network
embedded in a Poincaré disk. The dotted line represents the connected shape of Euclidean space, not
the actual connection state of hyperbolic space. In fact, the connected edges should be represented as
curved lines in hyperbolic space. (c) Different communities in hyperbolic space. Different commu-
nities are separated by dark blue dashed lines, and the internal nodes in different communities are
distinguished by different colors.

Algorithm 1 Critical Gap Method (CGM)

Input: Graph G = (V, E); Coordinates (ri, θi) in hyperbolic plane for vi ∈ V;
Output: Assignments to communities C; Modularity Q;

1: repeat
2: Make all pairs of nodes (vi, vj) connected to be a connected component when

∆θij ≤ ∆θc;
3: Assign all nodes of the same connected component to the same community;
4: Calculating Q according to Equation (11);
5: if Q > Q̃ then
6: Q̃← Q
7: end if
8: Increase ∆θc;
9: until Q < Q̃

In fact, the critical gap of a network in hyperbolic space has a theoretical approximation
of community detection. Using this theoretical value of the critical gap can not only improve
the computational efficiency of CGM but also integrate community detection and SHS
identification in hyperbolic space. In different generative models, the value of the critical
gap is slightly different [63]. In this paper, we demonstrated the theoretical values of the
critical gap under two common models.

(1) In the GPA model

The GPA generative mechanism of networks is considered to give rise to soft com-
munities. In GPA model, the critical gap ∆θc is the expected value of the largest gap.
We assumed that the largest gap ∆θ(n) = max{∆θ1, . . . , ∆θn} where n = |V| represents
the total number of nodes and θ1, . . . , θn ∼ U[0, 2π] are randomly assigned. If nodes are
distributed uniformly, no community structure exists and the model is equivalent to the
original popularity-similarity optimization (PSO) model. According to [64], for adequately
large value of n, {θ1, . . . , θn} can be approximately regarded as a distribution of the Poisson
point process and its density λ = n

2π . Here, the distribution of the angular gaps was
approximately exponential with rate λ. Then, the largest gap ∆θ(n) had a probability den-

sity function (PDF) such that f∆θ(n)(x) = n2

2π e−
n

2π x(1− e−
n

2π x)n−1. Finally, we gained the
expected value that

∆θc =
n2

2π

∫ ∞

0
xe−

n
2π x(1− e−

n
2π x)n−1dx

≈ 2π ln n
n

.
(12)
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(2) In the nPSO model

Nodes in the nPSO model were assumed to satisfy the Gaussian mixture distribu-
tion [65]. It is known that the mean value of each community determines the central
location of the community and the standard deviation of each component determines
the distribution of communities in the angular space. Specifically, a small standard de-
viation results in isolated communities, and a high value of standard deviation tends to
form some overlapped communities. We assume that nodes in hyperbolic space satisfy
the Gaussian mixture with equal proportions. Then, their angular coordinates are ap-
proximately Gaussian. In that way, their angular differences satisfy the folded normal
distribution. Further, the distribution is approximately viewed as an exponential distribu-

tion with 1
λ = σt

√
2
π exp(− µ2

t
2σ2

t
)− µt[1− 2Φ( µt

σt
)] where µt = µ, σt = σ(t = 1, . . . , |C|) if

the angular gaps are not too small. Similarly, we have the critical gap, which is as follows:

∆θc ≈
ln n

λ

= ln n ·
[

σ

√
2
π

exp(− µ2

2σ2 )− µ
(

1− 2Φ(
µ

σ
)
)]

,
(13)

where µ and σ are constant mean value and standard deviation, respectively.

4.3. Angular Area of SHS

Hyperbolic embedding transforms topological analysis of a network into geometric
analysis of the network, which is conducive to study network structure by using geomet-
ric analysis methods. Based on geometric characteristics of a network, the similarity of
two nodes can be measured by geometric distance, such as hyperbolic distance. The polar
coordinates of each node in hyperbolic space can provide an index, which can highly
improve the efficiency of searching nodes. Having coordinates of each node in hyperbolic
space, we can achieve joint detection of community and SHS with low computational com-
plexity.

Specifically, by analyzing the geometry of networks embedded in hyperbolic space,
we obtained the critical gap of different communities and the angular region of structural
hole spanners bridging the communities. As shown in Figure 4, we assumed that the radius
coordinate range of structural hole spanners was from R0 to R, and the angular coordinate
range of SHS was from θA to θB. An arbitrary SHS was set as the node S. A and B are the
two nodes closest to S outside the region. It is easy to prove that A and B are on the same
geodesic line. The distance between A and B is

dAB ≈ R0 + R0 + 2 ln
∆θAB

2
= 2R0 + 2 ln

∆θ

2
. (14)

Therefore, the probability of connection between A and B is

pAB =
1

1 + e
βζ
2 (2R0+2 ln ∆θ

2 −R)
. (15)

We assumed that ∆θS = {∆θ1, . . . , ∆θs, . . . , ∆θ|C|} represents the set of structural hole
spanners’ angle range between two nearby communities. Let the maximum value of the
probability pAB equal a; then, we have the infimum of ∆θS as the following:

inf ∆θS = 2
(

1− a
a

) 1
βζ

e
R
2 −R0 , (16)

where a is the parameter that determines the lower bound of ∆θS.
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A B

S

Figure 4. Possible positions of structural hole spanners. Dark blue dashed lines separate the two com-
munities. Node S is arbitrarily set as an SHS; then, the shadow area is what we need to calculate.

When simulating the generation process of scale-free networks, the nPSO model
uses Gaussian mixture model to generate network with community structure [65]. In this
paper, we assumed that the node distribution in the hyperbolic disk satisfies the Gaussian
mixture (GM) distribution p(x|θ) = ∑

|C|
t=1 αt ϕ(x|θt), where |C| represents the total number

of communities and αt determines the shape of the distribution function. For simplicity,
we assumed that each sub distribution ϕ(x|θt) has the same variance. Then, αt = 1

|C| ,
and ϕ(x|θt) = ϕ(θt). We first calculated the position of the angular coordinates in a single
Gaussian distribution. Let ϕ(θt) = p; then, we have θt = µt ±

√
2σ2

t ln 1√
2πσt p

. In this case,

we set σt = σ, where t = 1, . . . , |C|. Then, the angle range of SHS is

∆θs = |θt+1 − θt| =
2π

|C| − 2σ

√
−2 ln(

√
2πσp). (17)

For a complex network of scale-freeness, its degree distribution satisfies P(d = k) ∝
k−γ, where k represents the number of degree. We set P(d = k) = bk−γ, where b is
the coefficient related to the network structure. In hyperbolic space, if node i satisfies

ri < R, we can obtain that its degree ki =
2|V|(γ−1)T

sin(πT)(γ−2) e−
ri
2 = 2|E|(γ−2)

|V|(γ−1) e
R−ri

2 by calculating
Equations (7) and (8). Furthermore, if γ > 1, we have the cumulative distribution function
(CDF) of degrees as FX(x) = P(X ≤ x) =

∫ x
−∞ bk−γdt = b

1−γ x1−γ. Then, the CDF of radial

coordinates is FY(y) = b
1−γ [

2|V|(γ−1)T
sin(πT)(γ−2) ]

1−γe
γ−1

2 ·y. Thus, P(r > ri) = 1− P(r ≤ ri) =

1− FY(ri) = 1− b
1−γ (

2|V|(γ−1)T
sin(πT)(γ−2) )

1−γe
γ−1

2 ·ri . We assumed that the minimum value of ri is

R0, and that P(r > R0) = p. We set that h = b
1−γ (

2|V|(γ−1)T
sin(πT)(γ−2) )

1−γ ; then, the supremum of
∆θS is as follows:

sup ∆θS =
2π

|C| − 2σ

√
−2 ln

[√
2πσ(1− h · e

γ−1
2 ·R0)

]
. (18)

According to Equations (16) and (18), the angular region of SHSs in hyperbolic space
was obtained.
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4.4. SDHE Algorithm

There are many ways to select possible structural hole spanners. This paper used
2-step connectivity to select possible SHSs in the angular ares. The method estimates the
number of pairs of a node’s neighbors that are not pairwise linked. The more that the
number of edges means, the more significant the possibility of belonging to an SHS. Two-
step connectivity is not used directly for detecting SHSs because it is of high computational
complexity. The node of large degree results in 2-step connectivity, which is very time-
consuming. In large scale-free networks, nodes that have large degrees are usually called
hubs. The degree of the SHS with bridging function is not as large as that of the hubs. When
we embedded a large network into hyperbolic space, the hierarchical relationship between
nodes was revealed. Specifically, the hubs of larger degrees and structural hole spanners
were assigned to different levels in the hyperbolic space. If we exclude the area where
the structural hole spanner is impossible to exist, we can avoid wasting much time on
computing irrelevant nodes. We used the geometric relations of nodes in hyperbolic space
to divide the geometric boundary of structural hole spanners. Then, 2-step connectivity
was used to filter needed nodes in the region. When the value of a node is positive, the node
is output as a candidate SHS. Finally, the top-k nodes were selected as SHSs. The pseudo
code of SDHE is illustrated in Algorithm 2.

Algorithm 2 SDHE

Input: Graph G = (V, E); Coordinates (ri, θi) in hyperbolic plane for vi ∈ V; The critical
gap ∆θc;

Output: The distributed structural hole spanners;
1: Initialize and sort the set of angular coordinates {θi};
2: Calculate the consecutive angular differences ∆θ = {∆θij};
3: Detecting communities by using Algorithm 1 CGM;
4: for ∆θij ∈ ∆θ do
5: if ∆θij > ∆θc then
6: Select nodes whose angular coordinates satisfy θq ∈ (θi − sup ∆θS, θi + sup ∆θS)

or θq ∈ (θj − sup ∆θS, θj + sup ∆θS);
7: Select top-k nodes with positive 2-step connectivity scores;
8: end if
9: end for

10: return Top-k structural hole spanners;

5. Results

In this section, we evaluate the effectiveness of our proposed algorithm in this article.
Firstly, we briefly illustrate the network datasets and several compared methods. Then, we
present the quality measurement and evaluate the performance of the proposed algorithm
on community detection and SHS identification. Finally, we discuss the results.

5.1. Datasets

We used three synthetic networks and nine real-world networks to experiment. We
utilized the nPSO model [65] to generate synthetic networks. The nPSO model was used
for generating some specific networks in hyperbolic space, where heterogeneous angular
attractiveness of nodes was preset by means of sampling the angular coordinates from a
mixture of Gaussian distributions. We used the nPSO model to generate three networks
of different parameters. In addition, nine real-world networks [66] were used in the
experiment. Some indicators of these experimental networks are shown in Table 3.
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Table 3. Network datasets.

Graph Name |V | |E| Average
Degree3

Average Clustering
Coefficient

Power-Law
Index Category

Synthetic network 1 2000 98,725 99 0.6016 2.9039 Synthetic networks
Synthetic network 2 2000 98,725 99 0.6157 2.8989 Synthetic networks
Synthetic network 3 2000 7990 8 0.4640 3.4288 Synthetic networks

soc-hamsterster 2000 16,631 14 0.5375 4.8520 Social networks
fb-pages-politician 5908 41,729 14 0.3851 3.2455 Social networks

power-US-Grid 4941 6594 3 0.0801 3.2175 Power networks
socfb-Amherst41 2235 90,954 81 0.3104 5.6425 Social networks
socfb-Simmons81 1510 32,988 43 0.3149 4.7393 Social networks

socfb-Swarthmore42 1657 61,050 73 0.2965 5.5988 Social networks
socfb-Rochester38 4561 161,404 70 0.2932 5.3782 Social networks

socfb-Reed98 962 18,812 39 0.3184 4.3817 Social networks
socfb-Mississippi66 10,519 610,911 116 0.2479 5.4252 Social networks

5.2. Compared Methods

Based on the CGM, we compared SDHE with the following methods for detecting
top-k structural hole spanners.

• PageRank-based (PR) [67] is a classic ranking algorithm that assigns each node a
PageRank score for ranking potential SHSs. This algorithm is widely used in industries
such as Google Search.

• Betweenness-centrality-based (BC) [68] gives each node a score for its shortest paths.
Then, the algorithm selects nodes of the top-k scores as the possible SHSs.

• Two-step connectivity (2-Step) [69] estimates the number of pairs of a node’s neighbors
that are not pairwise linked. The more that the number of edges means, the larger the
possibility of belonging to an SHS.

• HAM [43] formulates a harmonic modularity function for discovering the possible
SHSs. The rationale is that nodes whose neighbors belong to more different subnet-
works can be regarded as SHSs.

• ESH [70] is an algorithm that simulates a factor diffusion process in SHS identification.
To some extent, the motivation of ESH is similar to that of the label propagation
algorithm (LPA) [71].

The complexity of the aforementioned methods is briefly discussed as follows. The com-
plexity of efficient embedding (EE) used for achieving the hyperbolic embedding is O(|V| ·
polylog(|V|)). The computational complexity of modularity Q is O(|V|2), so the CGM
runs in O(τ · |V|2), where τ represents the iteration times. For classic community detection
algorithms, they usually have a high computational complexity. The Louvain algorithm runs
in O(|V| · log2|V|). The complexity of KL is O(k · |V|2 log|V|). The CNM algorithm runs in
O(|V| · log2|V|). After obtaining the hyperbolic coordinates of the network nodes, we can
use their geometric relationship to limit the angular area of structural hole spanners to a
small angular region, which can greatly improve the efficiency of SHS detection. The com-

putational complexity of the top-k SHS detection algorithm in this paper is O( |E|
3
2 ·log|V|
|V| ).

For some existing SHS detection algorithms, the complexity is often high because of the
inevitable global search. For example, the computational complexity of betweenness is

O(|V||E|+ |V|2 · log|V|). That of two-step connectivity is O(|E|
3
2 ). The HAM algorithm

runs inO(|V|3). ESH and PageRank, although they both have a low complexity ofO(k · |V|),
are unstable.

5.3. Evaluation Criteria

To evaluate the effectiveness of algorithms, two elements should be taken into con-
sideration: the quality of community detection and the accuracy of SHS identification.
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Commonly, modularity, which is described in Equation (11), is applied to estimate the
quality of detecting community structures. In addition, the strength of ties, which is the
quantitative measurement of edges, can be used for measuring the accuracy of SHS identifi-
cation. Strong ties have greater values of strength, whereas weak ties have smaller values.
From the point of view of topology, nodes and edges of a graph are equivalent. When a
vertex has abundant edges connecting with vertices in one community, it can be considered
that the vertex is strongly tied with the community. Specifically, we used the average
connection strength of node i to quantify the degree of weak ties as follows

wi =
1

Cnb(i)
∑

j
wij (19)

where wij represents the connection strength of vi and vj; Cnb(i) represents the number of
varied communities that vi’s neighbors belong to. The average connection strength reflects
connection properties for a specific node. When wi is very small, node vi is more likely to
be an SHS.

In this paper, we combine these two evaluation indicators for measuring the effective-
ness of joint detection. Similar to the GR-score [16], a CS-score that covers the two tasks
has been introduced for the purpose of comparing the performance of methods. It is set
as follows.

CSscore =
Q

1
k ∑k

i=1 wi
(20)

where k represents the number of selected top-k SHSs, wi represents the average connec-
tion strength of node i, and Q represents the modularity. When the CS-score is higher,
the performance of community and SHS detection is more effective.

5.4. Experimental Result

Some experimental results of our proposed algorithm are discussed in detail in this section.
We used the EE method to embed networks into hyperbolic space. Figure 5 shows the

visualization result of hyperbolic embedding. In hyperbolic space, every point represents a
node. The hyperbolic distance of two nodes represents the linkage possibility of the two
nodes, and the angular difference between the two nodes indicates the similarity between
the two nodes. We used the CGM to detect communities. Nodes in different communities
are distinguished by different colors, which represent angular areas. Moreover, we obtained
the angular region according to Equation (18) and located it at the community interval
divided by CGM. We then used two-step connectivity to select structural hole spanners.
Three synthetic networks and nine real network datasets were used to conduct experi-
ments, and the results are listed in Table 4. We compared our method with PageRank [67],
betweenness [68], two-step connectivity [69], HAM [43], and ESH [70] for detecting top-k
SHSs. Theoretically, SHS is more likely to have a low strength of ties.

It can be seen from Table 4 that our algorithm outperforms other algorithms in all
datasets, especially for synthetic networks. Due to ambiguous and overlapping community
structures of the synthetic network in the hyperbolic plane, SHS identification by our
algorithm can be efficiently achieved. Although the structure of real networks is not as
ambiguous as that of synthetic networks, our algorithm applied in real networks has a
good effect.

To jointly compare the comprehensive performance of community detection and SHS
identification, the CS-score is devised to evaluate different algorithms. The formation of
the CS-score consists of two parts: modularity and the strength of ties. The results are
shown in Figure 6. Based on CGM, the CS-score of our algorithm is higher than that of
other algorithms. This indicates that the proposed algorithm in this paper is effective in the
joint detection of community and SHS.
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Figure 5. Visualization of network communities in the hyperbolic space. Every point represents a
node of a connected graph. The disk takes polar coordinates as the coordinate system. For the sake of
simplicity, edges have not been added in the disk. We used the CGM to determine the community
structure of the network. The colors are randomly generated, and different colors represent different
angular coordinates. (a) Synthetic network 1 with Q = 0.6520, |C| = 15. (b) Synthetic network 2 with
Q = 0.6466, |C| = 16. (c) Synthetic network 3 with Q = 0.8355, |C| = 20. (d) soc-hamsterster with
Q = 0.3342, |C| = 36. (e) fb-pages-politician with Q = 0.2929, |C| = 10. (f) power-US-Grid with
Q = 0.7576, |C| = 15.

Table 4. Strength of top-k possible SH spanners.

Graph Name Our Algorithm PageRank Betweenness 2-Step HAM ESH

Synthetic network 1 2.2402 5.5835 5.5835 5.5835 5.5076 3.9269
Synthetic network 2 4.9280 10.4967 10.4967 10.4967 10.0240 14.7173
Synthetic network 3 42.1019 67.4177 55.5883 60.3040 71.0014 49.4057

soc-hamsterster 17.4755 112.2295 66.2897 98.3370 80.4742 48.5466
fb-pages-politician 33.7559 901.6482 599.9436 1583.0686 216.4362 221.5029

power-US-Grid 5.6422 25.5685 16.3807 41.0428 9.4812 6.1929
socfb-Amherst41 0.1590 33.8065 31.1441 28.5272 8.0049 3.9821
socfb-Simmons81 0.4939 16.2367 12.9662 15.0613 7.9427 7.1944

socfb-Swarthmore42 0.5542 9.7298 7.8113 9.7298 3.9401 3.2916
socfb-Rochester38 8.9028 103.4225 99.0418 128.1894 90.4591 42.3957

socfb-Reed98 1.6438 10.5912 9.4288 10.4065 5.0676 6.6712
socfb-Mississippi66 3.1859 135.9779 67.7351 227.7486 45.1414 29.2449
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Figure 6. CS-score of different methods on different networks.

6. Conclusions and Discussion

In this article, we propose a novel algorithm SDHE for simultaneously detecting
communities and structural hole spanners of networks in hyperbolic space. Different from
common algorithms, our proposed algorithm can avoid global searches on a large scale.
Specifically, with the help of the extended Poincaré disk model to embed nodes of scale-free
networks into hyperbolic space, we are able to utilize the critical gap and the angular region
to detect communities and SHSs. The CS-score containing the modularity and strength
of ties is introduced to evaluate the performance of our proposed algorithm in this paper,
and the computational result indicates that our algorithm outperforms other detection
algorithms. The main reason is that the network structure is well represented in hyperbolic
space. Communities of the network are placed in sectors with different angular ranges in
the hyperbolic plane, so it is efficient in detecting communities and structural hole spanners
by means of hyperbolic geometry. In other words, our proposed algorithm avoids analyzing
nodes near the center of each community, which reduces the computational complexity.

We used the proposed algorithm to analyze synthetic networks and real networks,
respectively. The experimental results have shown a great performance in synthetic net-
works because the generative mechanism of these synthetic networks is consistent with our
method. Our method also has a good performance in some real networks, but the precondi-
tion is that these real networks are of good community structure in hyperbolic space and are
not too sparse. The results indicate that the joint detection of mesoscopic and microscopic
structure is effective and efficient in hyperbolic space because hyperbolic embeddings
shed light on the hierarchy, community, and linkage of complex networks in a simple
low-dimensional plane. In hyperbolic space, the similarity of nodes can be represented by
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the hyperbolic distance, which provides a metric to analyze the network structure efficiently.
Although we spent some time embedding the network into the hyperbolic representation
space, it is very necessary and instructive for network analysis.

Overall, the proposed algorithm of detecting communities and structural hole spanners
simultaneously in hyperbolic space is effective and efficient, and has good application
prospects in the fields of contact tracing, rumor control, and so on. The main drawback of
our proposed algorithm is that the total computational complexity is greatly affected by
the hyperbolic embedding algorithm. Hence, future possible research achievements could
be directed towards developing highly efficient embedding algorithms that can represent
real networks quickly and accurately in representation space.
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